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Department of Mathematics, University of Zagreb, Bijenička Cesta 30,
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Abstract Let A be a unital C∗-algebra with the canonical (H) C∗-bundle A over the maximal ideal
space of the centre of A, and let E(A) be the set of all elementary operators on A. We consider derivations
on A which lie in the completely bounded norm closure of E(A), and show that such derivations are
necessarily inner in the case when each fibre of A is a prime C∗-algebra. We also consider separable
C∗-algebras A for which A is an (F) bundle. For these C∗-algebras we show that the following conditions
are equivalent: E(A) is closed in the operator norm; A as a Banach module over its centre is topologically
finitely generated; fibres of A have uniformly finite dimensions, and each restriction bundle of A over a
set where its fibres are of constant dimension is of finite type as a vector bundle.
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1. Introduction

Let A be a unital C∗-algebra. An elementary operator on A is a map T : A → A which
can be expressed as a finite sum

T =
n∑

i=1

Mai,bi

of two-sided multiplication operators Ma,b : x �→ axb (a, b ∈ A). The set of all elementary
operators on A is denoted by E (A) and its operator norm closure (respectively, completely
bounded norm closure) is denoted by E (A) (respectively, E (A)cb).

A derivation on A is a linear map δ : A → A satisfying the Leibniz rule

δ(xy) = δ(x)y + xδ(y)

for all x, y ∈ A. Each element a ∈ A induces the inner derivation δa given by

δa(x) := ax − xa
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for all x ∈ A. By Der(A) (respectively, Inn(A)) we denote the set of all derivations
(respectively, inner derivations) on A. It is well known that each derivation δ on A is
completely bounded with ‖δ‖cb = ‖δ‖.

In our previous papers [18–20] we considered variants of the following two problems.

Problem 1.1. Characterize all unital C∗-algebras A with the property

Der(A) ∩ E (A)cb = Inn(A). (1.1)

Problem 1.2. Characterize all unital C∗-algebras A with the property

E (A) = E (A). (1.2)

The motivation for considering these problems comes from understanding the operator
(or completely bounded) norm closure of E (A). One can also consider the following dual
problems.

Problem 1.3. Characterize all unital C∗-algebras A with the property

Der(A) ∩ E (A)cb = Der(A). (1.3)

Problem 1.4. Characterize all unital C∗-algebras A with the property

E (A) = IB(A), (1.4)

where IB(A) is the set of all bounded linear maps φ : A → A which preserve closed
two-sided ideals of A.

Note that these (dual) problems have already been solved in a separable case. More
precisely, in [24] Magajna showed that a unital separable C∗-algebra A satisfies (1.4) if
and only if A is (∗-isomorphic to) a finite direct sum of (unital separable) homogeneous
C∗-algebras, which solves Problem 1.4. On the other hand, if a separable A satisfies (1.3),
then Der(A) must be separable (since E (A) is separable whenever A is separable). By a
result of Elliott [14, Theorem 1], Der(A) is separable if and only if all derivations on A

are inner. Furthermore, in [1, Corollary 3.10], Akemann and Pedersen characterized the
unital separable C∗-algebras admitting only inner derivations as those C∗-algebras which
are (∗-isomorphic to) a finite direct sum of (unital separable) simple and homogeneous
C∗-algebras. This solves Problem 1.3 in the separable case as well. It would also be
interesting to see what happens in the inseparable case.

Returning to Problem 1.1, we proved that A satisfies (1.1) if A is prime [18, Theo-
rem 4.3] or if A has a Hausdorff primitive spectrum [18, Theorem 5.6]. On the other
hand, we exhibited an example of a C∗-algebra admitting an outer derivation lying in
E (A) [18, Example 6.1], which makes Problem 1.1 non-trivial (and also interesting). Of
course, if a C∗-algebra A is prime or if it has a Hausdorff primitive spectrum, then each
Glimm ideal of A is prime, so the next natural step would be to consider this more
general case. It turns out that such a class of C∗-algebras indeed satisfies (1.1).
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Theorem 1.5. Let A be a unital C∗-algebra. If every Glimm ideal of A is prime, then
A satisfies (1.1).

This result will be proved in § 3. Furthermore, note that Theorem 1.5 is indeed a strict
generalization of [18, Theorem 4.3] and [18, Theorem 5.6], since the class of C∗-algebras
in which every Glimm ideal is prime includes all standard C∗-algebras (see [3, p. 90]
for the definition), in particular, all prime C∗-algebras, C∗-algebras with a Hausdorff
primitive spectrum, quotients of AW ∗-algebras (by [30, Lemma 2.8]) and local multiplier
algebras (by [3, Corollary 3.5.11]). At this point, we would also like to mention that
(as far as the author knows) it is still uncertain whether there exists a quotient of an
AW ∗-algebra which admits an outer derivation δ. If such a quotient exists, then, by
Theorem 1.5, δ cannot lie in E (A)cb.

On the other hand, in [19, Theorem 2.6] we showed that if a unital separable C∗-algebra
A satisfies (1.2), then A is necessarily subhomogeneous of finite type. This means that A

is subhomogeneous and the C∗-bundles corresponding to the homogeneous subquotients
of A must be of finite type (see [19] for a detailed explanation). By [20, Proposition 1.1],
such C∗-algebras are characterized with the following (more intrinsic) property: there
exists a finite number of elements a1, . . . , am ∈ A such that

span{a1 + P, . . . , am + P} = A/P for all P ∈ Prim(A). (1.5)

Moreover, if A satisfies (1.2), then by [20, Theorem 2.3], Prim(A) in (1.5) can be replaced
by the larger set Primal2(A) of 2-primal ideals of A, so (1.2) also implies

span{a1 + Q, . . . , am + Q} = A/Q for all Q ∈ Primal2(A). (1.6)

If, in addition, Prim(A) is Hausdorff, then the conditions (1.5) and (1.6) are equivalent
(since every proper 2-primal ideal of A primitive). In this (Hausdorff) case we showed that
the condition (1.6)(⇔ (1.5)) in fact characterizes unital separable C∗-algebras satisfying
(1.2) [20, Theorem 3.9]. However, in a general case the condition (1.6) is stronger than
(1.5), and the problem of whether (1.6) implies (1.2) remained open in [20].

To obtain a larger class of C∗-algebras satisfying (1.2), we shall consider the canonical
(H) C∗-bundle A of A over max(Z(A)) (the maximal ideal space of the centre of A).
If Prim(A) is Hausdorff, then the map max(Z(A)) → Prim(A), given by x �→ xA (x ∈
max(Z(A))), is a homeomorphism, and since the norm functions P �→ ‖a + P‖, a ∈
A, are continuous on Prim(A) (by [9, § II.6.5.8]), A is an (F) bundle. Then (1.5) is
equivalent to the fact that all restriction bundles of A over a set where its fibres are
pairwise ∗-isomorphic are of finite type as vector bundles (and as C∗-bundles, by [27,
Proposition 2.9], since all fibres of A are simple). It turns out that the continuity of the
bundle A is the only information needed to prove (1.2). More precisely, we shall obtain
the following result.

Theorem 1.6. Let A be a unital separable C∗-algebra. If the canonical C∗-bundle A

of A over the space X = max(Z(A)) is an (F) bundle, then the following conditions are
equivalent:
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(i) E (A) is closed in the operator norm;

(ii) A satisfies (1.6);

(iii) fibres Ax of A have uniformly finite dimensions, and each restriction bundle of A

over a set where dim Ax is constant is of finite type as a vector bundle;

(iv) A as a Banach module over Z(A) is topologically finitely generated.

Condition (iv) of Theorem 1.6 means that there exist a finite number of elements in A

whose Z(A)-linear span is norm dense in A.
To conclude this introduction, we note that the main problem in proving Theorem 1.6

is that we do not know if (1.2) implies that each restriction bundle of A over a set where
fibres of A are pairwise ∗-isomorphic is of finite type as a C∗-bundle (some fibres Ax

are no longer simple, unless Prim(A) is Hausdorff, so [27, Proposition 2.9] cannot be
applied). Our technique of proving this theorem is essentially based on the existence of a
C0(Xi)-valued inner product 〈·, ·〉i on each subquotient Γ0(A|Xi), where Xi := {x ∈ X :
dim Ax = i}, whose induced norm a �→ ‖〈a, a〉i‖1/2 is equivalent to the C∗-norm on
Γ0(A|Xi). This will enable us to bypass the above-mentioned difficulty by using the
methods from [21] developed for (F) Hilbert bundles.

2. Preliminaries

Throughout the paper A will denote a C∗-algebra, and Z(A) its centre. By Â and Prim(A)
we respectively denote the spectrum of A (i.e. the set of all classes of irreducible repre-
sentations of A) and the primitive spectrum of A (i.e. the set of all primitive ideals of
A), equipped with the Jacobson topology. If all irreducible representations of A have the
same finite dimension n, we say that A is (n-)homogeneous, and if

n := sup{dim π : [π] ∈ Â} < ∞,

we say that A is (n-)subhomogeneous.
Let Id(A) be the set of all ideals of A (by an ideal we always mean a closed two-sided

ideal). We equip Id(A) with the strong topology τs, which is by definition the weakest
topology making the functions I �→ ‖a + I‖ (I ∈ Id(A)) continuous. Under this topology
Id(A) becomes a compact Hausdorff space (see [4]).

An ideal Q ∈ Id(A) is said to be n-primal (n ∈ N, n � 2) if, whenever J1, . . . , Jn are
n ideals of A with J1 . . . Jn = {0}, Ji ⊆ Q for at least one value of i. If Q is n-primal for
all n, then Q is said to be primal. By Primaln(A) (respectively, Primal(A)) we denote
the set of all n-primal (respectively, primal) ideals of A.

We now recall some facts about the complete regularization of Primal(A) (see [5] for
further details). For P, Q ∈ Prim(A) let

P ≈ Q if f(P ) = f(Q) for all f ∈ Cb(Prim(A)).

Then ≈ is an equivalence relation on Primal(A) and the equivalence classes are closed
subsets of Prim(A). Hence, there is one-to-one correspondence between the quotient
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set Prim(A)/≈ and a set of ideals of A given by [P ] �→
⋂

[P ], where [P ] denotes the
equivalence class of P ∈ Prim(A). The ideals obtained in this way are known as Glimm
ideals, and by Glimm(A) we denote the set of all Glimm ideals of A. It is easy to see
that every proper 2-primal ideal of A contains a unique Glimm ideal of A (see the proof
of [5, Lemma 2.2]). We equip Glimm(A) with the quotient topology τq. Then Glimm(A)
becomes a Hausdorff space, and the quotient map

φA : Prim(A) → Glimm(A)

is known as the complete regularization map. If A is unital, then it follows from the
Dauns–Hoffman Theorem [28, Theorem A.34] that

P ≈ Q ⇐⇒ P ∩ Z(A) = Q ∩ Z(A).

Moreover, in this case the map ζA : Glimm(A) → max(Z(A)), G �→ G ∩ Z(A) is a
homeomorphism, so when A is unital Glimm(A) is a compact Hausdorff space, and we
may identify C(Glimm(A)) with Z(A). The following facts are well known (see [5]).

Proposition 2.1. Let A be a C∗-algebra.

(i) For all a ∈ A, sup{‖a + G‖ : G ∈ Glimm(A)} = ‖a‖.

(ii) The function G �→ ‖a + G‖ is upper semicontinuous on Glimm(A) for each a ∈ A.

(iii) The function G �→ ‖a + G‖ is continuous on Glimm(A) for each a ∈ A if and only
if φA is an open map.

Since the topology τq on Glimm(A) is weaker than the relative τs-topology, as a direct
consequence of Proposition 2.1 we obtain the following.

Corollary 2.2. If A is a C∗-algebra, then φA is open if and only if the topology τq

on Glimm(A) coincides with the relative τs-topology.

By a Hilbert A-module we mean a left A-module V , equipped with an A-valued inner
product 〈·, ·〉 that is A-linear in the first variable and conjugate linear in the second
variable, such that V is a Banach space with the norm ‖v‖ := ‖〈v, v〉‖1/2. The basic
theory of Hilbert C∗-modules can be found in [23,28,34].

Following [13], by an (H) C∗-bundle ((H) stands for Hofmann) we mean a triple
A := (p, A, X), where A and X are topological spaces with a continuous open surjection
p : A → X, together with operations and norms making each fibre Ax := p−1(x) into a
C∗-algebra, such that the following conditions are satisfied:

(A1) the maps C × A → A, A ×X A → A, A ×X A → A and A → A given in each fibre
by scalar multiplication, addition, multiplication and involution, respectively, are
continuous (A ×X A denotes the Whitney sum);

(A2) the map A → R, defined by norm on each fibre, is upper semicontinuous;

(A3) if x ∈ X and if (aα) is a net in A such that ‖aα‖ → 0 and p(aα) → x in X, then
aα → 0x in A (0x denotes the zero element of Ax).
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If ‘upper semicontinuous’ in (A2) is replaced by ‘continuous’, then we say that A is an
(F) C∗-bundle ((F) stands for Fell). If A = (p, A, X) is an (H) C∗-bundle and Y ⊆ X,
then we denote by

A|Y := (p|p−1(Y ), p
−1(Y ), Y )

the restriction bundle of A to Y . We say that two (H) C∗-bundles A = (p, A, X) and
A′ = (p′,A′, X) are isomorphic if there exists a homeomorphism Φ : A → A′, such that
Φ(Ax) = A′

x and Φ|Ax : Ax → A′
x defines a ∗-isomorphism from Ax onto A′

x. In this case
we write Φ : A ∼= A′. By the product bundle over X with fibre A we mean

ε(X, A) := (p1, X × A, X),

where p1 is a projection on the first coordinate. An (H) C∗-bundle A over X is said to be
trivial if there exists a C∗-algebra A such that A ∼= ε(X, A). If there exists a C∗-algebra A

and an open cover {Uα} of X such that for each α we have A|Uα
∼= ε(Uα, A), we say that

A is locally trivial. If, in addition, X admits a finite open cover over which A is locally
trivial, we say that A is of finite type (as a C∗-bundle). Obviously, every locally trivial
(H) C∗-bundle is automatically an (F) C∗-bundle. If all fibres of A are finite dimensional
and pairwise ∗-isomorphic, then A is locally trivial by [16, Theorem 3.1]. In this case
we can also consider A as a vector bundle, by forgetting the additional structure. If the
underlying vector bundle of A is of finite type, then we say that A is of finite type as
a vector bundle. Note that in the case when A is of finite type as vector bundle and all
fibres of A are ∗-isomorphic to the matrix algebra Mn(C), then A is also of finite type
as a C∗-bundle, by [27, Proposition 2.9]. It would be interesting to see an example of an
(F) C∗-bundle A that is of finite type as a vector bundle but is not of finite type as a
C∗-bundle.

By a section of an (H) C∗-bundle A = (p, A, X) we mean a map s : X → A such that
p(s(x)) = x for all x ∈ X. The set of all continuous sections of A is denoted by Γ (A).
Then Γ (A) is a ∗-algebra and also a C(X)-module, with respect to the natural pointwise
operations. If, in addition, X is locally compact and Hausdorff, by Γ0(A) we denote the
set of all s ∈ Γ (A) that vanish at infinity (i.e. for which the set {x ∈ X : ‖s(x)‖ � ε} is
compact for all ε > 0). Then Γ0(A) becomes a C∗-algebra with respect to the supremum
norm.

Given a unital C∗-algebra A, one can construct a canonical (H) C∗-bundle A over
X := max(Z(A)) such that A ∼= Γ (A), as follows.

For x ∈ X, let Gx := xA. Then Gx is a Glimm ideal of A (which is indeed closed by the
Hewitt–Cohen Factorization Theorem [10, Theorem A.6.2]). The quotient Ax := A/Gx

is called the fibre of A over x. If a ∈ A, then we write a(x) for the canonical image of a

in Ax. Set
A :=

⊔
x∈X

Ax,

and let p : A → X be the canonical map. For a ∈ A we define the map â : X → A,
â(x) := a(x), and set Ω := {â : a ∈ A}. By Fell’s Theorem [35, Theorem C.25] there
exists a unique topology on A making A := (p, A, X) into an (H) C∗-bundle such that
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Ω ⊆ Γ (A). Moreover, by Lee’s Theorem [35, Theorem C.26], Ω = Γ (A), and the map
Γ : A → Γ (A), given by Γ : a �→ â, becomes a C(X)-linear ∗-isomorphism of A onto
Γ (A) (the C(X)-action on A is defined by ϕa := G−1(ϕ)a, where G : Z(A) → C(X) is
the Gelfand transform). Furthermore, A is an (F) bundle if and only if φA is an open
map.

To close this section, let us briefly recall some facts about the canonical contraction θA

from the Haagerup tensor product A ⊗h A into the set CB(A) of all completely bounded
maps on A, where A is a unital C∗-algebra. On elementary tensors, θA is given by

θA(a ⊗ b) := Ma,b.

It is easy to see that θA is contractive, and Mathieu showed that θA is isometric if and
only if A is prime (see [3, Proposition 5.4.11]). If A is not prime, one considers the central
Haagerup tensor product A ⊗Z,h A and the induced contraction θZ

A : A ⊗Z,h A → CB(A)
(see [31]). The problem of when θZ

A is isometric has been recently completely solved by
Archbold et al . in [29, Theorem 4] and [7, Theorem 7] (see also [8]); θZ

A is isometric if
and only if each Glimm ideal of A is primal. As an easy consequence of this result, we
obtain the following.

Proposition 2.3. If each Glimm ideal of a unital C∗-algebra A is primal, then
E (A)cb = Im θA, where Im θA denotes the image of θA.

3. Derivations on C∗-algebras in which every Glimm ideal is prime

We start with the proof of Theorem 1.5. First recall, if A is a C∗-algebra and I, J ∈
Id(A) with the associated quotient maps qI : A → A/I and qJ : A → A/J , then by [2,
Corollary 2.6] the induced map qI ⊗ qJ : A ⊗h A → (A/I) ⊗h (A/J) is also a quotient
map, and

ker(qI ⊗ qJ) = I ⊗h A + A ⊗h J,

so that (A ⊗h A)/(I ⊗h A + A ⊗h J) is isometrically isomorphic to (A/I) ⊗h (A/J).
The next fact can be deduced from Proposition 2.1 (ii) and [6, Lemma 3.1] (see also [6,

Remark 3.2]).

Lemma 3.1. If A is a C∗-algebra, then the map

G �→ ‖(qG ⊗ qG)(t)‖h = ‖t + (G ⊗h A + A ⊗h G)‖

is upper semicontinuous on Glimm(A) for each t ∈ A ⊗h A.

Proof of Theorem 1.5. Let δ ∈ Der(A) ∩ E (A)cb. Since each Glimm ideal of A is
prime (hence primal), by Proposition 2.3, there exists t ∈ A ⊗h A such that δ = θA(t).
For G ∈ Glimm(A) let δG be the induced derivation on A/G, δG(x + G) = δ(x) + G.
By [18, Remark 5.4] we have

δG = θA/G((qG ⊗ qG)(t)).
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Since every Glimm quotient A/G is a prime C∗-algebra, by [3, Proposition 5.4.11],
θA/G is isometric. Hence,

‖δG‖ = ‖δG‖cb = ‖θA/G((qG ⊗ qG)(t))‖cb = ‖(qG ⊗ qG)(t)‖h,

for all G ∈ Glimm(A). Let us fix G0 ∈ Glimm(A). Since A/G0 is a prime C∗-algebra,
by [18, Theorem 4.3] δG0 is inner in A/G0, and choose a ∈ A such that δG = (δa)G. Let
ε > 0 be given. By Lemma 3.1, the function

G �→ ‖δG‖ = ‖(qG ⊗ qG)(t)‖h

is upper semicontinuous on Glimm(A), so there exists an open neighbourhood U of G0

in Glimm(A) such that

‖δG − (δa)G‖ = ‖(δ − δa)G‖ < ε

for all G ∈ U . Since Glimm(A) is compact, we can find a finite open cover {Uj}1�j�m of
Glimm(A) and elements a1, . . . , am ∈ A such that

‖δG − (δaj )G‖ < ε

for all G ∈ Uj . Choose a partition of unity {fj}1�j�m subordinated to the cover
{Uj}1�j�m, and define zj := Ψ−1

A (fj), where ΨA : Z(A) → C(Prim(A)) = C(Glimm(A))
is the Dauns–Hofmann isomorphism (see [28, Theorem A.34]). If

a :=
m∑

j=1

zjaj ∈ A,

then for G ∈ Glimm(A) and x ∈ A, ‖x‖ � 1 we have

‖(δ − δa)G(x + G)‖ = ‖(δ(x) − δa(x)) + G‖

=
∥∥∥∥

m∑
j=1

[zj(δ(x) − δaj (x)) + G]
∥∥∥∥

=
∥∥∥∥

m∑
j=1

fj(G)(δG − (δaj )G)(x + G)
∥∥∥∥

�
m∑

j=1

fj(G)‖δG − (δaj
)G‖

< ε.

It follows that ‖(δ − δa)G‖ � ε for all G ∈ Glimm(A). Hence, by Proposition 2.1 (i),

‖δ − δa‖ = sup{‖(δ − δa)G‖ : G ∈ Glimm(A)} � ε.
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This means that δ lies in the operator norm closure of Inn(A). Since all Glimm ideals
of A are prime, they are also primal, so by [30, Theorem 2.7] (or [29, Corollary 4.6]),
Inn(A) is closed in the operator norm. Hence, δ ∈ Inn(A). �

In [26] Pedersen proved that every derivation on a separable C∗-algebra A becomes
inner in its local multiplier algebra Mloc(A) (see [3] for the definition and properties
of Mloc(A)). However, in the inseparable case the problem is still open. On the other
hand, every Glimm ideal of Mloc(A) (where A is a general C∗-algebra) is prime [3,
Corollary 3.5.10]. Therefore, as a direct consequence of Theorem 1.5, we obtain the
following result.

Corollary 3.2. Let A be a C∗-algebra, let δ be a derivation on A and let δ̃ denote the
unique extension of δ to a derivation on Mloc(A). The following conditions are equivalent:

(i) δ̃ is inner (in Mloc(A));

(ii) δ̃ ∈ E (Mloc(A))cb.

In particular, every derivation δ ∈ Der(A) ∩ E (A)cb is implemented by a local multiplier
(if A is non-unital, we can assume that the coefficients of elementary operators on A lie
in the multiplier algebra M(A) of A).

Remark 3.3. In [18] we conjectured that the class of all unital C∗-algebras A in
which every Glimm ideal is primal also satisfies (1.1). Unfortunately, there are two main
obstacles to the generalization of the proof of Theorem 1.5 for such a class of C∗-algebras.
The first one is that we do not know if each Glimm quotient A/G admits only inner
derivations lying in Im θA/G (see [5, Proposition 3.6] and [18, Example 6.1]). The second
is that, for

δ ∈ Der(A) ∩ E (A)cb,

the function G �→ ‖δG‖ does not have to be upper semicontinuous on Glimm(A) (even if
δ is inner), as the next example shows.

Example 3.4. Let βN denote the Stone–Čech compactification of N, and choose an
arbitrary point x0 ∈ βN \ N. We define A to be a C∗-algebra consisting of all functions
a ∈ C(βN,M2(C)) with the property that a(x0) is a diagonal matrix. Note that A is
unital, Glimm(A) is canonically homeomorphic to βN (we denote this correspondence
by x ↔ G(x)) and each Glimm ideal of A is primal (the Glimm quotient A/G(x) is
isomorphic to M2(C) if x �= x0, and C⊕C if x = x0). Therefore, by [32, Theorem 2.8], A

admits only inner derivations (so, in particular, A satisfies (1.1)). On the other hand, let
a be an element of A defined by a(x) := e1,1 for all x ∈ βN (where e1,1 is the matrix unit
which has a non-zero entry 1 at (1, 1)-position), and let δ := δa. One can easily check
that ‖δG(x)‖ = 1 if x �= x0 and ‖δG(x0)‖ = 0. Therefore, the function G �→ ‖δG‖ is not
upper semicontinuous on Glimm(A).
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4. Elementary operators and (F) C∗-bundles

In order to prove Theorem 1.6, we shall first need some auxiliary results.

Proposition 4.1. Let A be an n-subhomogeneous C∗-algebra. If the complete reg-
ularization map φA : Prim(A) → Glimm(A) is open, then every Glimm ideal of A is
primal. In particular,

sup{|Prim(A/G)| : G ∈ Glimm(A)} � n, (4.1)

where |Prim(A/G)| is the cardinality of Prim(A/G).

Proof. Suppose that the degree of subhomogenity of A equals n and let J be the
n-homogeneous ideal of A (i.e. J is the intersection of the kernels of all irreducible
representations of A whose dimension is at most n − 1). We claim that φA is invariant
under Prim(J) (i.e. φA(P ) = P for all P ∈ Prim(J)). Indeed, let P ∈ Prim(J) and
Q ∈ Prim(A). First suppose that Q ∈ Prim(J) and that P �= Q. Since J , as a C∗-
algebra, is n-homogeneous, J is central (in the sense of [18, Definition 3.10]), there exists
a function f ∈ C0(Prim(J)) ⊆ Cb(Prim(A)) such that f(P ) = 1 and f(Q) = 0. In
particular, f(P ) �= f(Q), so P �≈ Q in this case. If Q ∈ Prim(A/J), then for any function
f ∈ C0(Prim(J)) ⊆ Cb(Prim(A)) we have f(Q) = 0, so P �≈ Q in this case as well.
Since φA is open, the τq-topology on Glimm(A) coincides with the relative τs-topology,
by Corollary 2.2. Hence, by [4, Corollary 4.3], those Glimm ideals which belong to the
τs-closure of Prim(J) are primal. Let U be the complement in Prim(A) of the closure
of Prim(J). Then U is open in Prim(A). Suppose that U is non-empty and let K be
the ideal of A such that Prim(K) = U . Then K is k-subhomogeneous for some k < n

and let I be the k-homogeneous ideal of K. Using the same arguments as before, we
conclude that φA(Prim(I)) = Prim(I) is a new family of primitive Glimm ideals of A,
and that each Glimm ideal that belongs to the closure of Prim(I) in Glimm(A) is primal.
Proceeding by induction, we conclude that every Glimm ideal of A is primal.

To prove (4.1), let G ∈ Glimm(A). Since G is primal, by [4, Proposition 3.2] there
is a net in Prim(A) which converges to every point of Prim(A/G). Since A is liminal,
by [11, Theorem 4.3.7] we can identify Prim(A) with the spectrum Â of A, and thus,
by [15, Corollary 1, p. 388], |Prim(A/G)| � n. �

Remarks 4.2.

(i) Note that the proof given above shows that for a subhomogeneous C∗-algebra A,
Glimm(A) contains a dense open subset of primitive ideals.

(ii) In [5], Archbold and Somerset introduced the class of quasi-standard C∗-algebras.
By [5, Theorem 3.3], quasi-standard C∗-algebras are precisely those C∗-algebras A

satisfying the following two conditions:

(a) the complete regularization map φA is open;

(b) each Glimm ideal of A is primal.
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Note that Proposition 4.1 implies that condition (b) is superfluous in a subhomo-
geneous case. Hence, a subhomogeneous C∗-algebra A is quasi-standard if and only
if φA is open. Furthermore, if A is unital, note that in this case (4.1) implies that
the dimensions of fibres of the canonical (F) C∗-bundle A of A over max(Z(A)) are
automatically finite and uniformly bounded.

On the other hand, if A is a subhomogeneous C∗-algebra, one may wonder if the
conditions (a) and (b) from Remark 4.2 are in fact equivalent. D. Somerset informed
us (personal communication, 2011) that this is not true in general, as the next example
shows.

Example 4.3. Let B be a C∗-subalgebra of C([0, 1],M2(C)) consisting of all elements
b ∈ C([0, 1],M2(C)) such that

b(1) =

[
λ(b) 0
0 µ(b)

]

for some λ(b), µ(b) ∈ C. If C := C([1, 2]), set D := B ⊕ C and define

A := {(b, ϕ) ∈ D : λ(b) = ϕ(1)}.

Then A is a C∗-algebra which is obviously 2-subhomogeneous. Furthermore, it is easy
to see that Glimm(A) is canonically homeomorphic to [0, 2] and that every Glimm ideal
of A is primal. On the other hand, let a = (b, ϕ) ∈ A, where b(x) := e2,2 (the matrix
unit which has a non-zero entry 1 at (2, 2)-position) for all x ∈ [0, 1] and ϕ := 0. If G(x)
denotes the Glimm ideal of A corresponding to x ∈ [0, 2], we have

‖a + G(1)‖ = 1 and lim
x→1+

‖a + G(x)‖ = 0,

so the norm function G �→ ‖a + G‖ is not continuous on Glimm(A). By Proposi-
tion 2.1 (iii), φA is not open.

Suppose that V is a non-degenerate Banach C0(X)-module, where X is a locally com-
pact Hausdorff space. In [21] we introduced a notion of a C0(X)-projective rank, denoted
by rankπ

X(V ), as the smallest natural number N (if such a number exists) with the follow-
ing property: for every Banach C0(X)-module W , each tensor t in the C0(X)-projective
tensor product V

π
⊗C0(X) W can be written in the form

t =
n∑

i=1

vi ⊗X wi

for some vi ∈ V and wi ∈ W , where n � N (see [21] for details). If such N does not
exist, we define rankπ

X(V ) := ∞. The next fact is useful for proving that V is of finite
C0(X)-projective rank (see the proof of [21, Proposition 3.4]).

Proposition 4.4. Let V be a non-degenerate Banach C0(X)-module, where X is a
locally compact Hausdorff space. Let us say that V satisfies the condition (P) if there
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exists N ∈ N such that for every sequence (ai) ∈ �1(V ) there exist n � N , elements
v1, . . . , vn ∈ V and sequences (ϕi,1)i, . . . , (ϕi,n)i ∈ �1(C0(X)) such that

ai =
n∑

j=1

ϕi,jvj (4.2)

for all i ∈ N. If V satisfies (P), then rankπ
X(V ) � N .

In [21] we also showed that if H = (p, H, X) is an (F) Hilbert bundle over a compact
metrizable space X, then V := Γ (H) satisfies (P) if and only if fibres Hx of H have
uniformly finite dimensions, and each restriction bundle of H over a set where dim Hx is
constant is of finite type (as a vector bundle). Now we shall prove the same result for a
similar class of C∗-algebras.

Lemma 4.5. Let B be a unital C∗-algebra with the unit 1B . Then B is finite dimen-
sional if and only if there exists a state ω on B with a constant 0 < C � 1 such that

ω(b∗b)1B � C · b∗b for all b ∈ B. (4.3)

Moreover, if B is finite dimensional, then every faithful tracial state ω on B satisfies (4.3)
for some constant 0 < C � 1.

Proof. Suppose that B admits a state ω satisfying (4.3). Obviously, ω is faithful and

〈b1, b2〉ω := ω(b1b
∗
2), b1, b2 ∈ B,

defines a (definite) complex-valued inner product on B.
Moreover, (4.3) implies that its norm

‖b‖ω := 〈b, b〉1/2
ω = ω(bb∗)1/2

is equivalent to the C∗-norm on B, so that (B, 〈·, ·〉ω) is a (complete) Hilbert space.
In particular, this implies that B (as a C∗-algebra) is reflexive. Hence, by [33, p. 54,
Exercise 2], B must be finite dimensional.

To prove the converse, first suppose that B is a full matrix algebra Mn(C). By [25,
Example 6.2.1], there exists a unique faithful tracial state ω on B, which is given by

ω(b) =
1
n

tr(b),

where tr(·) is a standard trace on Mn(C). If b ∈ B, let u ∈ Mn(C) be a unitary matrix
such that ub∗bu∗ = diag(λ1, . . . , λn) (where λi � 0 are eigenvalues of b∗b). Then

ω(b∗b)1B =
1
n

tr(b∗b)1B

=
1
n

tr(ub∗bu∗)1B

=
1
n

( n∑
i=1

λi

)
1B

� 1
n

diag(λ1, . . . , λn).
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Hence,

ω(b∗b)1B = u∗(ω(b∗b)1B)u � 1
n

u∗ diag(λ1, . . . , λn)u =
1
n

b∗b,

so we may take C = 1/n in this case.
Now suppose that B is an arbitrary finite-dimensional C∗-algebra. By [33, The-

orem I.11.9], there are a finite number of central pairwise orthogonal projections
p1, . . . , pm ∈ Z(B) with

∑m
i=1 pi = 1B , such that

B = p1B ⊕ · · · ⊕ pmB, (4.4)

and each piB is ∗-isomorphic to a full matrix algebra Mni
(C). Choose an arbitrary faithful

tracial state ω on B and let ki := ω(pi) > 0. Then

ωi : pib �→ 1
ki

ω(pib) (4.5)

defines a faithful tracial state on piB ∼= Mni(C), so by the first part of the proof

ωi(pib
∗b)pi � 1

ni
pib

∗b (4.6)

for all b ∈ B. Hence, by (4.5) and (4.6) for b ∈ B we have

ω(b∗b)1B =
m∑

i=1

ω(pib
∗b)1B

�
m∑

i=1

ω(pib
∗b)pi

=
m∑

i=1

kiωi(pib
∗b)pi

�
m∑

i=1

ki

ni
pib

∗b

� C · b∗b,

where

C := min
{

ki

ni
: 1 � i � m

}
.

This completes the proof. �

Lemma 4.6. Let A be an (F) C∗-bundle over a locally compact Hausdorff space X,
whose fibres all have the same finite-dimension n, and set A := Γ0(A).

(i) There exists a finite number of clopen pairwise disjoint subsets {Uj} of X which
cover X such that all the fibres of A|Uj are pairwise ∗-isomorphic. Moreover, each
restriction bundle A|Uj is locally trivial as a C∗-bundle.
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(ii) There exists a C0(X)-valued inner product 〈·, ·〉 on A, such that (A, 〈·, ·〉) becomes
a Hilbert C0(X)-module, whose norm a �→ ‖〈a, a〉‖1/2 is equivalent to the C∗-norm
on A.

(iii) A is of finite type as a vector bundle if and only if A satisfies condition (P) of
Proposition 4.4.

Proof. (i) Every finite-dimensional C∗-algebra is (∗-isomorphic to) a finite direct sum
of full matrix algebras. In particular, two finite-dimensional C∗-algebras are ∗-isomorphic
if and only if they have the same matrix decomposition (up to a permutation). The claim
now follows from [16, Theorem 3.1].

(ii) Using (i), it is sufficient to prove the assertion in the case when all fibres of A are
∗-isomorphic to a fixed finite-dimensional C∗-algebra B. Let us decompose B as in (4.4).
On each piB choose a unique faithful tracial state ωi, and define a state ω on B by

ω(b) :=
( m∑

i=1

dim πi

)−1 m∑
i=1

dim πi · ωi(pib),

where πi denotes the irreducible representation πi : b �→ pib (if piB ∼= Mni
(C), then

dim πi = ni). Obviously, ω is a faithful tracial state on B. Moreover, it is easy to see that
ω is invariant under the group Aut(B) of all ∗-automorphisms of B, that is

ω(Φ(b)) = ω(b) for all b ∈ B and Φ ∈ Aut(B). (4.7)

For example, if B = M3(C) ⊕ M2(C) ⊕ M2(C), then each Φ ∈ Aut(B) is in the form

Φ(b1, b2, b3) = (u∗
1b1u1, u

∗
2b2u2, u

∗
3b3u3) or Φ(b1, b2, b3) = (u∗

1b1u1, u
∗
2b3u2, u

∗
3b2u3),

for some unitary matrices u1 ∈ M3(C), u2, u3 ∈ M2(C), so in both cases we see that ω

satisfies (4.7). Since A is locally trivial (by [16, Theorem 3.1]), there exists an open cover
{Uα} of X such that Φα : A|Uα

∼= ε(Uα, B), where Φα is an isomorphism of C∗-bundles.
Let a ∈ A. For x ∈ X choose an index α such that x ∈ Uα, and define

E(a)(x) := ω(Φα(a(x))). (4.8)

By (4.7), the value E(a)(x) is well defined, and the local triviality of A implies that
E(a) : x �→ E(a)(x) is a continuous function on X. Moreover,

|E(a)(x)| = |ω(Φα(a(x)))| � ‖Φα(a(x))‖ = ‖a(x)‖, (4.9)

so E(a) lies in C0(X), and the map E : A → C0(X), E : a → E(a) is a positive C0(X)-
linear contraction. By Lemma 4.5, there exists a constant 0 < C � 1 such that (4.3)
holds. Then for a ∈ A and x ∈ X we have

|E(a∗a)(x)| = ‖ω(Φα(a(x)∗a(x)))1B‖ � C‖Φα(a(x)∗a(x))‖ = C‖a(x)‖2. (4.10)
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Hence, (4.9) and (4.10) imply that

C‖a‖2 � ‖E(a∗a)‖ � ‖a‖2 for all a ∈ A. (4.11)

Now for a1, a2 ∈ A we define

〈a1, a2〉 := E(a1a
∗
2).

Then 〈·, ·〉 is a C0(X)-valued inner product (which is C0(X)-linear in the first variable
and conjugate linear in the second variable). Moreover, (A, 〈·, ·〉) is a (complete) Hilbert
C0(X)-module, since (4.11) implies that its norm a �→ ‖E(aa∗)‖1/2 is equivalent to the
C∗-norm on A.

(iii) By (ii), we can equip A with a C0(X)-valued inner product 〈·, ·〉 in such a way that
A becomes a Hilbert C0(X)-module, whose norm is equivalent to the C∗-norm on A. If on
each fibre Ax we suppress the C∗-norm and endow it with the Hilbert space norm induced
by this inner product, we obtain a new bundle (call it H). Obviously, H is an (F) Hilbert
bundle. By [21, Theorem 3.6] and [21, Theorem 1.1], Γ0(H) satisfies (P) if and only if H

is of finite type as a vector bundle. Since the underlying vector bundle of H coincides with
the underlying vector bundle of A, we see that Γ0(H) satisfies (P) if and only if A is of
finite type as a vector bundle. Furthermore, since the C∗-norm on A is equivalent to this
Hilbert module norm, it follows that the (formal) identity map id: Γ0(H) → Γ0(A) = A

defines a C0(X)-linear isomorphism of Banach C0(X)-modules. In particular, A satisfies
(P) if and only if Γ0(H) satisfies (P), so the proof is now complete. �

Problem 4.7. If B is an (F) Banach bundle over a locally compact Hausdorff space
X, whose fibres are of the same finite dimension n, is it possible to find a C0(X)-valued
inner product 〈·, ·〉 on Γ0(B), whose norm a �→ ‖〈a, a〉‖1/2 is equivalent to the standard
supremum norm on Γ0(B)?

Remark 4.8. Note that the map E defined by (4.8) plays the role of a conditional
expectation of finite index (in the sense of [17]) from A into C0(X).

Problem 4.9. Let A be an (F) C∗-bundle over a locally compact Hausdorff space
X, such that supx∈X dim Ax < ∞. Do there exist a constant 0 < C � 1 and a positive
C0(X)-linear contraction E : Γ0(A) → C0(X) such that

E(a∗a)(x)1x � C · a(x)∗a(x)

for all a ∈ Γ0(A) and x ∈ X (where 1x is the unit of Ax)? In particular, does every
unital subhomogeneous quasi-standard C∗-algebra A admit a conditional expectation
E : A → Z(A) of finite index?
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Lemma 4.10. Let A be an (F) C∗-bundle over a compact metrizable space X such
that n := supx∈X dim Ax < ∞. The following conditions are equivalent:

(i) each restriction bundle of A over a set where dim Ax is constant is of finite type as
a vector bundle;

(ii) there exist a finite number of sections a1, . . . , am ∈ Γ (A) such that

span{a1(x), . . . , am(x)} = Ax for all x ∈ X. (4.12)

Proof. Let X0, . . . , Xk be pairwise disjoint non-empty subsets of X covering X and
let 0 � n0 < · · · < nk = n be integers such that all fibres of A|Xi

are ni dimensional.
By [12, Proposition 1.6], X0, X0 ∪ X1, . . . , X0 ∪ X1 ∪ · · · ∪ Xk−1 are closed subsets of
X. By Lemma 4.6 (ii), for 0 � i � k there exists a C0(Xi)-valued inner product 〈·, ·〉i on
Γ0(A|Xi), whose norm a �→ ‖〈a, a〉‖1/2

i is equivalent to the C∗-norm on Γ0(A|Xi). Now,
one can substitute A|Xi by the corresponding (F) Hilbert bundle Hi over Xi (as in the
proof of Lemma 4.6 (iii)), so that Γ0(A|Xi

) = Γ0(Hi), and proceed by using the same
arguments as in the proof of [21, Proposition 3.2]. �

Proposition 4.11. Let A be an (F) C∗-bundle over a compact metrizable space X

and let A := Γ (A). The following conditions are equivalent:

(i) fibres Ax of A have uniformly finite dimensions, and each restriction bundle of A

over a set where dim Ax is constant is of finite type as a vector bundle;

(ii) A as a Banach C(X)-module is topologically finitely generated;

(iii) A satisfies the condition (P) of Proposition 4.4.

Proof. (i) ⇐⇒ (ii). By Lemma 4.10, A satisfies (i) if and only if there are sections
a1, . . . , am ∈ A satisfying (4.12). Now, one can proceed by using the same arguments as
in the proof of [21, Theorem 1.1].

(i) =⇒ (iii). Suppose that

n := sup{dim Ax : x ∈ X} < ∞,

and let U := {x ∈ X : dimAx = n}. By [12, Proposition 1.6], U is open, so that
Y := X \ U is closed, and hence compact. Analysing the proof of (i) =⇒ (ii) [21,
Theorem 3.6] we see that, in order to prove that A satisfies (P), it is sufficient to prove
that J := Γ0(A|U ) (as a C0(U)-module) and B := Γ (A|Y ) (as a C(Y )-module) satisfy
(P). By Lemma 4.6 (iii), J indeed satisfies (P), and we let

n′ := sup{dim Ay : y ∈ Y }.

Then n′ < n, and we let U ′ := {y ∈ Y : dimAy = n′}. Then U ′ is open in Y (by [12,
Proposition 1.6]), so Lemma 4.6 (iii) implies that J := Γ0(A|U ′) (as a C0(U ′)-module)
satisfies (P). Proceeding by induction, we conclude that B satisfies (P).
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(iii) =⇒ (i). Note that the condition (P) in particular implies that there exists N ∈ N

such that every algebraically finitely generated C(X)-submodule of A can be generated
with k � N generators. The assertion can now be proved by using Lemma 4.6 (ii) together
with the same arguments as in the proof of (iv) =⇒ (i) [21, Theorem 3.6]. �

Proof of Theorem 1.6. Let us identify A with Γ (A), using the ∗-isomorphism
Γ : A → Γ (A), Γ : a �→ â (see § 2).

(i) =⇒ (ii). If E (A) is closed in the operator norm, then obviously Im θA = E (A).
The claim now follows from [20, Theorem 2.3].

(ii) =⇒ (iii). Obviously, (1.6) implies that A is subhomogeneous (since Prim(A) ⊆
Primal2(A)). Since A is an (F) bundle, the complete regularization map φA is open (see
§ 2). By Proposition 4.1, every Glimm ideal of A is primal, so it is, in particular, 2-primal.
Hence, (1.6) implies

span{a1 + G, . . . , am + G} = A/G for all G ∈ Glimm(A),

which can be rewritten as

span{a1(x), . . . , am(x)} = Ax for all x ∈ X = max(Z(A)).

Thus, supx∈X dim Ax < ∞ and, by Lemma 4.10, each restriction bundle of A over a set
where dim Ax is constant is of finite type as a vector bundle.

(iii) ⇐⇒ (iv). This follows directly from Proposition 4.11.

(iii) =⇒ (i). Since A is obviously subhomogeneous, the completely bounded norm
and the operator norm on E (A) are equivalent (see, for example, [18, Remark 6.2]), so

E (A) = E (A)cb.

Moreover, since by Proposition 4.1 each Glimm ideal of A is primal, using Proposition 2.3
and [31, Theorem 4], we can identify

E (A) = E (A)cb = Im θA = A ⊗Z,h A. (4.13)

On the other hand, by [22, Theorem 6.1], the projective norm ‖ · ‖π and the Haagerup
norm ‖ · ‖h are equivalent on A ⊗ A. This implies that the (formal) identity map

id: (A ⊗ A, ‖ · ‖π) → (A ⊗ A, ‖ · ‖h)

defines an isomorphism of normed spaces, so its extension on the completed tensor prod-
ucts id : A

π
⊗A → A ⊗h A defines an isomorphism of Banach spaces. Of course, the same

conclusion holds for the (formal) identity map

id: A
π
⊗Z(A) A ∼= A ⊗Z,h A. (4.14)
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By Proposition 4.11, A satisfies the condition (P), so by Proposition 4.4 there exists
N ∈ N such that each tensor t ∈ A

π
⊗Z(A) A can be written in the form

t =
k∑

i=1

ai ⊗Z bi,

for some ai, bi ∈ A and k � N . Applying (4.14), we see that the same conclusion holds
for the tensors in A ⊗Z,h A. Finally, (4.13) yields E (A) = E (A). �

Remark 4.12. Suppose that A is a unital separable C∗-algebra in which every Glimm
ideal is 2-primal. If A satisfies (1.2), then A is topologically finitely generated over Z(A)
by [20, Theorem 2.3] and the Stone–Weierstrass Theorem for (H) C∗-bundles [35, Propo-
sition C.24]. We do not know whether the converse is true in general, although we con-
jecture that the answer is affirmative.

Remark 4.13. If A is a unital C∗-algebra which is algebraically finitely generated over
Z(A), then A is (∗-isomorphic to) a finite direct sum of unital homogeneous C∗-algebras
by [19, Theorem 2.4]. In particular, the canonical C∗-bundle A of A over max(Z(A))
is an (F) bundle. The next example shows that this is not true in general for unital
C∗-algebras A that are topologically finitely generated over Z(A).

Example 4.14. Let A be a C∗-algebra from Example 4.3 and let (ei,j) be the
standard matrix units of M2(C), considered as constant elements of C([0, 1],M2(C)).
If ϕ ∈ C0([0, 1)) is a strictly positive function, one can easily check (for example, by
applying [35, Proposition C.24]) that the Z(A)-submodule of A generated by the set

{(1B , 1C), (e1,1, 1C), (ϕe1,2, 0), (ϕe2,1, 0), (ϕe2,2, 0)}

is norm dense in A. On the other hand, as noted in Example 4.3, φA is not open, so the
canonical C∗-bundle A of A over max(Z(A)) is not an (F) bundle.

Acknowledgements. The author thanks Professor Douglas Somerset for a helpful
discussion regarding quasi-standard C∗-algebras.
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