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SOME REMARKS ON REPRESENTATIONS OF POSITIVE
DEFINITE QUADRATIC FORMS

YOSHIYUKI KITAOKA

Let S, T be positive definite integral symmetric matrices of degres
m, n respectively and let us consider the quadratic diophantine equation
S[X]=7T. We know already [1] that the following assertion (A),.. is
true for m > 2n + 8.

(A),.: There exists a constant ¢(S) such that S[X] = T has an in-
tegral solution Xe M, (Z) if S[X]= T has an integral solution Xe
M, .(Z,) for every prime p and min 7' > ¢(S).

In the above, min T' denotes the minimum of T[x] for all non-zero
integral vectors x. The basic question is whether the number 2n 4 3 is
best possible or not. As facts which suggest that 2n + 3 is best, we can
enumerate the following (i), (ii), (iii):

(i) When n =1, it is the case.

(ii) From the quantitative viewpoint, the Siegel’s weighted average
of the numbers of solutions of S,[X] = T where S; runs over a complete
set of representatives of the classes in the genus of S, is expected to be
not few if (A), , is true. By a Siegel’s formula [9], the weighted average
is |T|-"-b” times the infinite product of local densities a,(s, T) up to
the elementary constant depending only on S and n, and it is known [2]
that there is a positive constant c;(s) such that the infinite product of
local densities is larger than ¢,(S) as far as T is represented by S over
Z, for every prime p if and only if m > 2n + 3.

(iii) The condition m > 2n 4+ 3 appears often naturally at an ana-
lytic approach.

Next, let us look at the problem from another viewpoint which leads
us to the suggestion incompatible with the above observation for n > 1.
It is known [2] that (A),,. does not hold for m = n 4+ 3. It is the best
for all n till now, as far as the author knows. When m = n + 3, we
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constructed counterexamples by the following idea. Suppose S[X] =T
for Xe M,, (Z); writing X = YZ with a primitive matrix Ye M, ,(Z) and
ZeM, (Z), T:= T[Z '] = S[Y] is (primitively represented globally by S
and hence) primitively represented by S over Z,, and it yields that min T
is less than min S. This is a contradiction.

Now the following problem emerges along this line: Let S, T m, n be
those as above, S[X] = T is soluble over Z, for every prime p, and
min 7T is large. Then for every matrix T which satisfies

(i) S[X]= T has a primitive solution over Z, for every prime p,
and

(ii) T[X] = T is soluble for X e M, (Z),
is min T small?

We have obtained counterexamples for m = n + 3 by showing the
affirmative of this question. If it is affirmative for m = 2n + 2, then,
reforming S, we must construct a counterexample for (A),,,,.. When
m=2n+ 2 and n =1, it is affirmative and we have a counterexample
for (A),,. However it turns out to be negative for m = 2n + 2, n > 2,
which is an aim of this paper, that is the following assertion (R),,, is
true for m = 2n 4+ 2, n > 2 (Theorem in 1 in the text):

(R)p.n: Let S, T m, n be those as above and suppose that S[X] = T is
soluble over Z, for every prime p. Then there exists a positive integral
matrix T of degree n satisfying

(i) S[X] = T has a primitive solution X over Z, for every prime p,

(ii) T[X] = T is soluble for Xe M, ,(Z), and

(iii) if min 7 is large, then min T is also large.

Moreover in connection with primitiveness in (i), let us consider the
following assertions:

(AP),. .: There exists a constant ¢/(S) such that S[X] =T has a
primitive integral solution Xe M, (Z) if S[X] = T has a primitive in-
tegral solution Xe M, .(Z,) for every prime p and min T > ¢/(S).

(APW),,..: The weaker assertion than (AP),,, which does not require
the primitiveness of global solution.

Since (A),,.; . is true and (APW), , has a stronger assumption than
(A),..., one may expect the validity of (APW),,,.. or strongly (AP);,.z
taking account of the validity of (AP),, and hence (APW),,. The weak
assertion (APW),,,, . implies the assertion (A),,,,. by virtue of the va-
lidity of (R)s,s. for n> 2. If, hence (A),,.,. is false for n > 2, then
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(AP),, 5., and (APW),, ., , are also false. Here we note again that (R),,
is false and it yields immediately the falsehood of (A),, but (AP),, (and
hence (APW),,) is true. Results here and [3], [5], [6] may suggest the
validity of (A)s,,s,. for n > 2. This dennies the suggestion at the begin-
ning that 2n + 3 is best possible for n > 2. Which is plausible? In 2
in the text, we show that (R),,, (m > n + 3 and n > 3) is valid for scal-
ings of a fixed T, with small limitation. It shows that it is hard to
construct counterexamples for (A),., for m>n+ 3, n >3 by a special
sequence of T which are scalings of some fixed T.

Let us discuss the case of m = 2n + 2 > 6 from the analytic view-
point in passing. We put a fundamental assumption that for every Siegel
modular form f(Z) = > a(T) exp (2ri tr TZ) of degree n, weight n + 1 and
some level, whose constant term vanishes at each cusp, the estimate
a(T) = O((min T)~¢|T|"*v/*) holds for some positive ¢ if min T is larger
than some constant independent of f(Z). To verify the assertion (A),,s .
it is sufficient to do the assertion (APW),,,,. as above. Suppose that
S[X] = T has a primitive solution X = X, e M, (Z,) for every prime p.
Let r,. (T, S) be the number of integral primitive solutions of S[X] = T.
As in § 1.7 in [3] we have

Tpr (T, S) = SWP(T) + O((min T)~52|Tl(n+1)/2)
where SW,(T) is a quantity defined there so that
SWP(T) > n(T)—e;‘TI(nH)/z > (mln T)_“[T[("H)/2 ,

and ¢, ¢, are any positive small number, and hence it gives an asymptotic
formula for r,. (T, S) when min 7T tends to the infinity and therefore
r (T, S) > 0 when min T is sufficiently large, and thus the above as-
sumption on estimates of a(7) yields an asymptotic formula for r, (T, S)
and the truth of the assertion (A);,,... Let us refer to an asymptotic
formula for the number of solutions r(T, S) of S[X] = T. Denote by P
a set of primes p such that the Witt index of S over @, is equal to
n — 1. The assumption on «(7) yields an asymptotic formula for r(7, S)
if P is empty. Otherwise it depends on estimates of local densities
from below for every prime p € P and the explicit value of ¢ whether it
gives an asymptotic formula or not. The existence of an asymptotic
formula may be harmonious.

We denote by Z, @, Z, and @, the ring of rational integers, the field
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of rational numbers and their p-adic completions respectively. Termi-
nology and notations on quadratic forms are generally those from [6] and
they are also used for symmetric matrices corresponding to quadratic
forms. For example, for a quadratic lattice M over Z, nM is the norm
of M, i.e., nM = Z{Q(x)|x € M}, and for a basis {v;} of M we write M =
{(B(v, v,))>. By a positive lattice we mean a lattice on a positive defi-
nite quadratic space over Q. For a positive lattice M, min M denotes
the minimum of {Q(x)|x € M, x + 0}, where Q(x) = B(x, x) is the quadratic
form of M.

§1.

In this section we prove the following

THEOREM. Let m, n be integers such that m = 2n + 2 and n > 2 and
let M be a positive lattice of rank M = m with nM C 2Z. Let N be a
positive lattice of rank N = n such that Z,N is represented by Z,M for
each prime p. Put nN = 2qZ for a natural number q and decompose q
as q = q,q, so that, for a prime divisor p of q, p divides q, if and only if
the Witt index of Q,M is equal to n — 1. Then there exists a positive
lattice N on QN such that N D N, min N > ¢(M),/q;'min N and Z,N is
primitively represented by Z,M for each prime p where c(M) is a positive
constant dependent only on M.

COROLLARY. If m = 2n + 2 > 6, then the assertion (APW),,,. . yields
(A)2n+2,n'

Before the proof of Theorem, we note that if we put N = (qT)
where T is an integral positive matrix, then min N = g(min T') and hence
min N > ¢(M)y/ qoq, min 7. Thus min N is large if min N is large.

LemMmA 1. Let a, u be real numbers such that a > 1 and J/a 4 <u<
J@. Put f(x,y) = (ax — uy)® + y*. Then the minimum of {f(x,y)|x,y€ Z,
(x,y) # (0, 0)} is larger than a/16.

Proof. f(0,1) =u*+ 1> u?*> a/16 and f(1,0) = a* > a/16 are clear.
Suppose x,ye Z and xy + 0. If |y| > 4/ a/4, then f(x,y) > y* > a/16. As-
sume |y| < 4/ @ /4. Since it implies |uy| < /4, the minimum of |ax — wy|
(xe Z) is equal to |uy| Hence f(x,y) > (ax — wy)* > (wy)* > u* > a/16
holds, which completes the proof of Lemma 1.
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LEvMMa 2. Let p be a prime and n> 2. Let T = p”*T, (0<beZ,
¢ =0,1) be an integral positive definite matrix of degree n and suppose
p* > 36, nT, C 2Z and (nT)Z, = 2Z,. Then there exists a positive constant
C(n, p) dependent on n and p for which there exists H in M,(Z) satisfying
that det H is a power of p, min T[H"'] > C(n,p)p***minT,, T[H ] =0
mod 8p'*¢ and n(T[H™']) C 2Z.

Proof. Put G = SL(n,Z), G’ ={gcG|g=1,mod8pZ,}, take and fix
representatives {U;} of G/G’ once and for all and let C’(n, p) be a positive
number such that ‘U,U, > C'(n, p)1, for all i. Without loss of generality
we may assume that T, is reduced in the sense of Minkowski and hence,
as is well known, T, > C,(min T,)1, holds for some absolute constant C,.

Since (nT\)Z, = 2Z,, we can choose Ve SL(n, Z,) so that T,[V] = ((’{ 1 2)

where
T,=(2h 0) hezx keZ,,

0 2
(2h k )=(2h 1>[<1 0)] h=0,1, keZ; ifp=2,
e oonkt) ~\1 an/llo &

or
°h 0 0
0 21(2k 1> heZX k=0,1i>2 ifp=2.
0 1 2k

Take a representative U = U, of G/G’ so that U= Vmod 8pZ,; then we
have T,[U] > C,(min T)1,[U] > C,C’'(n, p)(min T)1,, and putting A =

(1 u
( 0 p° ) and hence
n=2
6 )
pb1n~2

we have

min T[UA-Y] = min p***°T,JUA""]
> C,C'(n, p)p°(min T¢) min (1,[p*A™"])
= C,C’(n, p)p*(min Tt) min {(p’x — wy)’ + y*, p*}

where x, y run over integers not all zero, and by Lemma 1
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> C,C'(n, p)p*(min Ty)p’/16

if pojd < u <,/ po.
Putting H= AU, C(n,p) = C,C'(n, p)/16, we have

min T[H~'1 > C(n, p)p**° min T} .

Since T[H™ '] = p°T,[U][p*A-'] and nT, C 2Z, we have nT[H" '] C 2p°Z
C2Z. The (2,2) entry of T[H™'] is equal mod 8p'*°Z, to

2pthu’ + k), 2p°(hu’ — ku + hRY), 2pc(hu’ + 2'k)

according to the order of above canonical forms of T, and hence to com-
plete the proof, it is enough to show that they are not zero modulo
8p'*c for some uw with 4/ ps/d < u < /pv. Noting /pv — 4/Do/4 > 4 be-
cause of p® > 36, we have only to choose ueZ with /pifd <u <. pv
so that (u,p) = 1if ke pZ, and he’ + k= O0modp if ke Z} in the left
case; 2fu if h=0, and 2|u if A= 1 in the middle case: 2} u in the
right case. Thus we have proved Lemma 2.

Remark. In the above proof, all but (2, 2) entries of T[H"'] are
divided by p°*°, and if T, is of the first canonical form, then T[H']
represents 2p°h = p~* X (1, 1) entry of T[V] over Z, if either p + 2, ke
pZ, or p= 2, ke8Z,

Proof of Theorem. First we note that for a positive lattice K’ D K,
min K’ > [K’: K]"*min K holds, since [K’: K]K’ C K implies min [K’:
K]K’ > min K. Let M, N be those in Theorem. If a prime p does not
divide dM, then Z,M is unimodular and nZ,M = 2Z,. Hence Z, contains

a submodule isometric to _|_<<(1) (1))> as an orthogonal component.

Therefore Z,N is primitively represented Z,M. If p|dM and ind Q,M > n,
then by virtue of Theorem 2 in [4] there is an isometry w from Z,N to
Z,M such that [Qu(Z,N) N Z,M,: u(Z,N)] is bounded by a number C,
dependent only on Z,M. Hence N, = u'(Q,u(Z,N)N Z,M) (D Z,N) is
primitively represented by Z,M, and enlarging N to N” so that Z,N" =
N,, Z,N” is primitively represented by Z,M and min N” > C,?min N.
Suppose that p|dM and ind@Q,M =n—1 We fix a 2p"»Z -maximal
sublattice K of Z,M for some k, once and for all. If nZ,N D 2p***Z,
then there is an isometry w from Z,N to Z,M such that [Q,u(Z,N) N
Z,M: w(Z,N)] is bounded by a number C, dependent only on k, and
Z,M, applying the theorem referred above where N, there, should be the
first Jordan component of Z,N, and nothing that the number of distinct
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isometry classes by O(Z,M) of modular submodules of Z,M with n D
2p**2Z, is finite. In this case we have obtained an enlarged quadratic
lattice of N at p which contains N with index dependent only on k,
and Z,M and is primitively represented by M over Z,. Finally we deal
with the case that p|dM, indQ,M = n — 1 and nZ,N C 2p****Z, Put
N = (p*?**T> where 0 < beZ, ¢c=0,1 and nT, C2Z, (nT)Z, = 2Z,.
By virtue of Lemma 2, there exists a matrix H in M,(Z) such that det H
is a power of p,

min p?*eT\[H'] > C(n, p)p***min T}, ,
P °T[H '] #£ 0mod 8p'*c and n(p**T,[H ') C2Z.

Taking a quadratic lattice N/ (D N) corresponding to H, N’ satisfies
nZ,N') C 2p*Z, = nK, n(Z,N') ¢ 8p'*¢**2Z, and min N’ > C(n, p)p**c**»
min Ty, > C(n, p)p® <+~ min Ty = C(n, p)p~**” min N. Since Q,N’' =
Q,N is represented by Q,M = Q,K, Z,N’ is represented by the maximal
lattice K and hence by Z,M. Applying the argument in the case of
pl2dM, nZ,N D 2p***Z, to N’, M, noting n(Z,N’) ¢ 8p'*°**»Z  there is a
lattice N” (D N’) such that [N”:N’] is a power of p bounded by a
number dependent on k, and Z,M, and Z,N” is primitively represented
by Z,M. Iterating the construction of N for primss p dividing dM, we
complete the proof of Theorem. |

Remark. Let us consider the case m = 2n + 1. Let M be a positive
lattice of rk M = m and N a positive lattice of rk N = n which is repre-
sented by gen M. It is easy to see that the assertion similar to Theorem
holds, using Lemma 2 and its remark, provided that for every prime p
for which ind Q,M = n — 1 holds and Z,N has a Jordan splitting Z,N =
{a) | N, where ord, e is bounded but ord, nN, is large, there is a lattice
N such that [N: N] is a power of p, Z,N is represented by Z,M, Z,N
contains a binary lattice B with ord, dB bounded and min N is large.

This condition is not necessarily satisfied for n = 2 as follows: For
N =<(a) | {p"> with (a,p) =1, N =<(a) | {(p"*) holds if [N: N] = p*.
Thus min N is small if ord, N is small. This leads us to a falsechood of
the assertion (A), , when m=2n+1=n+ 3, n =2, as in [2].

§2.
We have observed that it is important whether for a given sequencsz
{N,} of positive lattices represented by gen M with min N, — co, there is
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a lattice N, with min N, large which contains N, and is primitively re-
presented at every spot by gen M or not. If there is no such N, then
we must deduce a falsehood of the assertion (A),,,-

In this section we show that it is hard to construct such a sequence
by scalings of a fixed lattice by giving the following

ProposIitioN. Let M, N be positive lattices of tk M = m > rk N + 3,
tk N=n>3. We fix representatives {N,} of classes in the genus of N
once and for all, and take a finite set S (3 2) of primes such that if pe S,
then Z,N, = Z,N holds for all i and Z,M, Z,N are unimodular. For any
given number C,, there is a positive number C, = C(C,, M, N) such that
if a natural number a (> C,) is not divided by any prime in S and the
sceling N(a) of N by a is locally represented by M, then there is a lat-
tice N, with min N, > C, which contains N(a) and Z,N, is primitively
represented by Z,M for every prime p.

CororLrLARY. For the above special sequence {N(a)}, the assertion
(APW),,,. implies the assertion (A), ..

This follows trivially and to prove Proposition, we must prepare the
following

THEOREM. Let L be a positive lattice of nL = 2Z and Yk L = m > 2.
For a prime p we define an integer a, by the following:
If m > 3 and the Jordan splitting is of form

Z,L = (2,) | (2,p*) | --- p=2,

or

2> l<2a2(21c 210)> 1. p=2,

where ¢,e,€ Z; and ¢ = 0 or 1, then a, is given as in the above, other-
wise a, = 0. Then there is a lattice M in the genus of L such that

min M > (dL)/"~*( [] p*»)~'™
pl2dL

where ¢ is any positive number and A > B means A > cB for a constant
¢ dependent only on ¢ and m.

Remark. min L € (dL)”™ is well known.

Before the proof of Theorem we show that Proposition follows from
Theorem.
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Let M, N, N,, S be those in Proposition. For a prime p, let K = Z e, f]
be a quadratic lattice over Z, defined by Q(e) = Q(f) =0, B(e,f) = a.

Then K = Z,[a ‘e, f] = 0 1 is clear. Hence for a prime p dividing
» 10

a we can take a lattice N, which contains Z,N(a) and is isometric to
an orthogonal sum of a unimodular lattice of tk =n — 1 or n — 2 and
an aZ,modular lattice of rk =1 or 2, enlarging binary hyperbolic aZ,-
modular lattices to unimodular lattices as above. Let N’ be a lattice
which is isometric to N, for p|a and to Z,N(a) for p Y @ and has a large
minimum by virtue of Theorem. Since there is an isometry from Z,N(e) to
Z,N'’ for every prime and QN(a) = QN’, N’ contains a lattice which is
isometric to N,(a) for some i. Pulling back N’, there is a lattice N”
such that min N” is large, N O N(a), Z,N” = Z,Na) for p ¥ @ and Z,N"
has a unimodular component of rtk = n — 1 or n — 2 for p|a. Define a
new lattice N by Z,N = Z,N(a) for p fa and Z,N = Z,N” for pla. By
definition N contains N(a) and Z,N = Z,N” if peS and p fa. Since

[INNNANN1=1]Z,N:ZNN Z,N"] = |] [Z,N: Z,N N Z,N"]
=TI [Z,N(a): Z,N(@)NZ,N(a)] = [N: NN N]

and [N: NN N”P min N > min (N N N”), we have min N > [N: NN N,]?
Xmin (NN N”) > [N: NN N]?*min N”. Thus we have constructed a
lattice N which contains N(a), has a large minimum and satisfies that
Z,N=2Z,N() for pYa and Z,N has a unimodular component of
tk =n — 1 or n — 2 for p|a. By assumption, N(a) is represented by M
locally and Z,N, Z,M are unimodular if p¢ S. Hence ZPN— is primitively
represented by Z,M if pe S and p fa. If p|a, then by cancellation of a
unimodular component of Z,N from Z,N and Z,M, the remaining part of
Z,N is primitively represented by the one of Z,M and hence Z,N is
primitively represented by Z,M. Enlarging N for every prime pe S we
get a lattice N, which contains N(a), is primitively represented by M
locally and has a large minimum since [N,: N] = [[,cs [Z,N,: Z,N(a)] is
bounded by a number depending on N and M. Thus we have completed
the proof of Proposition, assuming Theorem.

Proof of Theorem. We divide the proof to two cases m = 2 and
m > 3. First we treat the case m = 2.

Lemma. For given natural numbers a and D, the number of b,c
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which satisfy 0 < b < a < c¢ and D = 4ac — b*, is O(a*(D, a)?) where ¢ is
any positive number.

Proof. The number of b, c is less than or equal to #{bmod4a|b’ =
— Dmod 4a}. First we show, for a prime power p”, #{xmodp"|x* = —
Dmodp"} < 4D, p*)”*. Put d =ord,D. If d> n, then #{xmodp"|x* =
— Dmod p"} = #{x mod p"|x* = 0 mod p"} = p** < 4(D, p™)"* holds, where
[r] means the largest integer which does not exceed r. Suppose d < n.
If ¥* = — Dmodp", then d is even and x = p??y for an integer y satis-
fying »* = — Dp~*mod p*~¢. The number of solutions modulo p"~¢ for
¥* = — Dp~®mod p"~¢ is at most four, and for each y, x = p?*(y + p"~%2)
(zmod p??*) is a solution. This completes the above inequality. Hence
${bmod 4a|b* = — Dmod 4a} < ([],. 4D, 40)"* L a*(D, a)"*. |

Let L be a binary positive lattice with nL = 2Z, dL = D, and denote

by A the number of isometry classes in gen L. Every binary even posi-

tive lattice corresponds to the only one reduced matrix <2l;1 2bc> 0<b

< a < c. Hence we have

ﬁ #{M e gen Ljcls| min M = 2a}
< 3 @D, ay"
L2 2, (sty's'”
SID 1<t<k/s
<< % 1/2+s(k/s)1+e
—_ Z 8—1/2 << k1+eDs .
SID

Thus there is a number ¢ dependent only on ¢ so that
> #{Me gen Ljcls|min M = 2a} < ck'**D* .
a=1

If the class number A of gen L is greater than ck'*<D¢, then there is a
lattice MegenL such that min M > k. By Siegel, A > D"*~¢ is well
known. Noting that ¢’s are any positive numbers, we have min M >
DY*-¢ for any ¢ > 0, which completes the proof in the case m = 2.

To treat the case m > 3, we prepare several lemmas. Let us denote
by p a prime number.

LEmMA 1. Let a and b be integers and a > b>0. For acZ, with

https://doi.org/10.1017/50027763000001501 Published online by Cambridge University Press


https://doi.org/10.1017/S0027763000001501

POSITIVE DEFINITE QUADRATIC FORMS 33

ord,« = b, the number t of solutions modulo p* of x*= amodp® is
o(p™.

Proof. Suppose a = b; then t is equal to #{x mod p®|x* = 0 mod p°}
= pt*21 < p*2 Suppose a > b. If b is odd, then there is no solution and
hence ¢t = 0. If b is even and b = 2d, then ¢ is equal to

#{y mod p*~¢| y* = ap~* mod p*~*}
— pd #{y modpa—-Zd ! y‘l = Ofp_Zd modpa—Zd}
< 4p = O(p*"). n

LemmA 2. For0<a<h—1,¢e€Z} and a € Z,, we put t = §{x mod p*,
ymod p*~*|x* + ep®y* = amod p*, (x,y) = 1}. Then t = O(p"~**) holds.

Proof. Let t, (resp. t;) be the number of solutions under an addi-
tional condition p|y (resp. pfy). t=1t + t, is clear. Without loss of
generality we may put @« = ép°, € Z), 0 < c < h. Then ¢ is equal to

#{x mod p*, y mod p*~*~'|x* + ep**?y* = e mod p*, p [ x}.

If c>0ie., pla, then ¢, = 0 holds. If ¢ =0, then a — ep**?y* is in Z%
and hence ¢, = O(p**"") = O(p*~*?). ¢, is equal to
> #{y mod p*~¢|ep®y* = dp° — x*mod p*, p ¥y} .

2 mod ph
22 = §p¢ mod p@

= 2, #ymodp" |y = (p”)'(6p° — &) mod p"~*, p {1}
22 = 6p¢ mod p?

& #{xmod p*|ord, (x* — 4p°) = a}.
We show that this is O(p*~%*) in each case of ¢ > a, ¢ < a. Suppose
c> a; then t, € #{xmod p*|x* = 0 mod p?} = p*~t@+V2 <L p*=92  Suppose
c<a. If x'— p°= 0modp® is soluble, then 2|c and x = p**z for some
zeZ, Hence t, is less than

#{zmod p*~*"*|ord, (p*(z* — 9)) = a}
< #{zmod p*~**|2* = § mod p®~°}
= ph-¢/t-@-o gl{zmod p*~°|2* = § mod p*~°}
= O(p*-2*) = O(p"-*").

Thus we have completed the proof. n

LemMmA 3. For integers a,c and h satisfying 0<a< h—1and 0 <
¢ < h and for ¢, 6€ Z}, we put
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t = #{x mod p*, y mod p"~*|x* + ep*y* = dp° mod p*}.
Then we have t = O(hp*~°/).
Proof. t is equal to

>, #{xmodp”*, ymodp”* *|x* + ep®y’ = dp° mod p*, (x,y) = p‘}

0<i<h—a

:t1+t2+t3,

where ¢, t, and I, are partial sums under conditions 2i <e¢, 2 = ¢ and
2i > ¢ respectively. Further we divide ¢ to the sum of ¢, and ¢, where
t.1, b, are partial sums under conditions i < (h — @)/2, i > (h — a)/2 re-
spectively. t,, is equal to

#{x mod p"~*, y mod p"~*~*|x* 4 ¢p®y* = 6p°~* mod p* ¥, (x,y) = 1}
0§if<<fé/—2a)/2
and considering xmod p*~*, ymod p*~*"* and using Lemma 2 we have
<K Zgizﬁ(hw)/z prir(-tizarh < pph-eli g o is equal to

f{xmod p"~', y mod p"~*~*[x* + ep®y" = 6p°~* mod p*~¥,
(h—a)2<i<h—a
pees (%, ) =1}
< 2 #{xmodp**, ymodp"**|x’= dp°* modp**¥, (x,y) = 1}

(h—a)/2<0<c/2

because of 2 — 2i < a,

ph—a,—i #{x modph~i|x2 = 5pc~—22.' modph—-zi}

(h~-a)/2<i<e/2

—_ Z ph—a #{x modph—-%
(h—0a)/2<5i<e/2

Lpt* 2. pe™?  (by Lemma 1)

(h—a)/2<5i<c/2

<ph.—a+c/2 Z p—i

(h—a)/2<%

x2 = 5pc-2i modpk-—Zi}

<<ph—a+c/2-(h—a)/2 _<_ ph—a/Z .

Since £, is zero if 2 fc, we may assumz 2|c and hence we have 0 < ¢/2
< h—a. t is equal to

#{x mod p*~**, y mod p*~*~*/*| x* + ep®y* = d mod p*~°, (x,y) = 1}
= p*? ${x mod p*~°, y mod p*~*~**|x* 4+ ep®y* = s mod p*~°, (x,y) = 1}.

If @ =0, then ¢, is equal to

p° #{x,ymod p*~°|x* + ¢y’ = dmod p*~*, (x,y) = 1}
& p* (by Lemma 2) = ph-ert
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If @ > 0, then ¢, is less than or equal to

pe? > #{x mod p*~°|x* = 6 — ep®y* mod p*~°}

¥ mod ph—a=cj2

<<pc/2+h-a-c/2 (by Lemma 1)
< ph—a/z .

If ¢ < h, then ¢, is equal to 0, and hence we may put ¢ = A. Then ¢ is
equal to

#{x mod p*, y mod p"~*|(x, y) = p'}

h/2<i<h-a

< Z p(h—i)+(h—a—’£) <<p2h-a.—-h <ph—a/2.

i>h/2
Summing up, we complete the proof. ]

LemmA 4. Put t = #{x, y mod 2" |xy = a mod 2"} for an integer a. Then
t € h-2" holds.

Proof. t is equal to

>, #{xmod 2%, y mod 2"|2!xy = a mod 2", 2 f x}

0<i<h

= >, ¢(2"% #{y mod 2"| 2y = ¢ mod 2"},
0<i<h

where ¢ means the Euler’s function

< 3T 9ri 9 < (b 4 1)28 & he 28, ]

0<ish

LEmmaA 5. Put t = g{x, ymod 2" |x* 4+ xy + y* = amod 2"} for an in-
teger a. Then t € 2" holds.

Proof. Put o =0b-2°, 24b, and note that x*+ xy + »* = 0 mod 2"
implies x* = y* = Omod 2". If ¢ > h, then ¢ is equal to
#{x, y mod 2" |x* + xy + »* = 0 mod 2"}
< #{x, y mod 2" |x* = y* = 0 mod 2"}
L 20,
If c<h and 2}c, then we have £ = 0. Suppose ¢ < h and 2|c; then ¢
is equal to

#{x, y mod 2*~°*|x* + xy + ¥* = b mod 2"~}
= 2¢ #{x, ymod 2*~°|x* + xy + y* = bmod 2"~}
< 20 #{x, ymod 2"~ ¢|x* + xy 4+ ¥* = bmod 2"~°, 2} y}.
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Here we claim that there is at most 2 solutions of x for x* 4 xy -+ »*
= bmod 2" ° for an odd y. Suppose that x,, x, are solutions. Then
(%, — x)(x; + %, + ¥) = Omod 2"-¢ holds. Since only one of x, — x,, x, +
%, + y is odd, only one of x, — x, = 0mod 2" ¢ or x, + x, + y = O0mod 2*~°¢
can occur, and hence the number of solutions is at most 2. Thus ¢t <
2°*%p(2"°) & 2" holds. |

Lemma 6. For h > a > 1 put
t = ${xmod 2", y, zmod 2"~ *|2x* 4+ 2°*'yz = b mod 2"*'}
for an integer b. Then t & h-2**%/* holds.

Proof. If b is odd, then ¢t is clearly zero, and hence we may put
b=d-2°*", 2fd, c>0. Then ¢ is equal to

#{y, zmod 2"~*|2°yz = d -2° — x* mod 2"}

z mod 2k —1

= >,  #{y,zmod 2" | yz = 27(d-2° — x*) mod 2"~}
zmod 2~ —1
22=d-2¢ mod 2¢

L (h — a)2"* ${x mod 2" '| x* = d-2° mod 2} (by Lemma 4)

< h-2K"® #{xmod 2°| x* = d - 2° mod 2%}

<< h'22(h—-a)+min (c,a)/2 (by Lemma 1)

< h‘zzh—Sa/Z . .
LEmMMmA 7. For h> a>1 put

t = ${xmod 2", y, zmod 2"~*|2x* 4+ 2°*'(y* + yz + 2*) = bmod 2**'}.
Then we have t L 223/,
Proof. Put b=d-2°", 24d, ¢ > 0; then ¢ is equal to

#{y,zmod 2*-*|y* + yz + 2* = 27%d -2° — x*) mod 2"~}
2 mod 22 —1
x22=d-2¢ mod 22

&L ot #{xmod zn—llx2 =d-2° mod 2“} (by Lemma 5)
L 2% g{xmod 2°|x* = d - 2° mod 2%}
<< 22h—3a/2

as in the proof of Lemma 6. [ ]

Recall that L is a positive lattice of nL = 2Z, rk L = m > 3.

LemMa 8. We have [ @t L) € ((dL)* for a natural number t
and any positive number ¢ where «, is the local density.
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Proof. For a prime number p not dividing 2dL we put § =4, =
X((— 1)™*dL) (resp. X((— 1)™""tp~¢dL), r = r, = p*~™* (resp. p* ™) for 2|m
(resp. 2 Y m), where X is the quadratic residue symbol for p and e = e, =
ord, &

By Hilfssatz 16 in [9], «,(, L) is equal to

1 —0p ™A + or+ --- + (6r)°) 2|m,
A—p ™A+ 71+ o ren 21e, 2¢m,
(L= D™ o P L= 3pt ) 2o, 2,

If m is even, then we have
at, L) < @ +p ™) 2"
k>0
=0 +p )1 —p ).

Hence for an even integer m (> 3) we have

11 a,,(t, L)< mTa+pm™? 11 1 — pt-m)-t
pi2dL Pr2dL t

ol

KNMNA=p"™H) ' <A —-p )Lt
it pit

for any positive ¢, since ¢(f) > ct(loglogt)~! for ¢t > 3 and some positive
number c.
Suppose 2t m. If 2)e, then we have

&t I) = (1 — p=r)(L — p-m )L — pt=)t
< (1 _pz—m)—l < (1 . pZ—m)—l(l __p(l—m)/2)—l A
If e = 0, then we have a,t, L) < (1 — ap"'~™7)",
Suppose 2|e, e > 0; then «,(¢, L) is less than or equal to

(1 —p'")(1 = p® ™)1 — p*m)
+ p(2—-m)e/2(1 . pl—m)(l _ p(l—m)/2)-l
= (1 =P — )L — plny
X {1 . p(l—m)/2 +p(1~m)/2+(2—m)e/2 ___p(Z—'m)(e/Z-H)}
< (1 . px—m)(l _ pZ—-m)—l(l _ p(l—m)/Z)—l(l — p(Z—m)(e/2+l))
< (1 — p2—m)—1(1 — p(l—-m)/z)—l .
Thus we have, for odd m

n ap(t, L) < n (1 _ 5pp(1—m)/2)—-1' n (1 __pZ—-m)—l(l _ p(l—m)/Z)—l .
pi2dL pratdL it

Therefore for odd m > 5 we have [],. a,(t, L) € 1, and for m = 3,
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Mt D)< [] A=6p )" [TA—=p")"
pr2dL pl2tdL ot
& (tdL):,
which completes the proof of Lemma 8. m
LEMMA 9. For a natural number t we have
a,(t, L) < 2%»(1 — p*™)~' max d (b, L),

where b runs over non-zero integers, d, denotes the primitive local density
and o is the Kronecker’s delta function.

Proof. It is known [7], [2] that for ¢ = Omod p and r > 0,

aap’, L) = 2%» > p*®™d (ap™*, L)
0<k<7/2
< 2=2{max d (b, L)} > p*® ™
b k=0
= 2%22(1 — p*"™)"'max d,(b, L). [ |
LemMa 10. For a natural number t we have

Tl a,(t, L) < (tdL)* [] {max d,(b, L)}

¥4 |2dL 0+b€Z

for any positive number e.
Proof. By virtue of Lemmas 8, 9, we have
I a,t, L) € (¢dL)* IH a—-p=™* 1] {m;jlx d (b, L)}
P » p

24L |24 L

L t(dL)* T] {maxd,b, L)}. |
pl2dL
LemmA 11. For a natural number t we have
T (¢, L) € (¢tdL)* [] «/p*
D pl2dL

where ¢ is any positive number and a, is the integer defined in Theorem.
Proof. We have only to prove
dp(b, L) < Cgpsordp dL+ap/? ,

where C, depends only on ¢, since [[ sz C. € (dL)*. Let h be an integer
such that p"n(L*) C 2pZ,. It is known [2]

dy(b, L) = pze=+2¢=m 4 I(b, L; p*) ,

where
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D, L; p*) = {x € Z,L{p"Z,L}|Q(x) = bmod 2p"Z,, x ¢ pZ,}.

Let an orthogonal splitting of Z,L be L, | --- | L, where L, is p*-
modular for i > 2 and @, < --- < a, and a Jordan splitting of L, | L,
gives a Jordan splitting of Z,L; then we can put 2 = a, + 2 = O(p* ¥ %%),
and we have
$D(b, L; p*)
< X #{ye L/p"L}| Q(y) = b — Q(x) mod 2p*Z,}

=
< pFizatmeorimax f{y e Lijp"Li| Q(y) = c mod 2p"Z,)
and hence we have
d,(b, L) < pertrtarrarely max ${y € L,/p"Li| Q(y) = ¢ mod 2p"Z;} .

Suppose Z,L = {2¢) | {2p®;) 1 ---, &, &,€Z}, a >0 (Jordan split-
ting). We put L, = {2¢) | (2p“,y; then we have
#{y e L,/p"L}|Q(y) = cmod 2p"Z,}
= #{zwmod p*~?, vmod p*~*7*| 2,1’ + 2p°e;v* = cmod 2p*Z,},
where § = §,,,

= O(hp*~**) by Lemma 3. Thus we have
dyb, L) L p* " - hp*~** < hp* L ptorirdltalt

Next we suppose that p =2 and Z,L = (2¢) _|_<2“<21d 2b)> e

ccZX, a>2 d=01 Putting L, = (2 | <2a<2d 1)> we have

1 2d
#{y e L/p"L}| @(y) = c mod 2"*'Z,}
= ${umod 2"', v, w mod 2"~*| 2’ 4 2**'(dv* 4+ vw + dw®) = ¢ mod 2"*1}
& h-2h-tas? (by Lemmas 6, 7).

Hence we have dy(b, L)  2!*%a-2.p.2%h-3a/2 g Qat+éordedl g ghovye,

Lastly we suppose p = 2 and Z,L = <(21d 2b)> 1+, d=0or1by

which we exhaust all types of Jordan splittings. Putting L, = <<21d 2}i>>’
we have
#{y e L/2"L{| Q(y) = ¢ mod 2"*'Z,}
= #{u, vmod 2" |2(dv* + wv + dv®) = c mod 2"*'}
L h-2* (by Lemmas 4, 5).
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Therefore we have dy(b, L) € 27" h.2" & 2¢°2¢L and it completes the
proof of Lemma. [ |

Now we can prove Theorem, following an idea due to Conway,
Thompson on p. 46 in [7]. Put

w) = { 53 OW)"}-(0()

and

r(t,gen L) = ; > 3 w(N)r(t, N)

gon
where N’s run over representatives of isometry classes in the genus of
L and O(N) is the group of isometries of N and r(t, N) = #{xe N|
Q(x) = t}. It is known [9] that r(¢, gen L) = c(dL)~t™* ' ], a,(t, L) for
some constant ¢ and hence we have

ST r(t, gen L) < (dL)-2 3. t72-¥(tdL)* T ¥p*  (by Lemma 11)
t=1 t=1 pl2dL
& (dL)s-x/z I—[ \/ﬁ L pmitve
pl2dL

Suppose > k_, r(t, M) > 0 for every M in gen L; then we have

ir(t,genL)=MZ w(M)ir(t,M)zMsz(M)=1,

gen L €gen

and hence k"¢ > (dL)"*"¢ ||z VP *. Therefore k = C,(dL)%/* 9/ ™2+
“([Mppaz p~2)™**> for some C, is contradictory for any positive number
e. Thus >3*,r(, M) = 0 holds for some M e gen L and the above & and
this yields min M > k. Since (1/2 — ¢)/(m/2 + ¢) tends to 1/m from below
as e—>0 and — (m 4+ 2)"' > — m~!, this means

min M > (dL)V™~<( ] po»)-¥m for any e > 0
pl2dL

and completes the proof of Theorem. |
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