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Introduction 

The two-stage deflection system is standard in the scanning electron microscope. It utilizes two 

deflectors located in front of the final lens. The excitation of the deflection stages are in such a 

proportion that the beam enters the final lens so that the asymptote of the central ray crosses the optical 

axis at (or close to) the object nodal point of the lens [Vol. 2 of 1]. The precise position may be subject 

to an optimization [2,3]. The deflected axial ray behind the lens then appears to originate from an axial 

point, known as the (virtual) pivot or rocking point. 

 

An important parameter in environmental scanning electron microscopy (ESEM) is the environmental 

distance between the sample and the pressure limiting aperture (PLA). To minimize interaction of the 

primary electron beam with the gaseous environment, the PLA should be as close as possible to the 

sample. Additionally, its pressure limiting effect is better for smaller diameters. To minimize vignetting 

caused by striking the edge of the aperture by the deflected beam at high deflection angles (Figure 1) the 

PLA should be close to the real pivot point (where the central trajectory physically crosses the axis). 

However, that position usually increases the environmental distance unfavourably. Up to date, the 

obvious solution practiced by manufacturers of ESEM is to significantly increase the diameter of PLA. 

However, this introduces severe disadvantages, such as electron beam loss, increased pumping, 

restricted pressure range, inaccessible low energy beam at high pressure and overall limited instrument 

performance [4,5]. 

 

A much better solution to the above problem has been proposed by Danilatos [4], which has motivated 

the present work. The key idea is to move the pivot point of the deflection close to or at the PLA. While 

this can be achieved simply by altering the ratio between the deflection stage excitations, it is 

detrimental to the deflection aberrations, with even the higher order aberrations becoming significant 

(see the column labelled “Before correction” in Table 1). The reasons for the increase are the increase of 

the off-axial distance at which the trajectories enter the final lens and the increase of the angle at which 

the beam needs to be deflected to achieve the same deflection distance. 

 

Some deflection aberrations can be eliminated by dynamic corrections [6], namely the deflection 

distortion, field curvature and astigmatism. Incidentally, these aberrations are typically the most serious 

ones. As the distortion of any order depends just on the deflection, it is corrected using non-linear 

deflection signals. Field curvature and astigmatism of the third-order can be corrected using dynamic 

(deflection-dependent) focus lens and a dynamic stigmator. The dynamic stigmator is a quadrupole lens 

which must enable not only the change of its optical power but also the change of the azimuthal 

orientation of its field (electronic rotation about the optical axis). Fifth-order field curvature and 

astigmatism can then be corrected by another pair of a dynamic lens and a stigmator [7].  

 

The methods of correction outlined in [6] and [7] aim at eliminating each order of field curvature and 

astigmatism successively by a separate pair of dynamic focus lens and a dynamic stigmator per 

aberration order. 
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That complicates realization or adaptation of an instrument 

– the optical column and the electronics. In this paper we 

investigate the possibility of minimizing all orders of field 

curvature and astigmatism simultaneously using just a 

single dynamic focus lens and a single stigmator instead of 

eliminating each order separately. 

 

The Method 

We assume rotationally invariant magnetic deflectors [2] in 

front of the final magnetic lens (Figure 2). The deflectors 

are driven by deflection currents I1 and I2, respectively. The 

quantities I are complex numbers, with their real and 

imaginary part denoting the current in a deflector creating 

the dipole field in the directions of the x and y axes, 

respectively. The final lens essentially images an 

intermediate crossover from the axial position zo onto the 

sample. 

  

The paraxial properties of the two deflection stages and the lens are: 

𝑔(𝑧), ℎ(𝑧): principal rays of the lens without the deflection fields (g(zo)=h’(zo)=1, g’(zo)=h(zo)=0), 

𝜃(𝑧):  paraxial image rotation angle in the lens without the deflection fields, 

𝛾1(𝑧):  deflected axial trajectory (1(zo)=1‘(zo)=0) with I1=1 and I2=0 and the lens activated, 

𝛾2(𝑧):  deflected axial trajectory (2(zo)=2‘(zo)=0) with I2=1 and I1=0 and the lens activated, 

where the prime denotes the derivative with respect to z. As the general deflected axial trajectory is 

𝛾(𝑧) = 𝐼1𝛾1(𝑧) + 𝐼2𝛾2(𝑧), the condition 𝛾(𝑧𝑝) = 0 for a pivot point at 𝑧𝑝 sets the complex ratio 

between the currents: 

The geometrical aberration polynomial of order N can be written as: 

 

𝑤(𝑧) = ei𝜃(𝑧) ∑ 𝐶𝑎𝑏𝑐𝑑𝑘𝑙(𝑧)

𝑎+𝑏+𝑐+𝑑+𝑘+𝑙≤𝑁

𝑎,𝑏,𝑐,𝑑,𝑘,𝑙=0

𝛼𝑎𝛼
𝑏

𝛽𝑐𝛽
𝑑

𝛾𝑘(𝑧)𝛾
𝑙
(𝑧) (2) 

where 𝛼 and 𝛽 are the complex slope 𝑥′ + i𝑦′ and the complex position 𝑥 + i𝑦 in the object plane 

𝑧 = 𝑧𝑜, respectively, w(z) is the complex position in a plane 𝑧 = const, and the bar denotes a complex 

conjugate. The coefficients 𝐶𝑎𝑏𝑐𝑑𝑘𝑙 are defined by the optical system and can be calculated by various 

methods, including aberration integrals [2,3], the differential algebra method [9], or regression analysis 

[11], which is our method of choice. 

 

The following consideration can be made about the symmetry of the system: if the object is rotated by 

an angle about the axis and the deflection fields are rotated about the same angle, then the system 

produces an image identical to that before the rotations, only rotated by the same angle. This leads to the 

condition: 

 𝑎 − 𝑏 + 𝑐 − 𝑑 + 𝑘 − 𝑙 = 1 (3) 

This condition allows only certain terms to be present in the polynomial (2). Although it is similar to 

that found in Vol. 1 of [1] for the rotationally symmetric case, it has never been published for systems 

containing deflectors considering their arbitrary rotation as part of the symmetry relation. 

 

 

Figure 1: The field of view in the 

AquaSEM-Vega (ISI Brno) limited by 

the first pressure limiting aperture. 

 𝐼2/𝐼1 =  −𝛾1(𝑧𝑝)/𝑦2(𝑧𝑝) (1) 
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Figure 2: Optical system configuration: the bore in the inner pole piece contains a ferrite shielding 

inside which, from right to left, are two rotationally invariant pre-lens deflector stages and the dynamic 

stigmator. There is the dynamic focus lens on the far left. The curves are the components (the real and 

imaginary part) of the deflected axial trajectory plotted for the optimal pivot point position. 

 

Let us assume that the correcting elements, the dynamic stigmator and the dynamic focus lens, are weak 

and their optics can be described just by paraxial terms. The combination of a stigmator with the 

azimuthal rotation 𝜖 and a lens modifies the position and the slope as follows: 

where 𝜃𝑙 is the image rotation of the dynamic focus lens,  𝛼𝑜 is the slope and 𝛽𝑜 is the position of the 

trajectory asymptotes in the object plane 𝑧𝑜 and the resulting 𝛼 is and 𝛽 refer to the trajectory 

asymptotes at 𝑧𝑜 again of the trajectories behind the two correcting elements as they enter the deflectors 

and the final lens. As a quadrupole has two symmetry planes, the coefficients Q in eqs. (4) must be real 

and they can be determined from the cardinal elements of the dynamic quadrupole lens and the dynamic 

focus lens. 

 

Substituting Eqs. (4) into the polynomial (2) will result in an expression of the entire sequence of the 

optical elements (the dynamic stigmator, the dynamic focus lens, the two deflectors and the final lens). 

As we are primarily interested in affecting field curvature and coma, we investigate just the terms in Eq. 

(2) that are linear in 𝛼, 𝛼, 𝛽 and 𝛽. We get an expression of the form: 

 𝛼𝐹𝑎(𝛾, 𝛾) + 𝛼𝐴𝑎(𝛾, 𝛾) + 𝛽𝐹𝑏(𝛾, 𝛾) + 𝛽𝐴𝑏(𝛾, 𝛾), (5) 

where we have omitted the rotation factor ei𝜃(𝑧) which is further unimportant, and the coefficients are 

specifically: 

   𝐹𝑎 = 𝐶100000 + 𝐶100011𝛾𝛾 + 𝐶100022𝛾2𝛾
2

+ 𝐶100033𝛾3𝛾
3

+ ⋯ 

𝐴𝑎 =                   𝐶010020𝛾2 + 𝐶010031𝛾3𝛾
1

+ 𝐶010042𝛾4𝛾
2

+ ⋯ 

𝐹𝑏 = 𝐶001000 + 𝐶001011𝛾𝛾 + 𝐶001022𝛾2𝛾
2

+ 𝐶001033𝛾3𝛾
3

+ ⋯ 

𝐴𝑏 =                    𝐶000120𝛾2 + 𝐶000131𝛾3𝛾
1

+ 𝐶000142𝛾4𝛾
2

+ ⋯ 

(6) 

Keeping in mind that the coefficients 𝐶(𝑧) and the paraxial deflection 𝛾 is still a function of z, we retain 

the possibility of minimizing the two aberration types in any plane. However, note that in the Gaussian 

image plane 𝐶100000 = 0 and 𝐶001000 has the meaning of the direct magnification of the final lens. The 

coefficients 𝐶010000 and 𝐶000100 are not present in Eqs. (6), since they are zero as per condition (3). To find 

the effect of the correcting elements on overall field curvature and astigmatism, we substitute Eqs. (4) 

 𝛼 = (𝑄𝑎1𝛼𝑜 + 𝑄𝑎2𝛼𝑜e2i𝜖 + 𝑄𝑎3𝛽𝑜 + 𝑄𝑎4𝛽
𝑜

e2i𝜖)ei𝜃𝑙 , 

𝛽 = (𝑄𝑏1𝛼𝑜 + 𝑄𝑏2𝛼𝑜e2i𝜖 + 𝑄𝑏3𝛽𝑜 + 𝑄𝑏4𝛽
𝑜

e2i𝜖)ei𝜃𝑙 
(4) 
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into the expression (6). The aberration terms dependent on 𝛼𝑜 and 𝛼𝑜 are of the form 

 𝛼𝑜𝑈 + 𝛼𝑜𝑉, (7) 

where the complex factors U and V depend on the coefficients in Eq. (4) and those defined by Eq. (6). 

Now suppose that we send a cone of trajectories, 𝛼𝑜 ≔ 𝑎 ⋅ ei𝑡, with a being a real constant and t is a 

parameter running from 0 to 2𝜋, from the object plane into the system.  Eq. (7) becomes a parametric 

equation of a closed, ellipse-like curve. For known aberration coefficients in Eq. (4), U and V become 

functions of the dynamic focus current and the dynamic stigmator voltage. To minimize the effect of 

field curvature and astigmatism, the size of the closed curve needs to be minimized. While this can be 

done analytically, it leads to lengthy algebraic expressions for the excitation current of dynamic focus 

lens and the voltage of the dynamic stigmator and its rotation. Therefore, we have opted for a numerical 

solution using the simplex minimization search method. 

 

Calculation Example 

The configuration in Figure 2 was modelled using the EOD software [12]. The field of the lens was 

computed, taking the magnetic saturation into account, so that a virtual crossover at 𝑧𝑜 = −150 mm is 

imaged to 𝑧𝑖 = 5 mm. The optimal pivot point is located at 𝑧 = −7.5 mm, but to investigate the effect 

of the deflection aberration and their reduction using the outlined method, it was moved to 𝑧 = 0. For 

that position the magnitude of the current in the second deflector needs to be 1.7697 × of that in the first 

one, and the dipole field in the second deflector needs to be rotated by 88.86 degrees relative to the first 

one (set via Eq. 1). The aberration coefficients of orders up to 7 were computed using the regression 

analysis [11] for 1600 trajectories computed in EOD (Figure 3). The dynamic focus lens and the 

dynamic stigmator (Figure 2) were placed to 𝑧 = −240 mm and 𝑧 = −90 mm, respectively. Their 

cardinal elements were obtained using the EOD. Their calculated excitation parameters are in Figure 4, 

The effect of the method on the testing optical system is documented in Table 1 and Figure 5. Apart 

from the field and trajectory calculations that were performed in the EOD, other calculations were 

programmed and carried out in Matlab. 

 
Figure 3. Initial conditions and results of ray tracing and regression analysis used to obtain the 

aberration coefficients of up to the 7
th

 order. A set of 200 trajectories were traced for 8 different 

deflection currents from 1 At to 8 At in 1At steps. The complex slopes (left) and the initial positions (not 

plotted) were generated randomly with a uniform distribution over a circle in the complex plane with the 

maximal modulus of 0.002 and 0.05 m, respectively. The traced and the fitted positions in the Gaussian 

image plane are plotted in an overall view (centre) and a selected set in detail (right), showing a very 

good agreement between the traced data (dots) and the fit (circles). 
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Figure 4. Calculated dependencies of the correcting element parameters on the paraxial deflection 

distance (stigmator voltage and dynamic coil current) and paraxial deflection position (stigmator 

rotation; the numbers next to the curves indicate the y coordinate in millimeters). 

 
Figure 5. Aberration figures of all aberration minus the paraxial deflection and deflection distortion in a 

𝟑 × 𝟑 raster of a 1mm field of view. The deflector excitations correspond to compensated deflection 

distortion. 

Conclusions 

We have devised a method of decreasing the deflection aberrations significantly by minimizing the two 

most severe ones, field curvature and astigmatism, using one dynamic focus lens and one dynamic 

stigmator. Methods published so far eliminate each order of these aberrations separately using a 

dynamic lens and a stigmator per aberration order. The method presented here minimizes all orders of 

field curvature and astigmatism simultaneously without adding any correcting optical components, it 

only modifies the driving signal dependencies. For the example optical system with a shifted pivot point, 

the former approach would produce aberration sizes of 1.01 m in a 1mm field of view (with the 

deflection distortion corrected), whereas our method almost halves that value to 0.535 m. In an ESEM, 

the method enables the use of smaller environmental distances and very small apertures without 

significantly limiting the field of view at low magnifications [13]. 
 

198

https://doi.org/10.1017/S1431927615013367 Published online by Cambridge University Press

https://doi.org/10.1017/S1431927615013367


 

 

Aberration  Size / m    

3rd order                           Before After 
Spherical                           0.00978 0.118 
Coma                                0.217 0.155 
Field curvature                     11.4 0.7 
Astigmatism                         5.06 1.29 
Field curvature + astigmatism                 16.5 1.99 
All the above 3

rd
 order aberrations                16.5 1.91 

5th order                           
  

Spherical                           0.000283 0.00528 
Coma                                0.0242 0.453 
Field curvature                     0.569 0.756 
Astigmatism                         0.355 2.01 
Field curvature + astigmatism                               0.924 2.77 
Other 5

th
 order aberrations  0.0105 0.463 

All 5
th

 order aberrations 0.924 2.77 
3rd + 5th order                     

  
Spherical                           0.00966 0.114 
Coma                                0.24 0.137 
Field Curvature                     12.0 0.201 
Astigmatism                         5.41 0.0924 
Field curvature + astigmatism                17.4 0.294 
All 3

rd
 and 5

th
 order aberrations                     17.3 0.535 

All minus 3
rd

 order field curvature and astigmatism 1.01 
 

 

Table 1. Axial aberration sizes (minus deflection distortion, which has been compensated) before and 

after the minimization of all orders of field curvature and astigmatism in the upper-right corner of a 

1mm field of view. The 7
th

 order, which was also taken into account, is not listed due to space 

constraints and also because it is already less significant. The values in bold type: the value showing all 

aberrations minus the 3
rd

 order field curvature and astigmatism represents the situation with these 

aberrations eliminated, whereas the other value shows the size of the overall aberration achieved by 

minimizing all orders of the two aberration types. 
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