Point Defect and Their Influence on the Atomic and Electronic Structure of β-(Al_xGa_{1-x})₂O₃ Alloys by STEM-EELS Adrian Chmielewski¹, Sarah Deng², Parivash Moradifar¹, Leixin Miao¹, Kleyser Agueda Lopez¹, Akhil Mauze³, Yuewei Zhang³, James Speck³, Wolfgang Windl² and Nasim Alem¹ ¹Pennsylvania State University, University Park, Pennsylvania, United States, ²The Ohio State University, Columbus, Ohio, United States, ³University of California Santa Barbara, Santa Barbara, California, United States β-Ga₂O₃ is considered an ideal material system for power electronics at extreme environments. Due to its high band gap, β-Ga₂O₃ has a high breakdown voltage (8 MV.cm⁻¹) and high resistivity to electric field and temperature. The electronic properties of β-Ga₂O₃ can be improved by incorporating a variety of dopants into the matrix such as Al, adding great flexibility to device design as in modulation doped field effect transistors of β-(Al_xGa_{1-x})₂O₃/Ga₂O₃ heterostructures [1]. In this study we use high resolution Annular Dark Field (ADF)-Scanning Transmission Electron Microscopy (STEM) and Electron Energy Loss Spectroscopy (EELS) to uncover the interfacial and electronic structure of β -(Al_{0.2}Ga_{0.8})₂O₃/ β -Ga₂O₃ epitaxial film grown by molecular beam epitaxy technique. This investigation shows presence of various point defects across the interface in b-(Al_{0.2}Ga_{0.8})₂O₃/ β -Ga₂O₃ interface. EELS is further used to understand how the electronic structure is modulated. This study further investigates the distribution and coordination of Al, as well as Al and Ga interstitials in β -(Al_{0.2}Ga_{0.8})₂O₃/ β -Ga₂O₃ epitaxial film. Figure 1 shows a high resolution ADF-STEM image of the β -(Al_{0.2}Ga_{0.8})₂O₃/ β -Ga₂O₃ interface. Interestingly the number of Al/Ga interstitials (highlighted by yellow circles) increases at the interface. In order to describe the effect of these defects on the electronic properties, we have performed EELS scan across the interface to probe the volume plasmon of Ga, as shown in Figures 1.b. We observed a blueshift in the volume plasmon energy which suggests that the free electron density across the β -(Al_{0.2}Ga_{0.8})₂O₃/ β -Ga₂O₃ interface increases [2]. The increase in the electron density is due to the presence of Al/Ga interstitials across the interface and leads to presence of excess charges at the interface. Density functional theory (DFT) calculations have been carried out with the Vienna Ab initio Simulation Package (VASP), to get insight at atomic scale of the interstitial defect within the β -(Al_{0.2}Ga_{0.8})₂O₃ film [3]. Two initial β -(Al_{0.2}Ga_{0.8})₂O₃ structures were generated and studied. We considered both Ga interstitials and Al interstitials in the calculations. Ga interstitials induce distortion of certain nearest neighbors creating new interstitial atoms pushed from their initial positions acting as deep-level donor whereas distortions caused by Al interstitials creates a shallow donor state. These findings provide great insight into the fabrication of gallium-oxide based devices. **Figure 1.** (a) HR-STEM image of the β -(Al_{0.2}Ga_{0.8})₂O₃/ β -Ga₂O₃ interface in the [001] projection. Yellow circles are highlighting the Al and/or Ga interstitial as shown in the zoom-in image on the insert. (b) Plasmon energy variation across the β-(Al_{0.2}Ga_{0.8})₂O₃/ β -Ga₂O₃ interface based on volume plasmon peak fitting as shown in the insert. ## References - [1] Y. Zhang et al., Appl. Phys. Lett., **112**, 233503 (2018) - [2] H. Raether, Springer Tracts Modern Phys, **111**, 1-133 (1988) - [3] G. Kresse and J. Furthmüller, **54**, pp. 11169-11186, 10 (1996)