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1. Introduction. Let G: R" -»R" be a continuous mapping such that the origin
0 e R" is isolated in G"'(0). Then degoG will denote the local topological degree of G at
the origin, i.e. the topological degree of the mapping

where Sr denotes a sphere in R" centered at the origin with small radius r > 0.
We shall prove the following theorem.

THEOREM 1.1 (the Main Theorem). Let F : Rm x R x Rn-*R" be a polynomial
mapping. For any ( w , r ) e R m x R , let Fwy.R"^>R" denote the vector field Fwl(x) =
F(w,t,x). Suppose that

(a) /v,(0) = 0 for all (w, t) s Rm x R,
(b) there is a proper algebraic set X c Rm x R such that 0 e R" is isolated in F~*,(0)

for every (w, t) e Rm x R - X and so deg0 FWJ is defined for all ( i v , / ) e R " x R - I .
Then there is a proper algebraic subset 2 c Rm and integers fi and v such that for every
w E Rm - Z there is e >0 with {w} X ( -e , e ) M c { ( w , 0 ) } and

dego /v_i + deSo Kjt = M (mod 4)
and

dego Fw,-t ~ dego K.t = v (mod 4)

provided 0 < t < e.

In fact the factor Rm may be replaced by any irreducible real variety.
The theorem gives a new and easy proof of the result by Coste and Kurdyka [5] that

the Euler characteristic of the link of an irreducible algebraic subset of a real algebraic set
is generally constant modulo 4. Recently McCrory and Parusinski [13] gave another proof
of this fact. Their proof is based on investigation of a relation between complex
monodromy and complex conjugation on Milnor fibres. Other theorems concerning the
Euler characteristic of the link modulo 4 are presented in [6], [7], [17], [18], [19], [21].

In Section 5 we present another application of the Main Theorem to the bifurcation
theory.
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222 ZBIGNIEW SZAFRANIEC

2. Preliminaries. We shall need two theorems concerning topological equisin-
gularity. Both have been proved by Varchenko [20], similar results have been presented
by Wallace [22], Hardt [9], Coste [3] and Bochnak et al. [2].

THEOREM 2.1. Suppose that W is a real algebraic set and Au... ,AscW xR" are
semialgebraic. Then there is a proper algebraic subset 2 c W such that, for each connected
component U cW - 2 and a point wQ s U, there exists a homeomorphism H : U x R" —»
U x R" such that H(w,x) = (w,h(w,x)) and

H(UxRnDAi) = Ux{x eR"\(wo,x)sAi} for i = l,...,s.

If that is the case we shall say that the projection n :W xR" —*W is topologically
equisingular over W — 2 with respect to Alt... ,AS.

We shall say that a complex algebraic set X czC is defined by real polynomials if
there are polynomials fx,... ,fp having real coefficients such that

THEOREM 2.2. Suppose Au... , As c Cm x C" are complex algebraic sets defined by
real polynomials. Then there is a proper complex algebraic set 2 C c Cm defined by real
polynomials such that, for every w0 e Cm - 2C) there is an open neighbourhood U a vv0

and a homeomorphism H: U x C" -+ U x C such that H(w,z) = (w, h(w, z)) and

= Ux{zeC"\(wo,z)eAi} for i = l,...,s.

Clearly 2 = 2 C D Rm is a proper real algebraic subset of Rm. Take wuw2eRm - 2. Denote

Ai
l = {zeC\(wJ,z)eAl} for i = l,...,s and ; = 1,2.

Since Cm - 2 C is connected then there is a homeomorphism g : C" —> C" such that

If that is the case we shall say that the projection CmxC"->Cm is topologically
equisingular over Cm - 2C with respect to Ax,... ,AS.

THEOREM 2.3. Let f\,...,fs be real polynomials, let VR = {x e R" |/i(x) = . . . =
fs(x) = 0} and let Vc = {z e C \f(z) = • • • =fs(z) = 0}. Suppose that the complex germ
(Vc, 0) is 1-dimensional. Let Sf1'1 denote a sphere in C with radius r centered at 0 and let
Sr = S?-1nRn.Ifr>0 is small enough then numbers

T, the number of connected components of Vc D S*"~\

do not depend on r and

y = 2T (mod 4).

Proof. If r is small enough then Vc C\ S^"~i is diffeomorphic to a finite disjoint union
of circles and complex conjugation acts as involution on VCD5^'~1. The set of fixed
points is V̂  fl Sr. If the involution interchanges two different components then they do not
contain fixed points. Suppose that 5 is a component of Vcr\S^"~] preserved by the
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REAL POLYNOMIAL VECTOR FIELDS 223

involution. It is easy to see that the complex conjugation changes the orientation of S, so
there are exactly two fixed points in 5. Hence y = 2F (mod 4).

Let F: R x R" -> R" be a polynomial mapping and let F c : C x C ^ C be its
complexification. For any t e C, let Fc,t'• C—»C" be a mapping given by Fc,,(z) = Fc(t,z)-

Suppose that Fo(0) = 0 and that Fc',(0) is finite for all t e R. From Theorem 2.2,
^o(O) => {0} is finite for all t e C with |?| small enough. There is e > 0 such that
Fc]o(O) n D( = {0}, where D( = {z s C" \ \\z\\ ^ e}. So there is 8>0 such that bDe n
^o(O) = 0 for all t G C with \t\ < 8.

Denote B€ = D€ n R" and S?"+1 = {(f, z) E C x C" | \t\2 + \\z\\2 = r2}. Clearly the com-
plex germ F^iO) at 0 is 1-dimensional and C x {0}cFc\0). From Theorem 2.3 we get
the following corollary.

COROLLARY 2.4. / / r > 0 is ^ma// enough then numbers

F, f/ie number of connected components in Fc'(0) H S2n+l,

do not depend on r and
y ' = 2 ( r - l ) (mod 4).

Let K denote either R or C and let AK denote the space of all n -tuples (qu. .. ,qn),
where every qt: K" -»K is a homogeneous polynomial of degree s. Then Ac is the
complexification of AR. For q = (g, , . . . ,qn) e AK and fu.. . ,fn e K[x:,.. . ,xn] write

G*c=(fl+qu...,fn+qn):C"-+Cn

and denote qi = 'Zq'ax
a, where q'a e K and xa=xf'...x"". From now on "Jac" will

denote the determinant of the Jacobian matrix for mappings R" —»R" or C" —»C".
The next theorem has a technical character, in cases s = 0, 1 it can be derived from

the Sard theorem. The proof has been given in [1].

THEOREM 2.5. Assume that / , , . . . ,/„ e R[xi,. . . ,xn]. Then for each positive integer s
there is a dense semialgebraic set {/cAs such that

Jac Gq
c{z) ^0 at each z e (Gq

c)'\0) - {0}

for every q e U. Then the semialgebraic set

{q e AR | there is z e (Gcy\0) - {0} with Jac Gqdz) = 0}

has codimension at least 1 in AR.

The next theorem is a parametrized version of the Lojasiewicz inequality. It has been
proved by Fekak [8].

THEOREM 2.6. Let A and B be semialgebraic closed subsets in Rm x Rs. For w G Rm

denote Aw = {x G RS | (W,X) e A} and Bw = {x e W (w,x) e B}. Then there is a finite
family 5, of disjoint semialgebraic sets covering Rm, a family /i, of semialgebraic continuous
functions defined on 5, x R ' n ^ l and positive rational numbers pt such that: if w e 5, then
d(x,Aw fl Bwfi^hi{w,x)d{x, Bw) for every x e Aw, d denoting the Euclidean distance in
R'.
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224 ZBIGNIEW SZAFRANIEC

If B = Rm x R x {0} then applying Theorems 2.1 and 2.6 one may prove the following
result.

PROPOSITION 2.7. Suppose A c Rm x R x R is a closed semialgebraic set. For each
w e R"1, denote

A'w = C losu re^ - {w} x R x {0}).

Suppose that there is a proper algebraic subset 2 c Rm such that for every w e Rm - 2 there
is e > 0 SUC/J tfiaf

M x (-e, e)x{o}n >*;,,<={(*, o,o)}.
Then there is a positive constant a such that, for every w e Rm - 2, there are C>0 and
8>Q such that

\y\*C\r\°

for every (w, r, y) e A with \r\ < 8 and y^O.

3. Proof of the Main Theorem.

LEMMA 3.1. Set s = m + 1. Suppose that F : RJ x R" -» R" is a polynomial mapping.
For any w e Rs, let Fw : R" -»R" be a mapping given by Fw(x) = F(w, x). Suppose that

(a) Fw(0) = 0 for every w e Rs,
(b) there is a proper algebraic subset Z c R J such that 0 e R" is isolated in F^'(0) for

every w eRs -2 and so, for all w sRs -1, the local topological degree deg0 Fw is defined.
Then there is a polynomial mapping G:R s xR"->R", its complexification Gc '• C

1 x
C" -> C and a proper algebraic I ' c R 1 with 2 c 2 ' ^uc/i t/ia/

(i) Gc(w, 0) = 0 /or a// i veC" ,
(ii) for the mapping Gc,w: C - » C giwen 6y GC,M) = Gc(*v, z), Gc.l(0) is finite for

all w e Cm
 (VJ particular 0 is isolated in GC'K.(0)) anrf, moreover, if Fw = 0 then

Gc.U0) = {0},
(iii) /or ewery w E Rf - 2', J/Z e Gc.KO) - {0} then Jac GClv(z) ^ 0 ,
(iv) for the mapping Gw : R"-» R" g/ueAi fty GH,^) = G(W,JC), deg0 Fw = dego Gw for

every I V E R 1 - 2'.

Proof. Denote

X = {(w,x,r,y)} e Rs X R" X R X R | ||x|| = r,y = ||F(iv, JC)||}.

Let A denote the projection of X on Rs x R x R. Clearly X is closed, semialgebraic and
the projection of X to R* x R x R is proper. Then A is closed and semialgebraic.

For every w e R - r - 2 , 0 e R" is isolated in F~'(0), so there is e > 0 such that
{0} = {x e R" | ||* || < e, F(w,x) = 0} and then

From Proposition 2.7, there is a positive constant a such that if w e Rs - 2 then

|y|>C|rr

for some C > 0 and every (w, r,y) e.A with |r| small enough. That means that

\\F(w,x)\\>C\\x\r

for every w s R5 - 2 and ||x|| < 8, where C = C(w) > 0 and 8 = 8(w) > 0.
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Suppose d > a is an integer. So if qi(x),..., qn(x) are homogeneous polynomials of
degree d and

G(w,x) = F(w,x) + fo,(jc),.... qn(x))

then, for every w E RJ - 2, 0 is isolated in G^](0) and dego Fw = dego GH,.
Let A denote the space of all n-tuples (q\,- • • ,qn), where each q, is a real

homogeneous polynomial of degree d. For q = (qu... , qn) e A and w 6 RJ, let
GJ,*, : C —»C" denote a map given by

Let
P = {fa, w) e A x Rs | there is z e ( G ^ ) " 1 ^ ) - {0} with Jac Gq

c<w{z) = 0}.

Clearly P is semialgebraic.
From Theorem 2.5, the codimension of P n A X {w} in A X {w} is at least 1 for every

w E R1. Then the codimension of P in A x Rs is at least 1 too. This implies that there is an
open dense semialgebraic Ao <=• A such that, for any q e Ao, the codimension of
P n {q} x Rs in {q} x R1 is at least 1. Choose q e Ao. Let P' denote the projection of
P(~\{q}xRs on Rs, let 2 ' denote the smallest algebraic set which contains P' and Z.
Define

G(w,x) = /=•(*,*) + (9,(A:), . . . , qn(x)),

where q = (qu...,qn).
Since the codimension of P' in RJ is at least 1 then 2 ' is a proper algebraic subset of

RJ. Clearly, if w e RJ - 2 ' then (q,w)eP. So, if z e Gc,l(0) - {0} then Jac GCtW{z) * 0.
As we have shown before, dego Fw = dego Gw. Hence conditions (iii) and (iv) hold.

We may assume that d is so large that for every w e Rs we have

lim||Fc(H',z)||/||z||d = 0 as ||z||-»oo, where z e C " .

Since Ao is open and dense in A we may assume that

{Z E C | «?,(*) = . . . = «?„(*) = 0} = {0}.

Then there is C, >0 such that \\(q}(z),... ,qn(z))\\ ^Ct \\z\\d for every z E C with ||z||
large enough. Thus, for every w e R1, a complex algebraic set

Gcl(O) = {zeC\ Fc(w, z) = - (9 , (z ) , . . . , ?«(z))}

is bounded, and so finite. Moreover, if Fw = 0 then Gc,w(z) = (9i(z), • • •. 9nU)) ana" t n e n

Gc,l(0) = {0}. Hence condition (ii) holds.

Proof of Theorem 1.1. Of course we may change F and enlarge X as long as we do
not change local topological degrees at 0 over an open dense semialgebraic subset in
Rm x R. So, according to Lemma 3.1, we may assume that

(a) Rmx{0}cAr,
(b) {z e C | Fc(w, t, z) = 0} is finite for all (w , ( ) eC"x C, in particular, 0 is isolated

in FZ\(0) and dimc Fc!(0) = m + 1,
(c) if (w, 0) e Rm x {0} then f-,0(0) = {0},
(d) for every (w, t) e Rm x R - X, if z E / ^ ( O ) - {0} then Jac Fc<wJ(z) * 0.
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From (b), each irreducible component of Fc^O) has dimension at most m + 1. So we may
also suppose that Z x j O } c R m x R x R ° contains

Zariski closure (FC\Q) - Cm x C x {0}) n Rm x R x {0}.

Thus
(e) if (wu fj) and (u>2, t2) belong to the same connected component of Rm x R - X

then

dego FWuh = dego F^,2.

Let Xc <= Cm x C denote the complexification of X. From Theorem 2.2 there exists a
proper algebraic subset 2C c Cm, defined by real polynomials, such that the projection
Cm x C x C -> Cm is topologically equisingular over Cm - 2 C with respect to Xc x {0},
/^(O) , Cm x C x {0} and Cm x {0} x {0}.

Denote 2 = 2C n Rm. Thus 2 is a proper algebraic subset of Rm, and then Rm - 2 is
open and dense in Rm.

From (c) we conclude that there is an integer /A, such that

dego Fw.o ~ Mi for aH w e Rm-

Choose w0 e Rm - 2. Let {w0} X 5^ + 1 = {w0}X {(t,z) e C x C" | \t\2 + \\z\\2 = r2}, let T(w0)
denote the number of connected components in F c 1 ( " ) n W x ^ + 1 . where r > 0 is
small, and let fx2 = 2(T(w0) - 1). Because of topological equisingularity with respect to
Fc'CO) and Cm x {0} x {0}, for every w s Rm - 2, we have

2 ( r > ) - l ) = 2(r(wo)-l) = At2. (1)

We have dimc Xc < m. Because of topological equisingularity with respect to
Xc x {0} and Cm x C x {0}, if w e Rm - 2 then {w} x C n Xc is finite. In particular there is
e > 0 with {w}x(-e,e)nX = {(w,0)}. Since 0 is isolated in /vo(O) then there is 8 >0
such that /vo(0) n Bs = {0}, where Bs = {x e R" | ||J:|| < 5}. We may suppose that

dBs Pi F'KO) = 0 for all - e < r < e.

When 0<t<e, denote

p(w) = #{(w, ±t, x) | x E F;;±f(0) - {0} and Jac Fw,Jx) > 0},

n(w) = #{(w, ±f,JC) | x E F - y O ) - {0} and Jac FWt±l(x) < 0}.

If t is small enough then p{w) and n(w) do not depend on t. Because of (d), it is easy to
see that

p(w) - n(w) + deg0 Fw-, + dego FWJ = 2 deg0 FwJ0 = 2/*,. (2)

From Corollary 2.4 and (1) we get

p(w) + n(w) = fi2 (mod 4).

From now on we assume that Jac Fw$ = 0 for all w e Rm. In the other case the proof
is very easy. Then a polynomial mapping H: Rm x R x (R" x R)-* R" x R given by

H(w, t, (x, y)) = (F(w, t,x), y2 + Jac Fw,{x))

https://doi.org/10.1017/S0017089500031475 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089500031475


REAL POLYNOMIAL VECTOR FIELDS 227

also satisfies conditions (b), (c) and (d). Now we may apply again all arguments presented
above so as to prove, after eventually enlarging 2 , that there is an integer /A3 such that

) s ^3 (mod 4) for all w e Rm - 2.

Hence

dego Fw-, + dego FWJ = 2/x, - /x2 + ^3 (mod 4)

for all w e Rm - Z. The proof of the second congruence is similar.

4. The Euler characteristic of a link. The next theorem has been proved in [16].

THEOREM 4.1. Let f : R" - » R be a polynomial with / (0) = 0, having a critical point at
0. Let A± = {x E Sr | ± / ( JT) ^ 0}, w/iere r > 0 i s jma//. There are positive constants C, a and
r0 such that if x e Sr, with 0 < r < r0, is a critical point of a restricted function f \ Sr and
f(x)¥=Q then \f{x)\> Cr". Let k be a positive integer such that 2k > a, let f±(x) =
±/0O - ll*ll2* and let F± = grad/± : (Rn, 0)-» (R", 0). Then 0 is isolated in Fl\0) and

X(A-) = l-degoF+ and %(A+) = 1 - dego F—

COROLLARY 4.2. For teR, denote f,{x) = tf(x) - \\x\\2k and F, = gradf,: (R",0)-»
(Rn, 0). Then 0 is isolated in F,"'(0) for any t e R" and, for every t > 0,

PROPOSITION 4.3. Let f : Rm x R" - ^ R be a polynomial. For any w e Rm, let fw : R" -»

R be given by fw(x) = f(w,x) and suppose that /M.(0) = 0. Then there is a positive constant
cr such that, for every w s Rm, there are C = C(w) > 0 and r(w) > 0 such that ifx e Sr, with
0 < r < r(w), is a critical point of a restricted function fw \ Sr and fw(x) # 0 then

\fw(x)\ > cr.

Proof. Set w,y = Xjdf/dXj - Xjdf/dXj when 1 < i, j < n. Then x e Sr is a critical point of
the restricted function fw \ Sr if and only if w,y(w, JC) = 0 for all /,;.

Let

X = {(w,x, r ,y) e Rm X R" x R x R | ||JC || = r, all <o9(w,x) = 0 and y =fw(x)}.

Then A' is closed, semialgebraic. Let A denote the projection of X on Rm x R x R. The
projection restricted to X is proper, so A is closed, semialgebraic.

If w E Rm then A n {w} X {0} x R = {(w, 0,0)}, if r > 0 then

Awr = A n {w} X {r} x R = {w} x {r} x {critical values of fw | Sr}.

According to Milnor [14], the set of critical values of any polynomial restricted to an
algebraic manifold is finite. Hence Awr is finite for all (w,r) e Rm x R. Then Aw =
A n {w} x R x R is a 1-dimensional, closed and semialgebraic set for all w e Rm.
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Denote A'w = C l o s u r e ^ - {w} x R x {0}). Clearly, for every w e Rm there is e > 0
such that

From Proposition 2.7, there is a positive constant a such that for every w e Rm there are
C = C(w) > 0 and r(w) > 0 such that

\y\ ^cr°

for every (w, r, y) e A with \r\ < r(w) and y ¥> 0.
Suppose that w e Rm, 0 < r < r(w), x e Sr is a critical point of /w | Sr and /^(A:) T̂  0.

Then (w,x,r,fw(x)) eX, so (w, r,fw(x)) e A, and then

|/H,(JT)| a: Cr'.

Let / and /„, be as above and let A±(w) = {x s Sr\ ±fw(x) ^ 0} for r = r(w) > 0 small
enough.

The next theorem has been proved, in a more general version, by Coste and Kurdyka
[5].

THEOREM 4.4. There is a proper algebraic subset 2 c Rm and an integer /JL such that

X(A+(w)) + X(A-(w)) = pL (mod 4)

for all w e Rm - 2 .

Proof. From Proposition 4.3 there is a positive constant a such that for every weR"1

there are C = C(w)>0 and r(vv)>0 such that if x e Sr, with 0<r<r(w), is a critical
point of the restricted function fw \ Sr and fw(x) ¥> 0 then |/w(;0l - Cr".

Suppose that k is an integer such that 2k > cr. For (w, t) e Rm x R, let /„,,,: R" -* R be
given by

Let F : R m x R x R " - > R " be a polynomial mapping given by F(w,t,x) = gradfWi,(x).
According to Corollary 4.2, 0 e R" is isolated in F~l(0) for all (tv, i ) e R m x R. Moreover,
if t > 0 then

X(A+(w)) + x(A.(w)) = 2 - dego /y , - deg0 F.,,_r

To finish the proof it is enough to apply Theorem 1.1.

The next theorem has been proved by Coste [4] in the case when X has codimension
2 and by Coste and Kurdyka [5] for arbitrary X. In fact they have proved a more general
version where the factor Rm may be replaced by any irreducible algebraic set. However
the proof given here provides the essential part of their proof. After changing necessary
technical details the reader may follow the argument presented in this paper so as to
prove the general version of the Coste-Kurdyka theorem.

THEOREM 4.5. Suppose that I c R f f l x R " is a proper algebraic set with Rm x{0}cX.
For w E Rm, let L(w) = XD{w}xSr, for r > 0 small enough. Then there is a proper
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algebraic subset 2 c Rm and an integer ix such that

)) = ii (mod 4)
for all w E Rm - 2.

Proof. There are polynomials f\(w, x),... ,fs(w,x) such that

= {(w,x)\f2(w,x) + ...+f2
s(w,x) = 0}.

Denote f=f2 + . . . + / 2 . Then A+(w) = Sr and A-(w) = L(w). Thus the theorem is a
consequence of Theorem 4.4.

5. Applications to the bifurcation theory. In this section we show how to apply the
Krasnosielski theorem and the Main Theorem in order to prove existence of bifurcation
points for polynomial families of vector fields.

There are other theorems which provide information on flows in terms of topological
degrees of vector fields, e.g. the Poincare-Bendixson theorem (see [10]). One may apply
the Main Theorem in these cases too and formulate theorems similar to that one
presented in this section.

Let F : R x Rn -> R" be a continuous family of vector fields with F(t, 0) = 0 for all
t e R. Denote F, = F(t, •). We shall say that t = 0 is a bifurcation point for F, if
(0,0) e Closure(F-'(0) - R x {0}).

The next theorem is a version of the well-known Krasnosielksi theorem (see [11],
[15]).

THEOREM 5.1. Suppose that there is e >0 such that 0 is isolated in F^(0) and
dego F_, ¥=• dego F, for all t with 0 < |/| < e. Then t = 0 is a bifurcation point for Ft.

We also have the following theorem.

THEOREM 5.2. Let F: Rm x R x R" -> R" be a polynomial mapping. Suppose that
(a) /v,(0) = 0 for all ( i v , / ) e r x R and there is an algebraic subset J c R " x R

such that 0 G R" is isolated in F^,(°) for every (w, t)eRm xR-X,
(b) there is an open non-empty set 1/cR"7, and e > 0 such that degoFWi,^

dego K,-i ( m o d 4) for all w e U with (w,t) $X and 0 < |f| < e.
Then there is a proper algebraic subset I c R m such that t = 0 is a bifurcation point for Fwl

for every w e Rm - 2.

Proof. According to the Main Theorem there is an integer v and a proper algebraic
2 c R m such that degoFw_,- dego FWJ = v (mod4) for every w e Rm - 2. Since Rm - 2 is
open and dense then U - 2 is non-empty and then v # 0 (mod 4). Thus deg0 Fw_, ̂
dego Fw.-i (mod 4) for every w e Rm - 2. From the Krasnosielski Theorem, t = 0 is a
bifurcation point for Fwt.

EXAMPLE. Let F : R x R x R2-» R2 be given by

F(w, t,xux2) = {P\{w)x\-p2{w)tx\ + wVx,i2 + tAx\, q{w)xlx2 - wt2xj - r 5^) ,
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where P\{w) and p2(w) are polynomials of degree 4 such that lim pi(w)/w4 =

lim p2(vv)/M'4 = 1 ano< ? ( w ) is a polynomial of degree at least 2 with lim q{w) = +°°.

Let X = {{w, t) e R x R 11 = 0}. If f ^ 0 then Fc.^/O) is a bounded complex algebraic
set, and then it is finite. So 0 is isolated in F ^ O ) for all (w, t) e R x R - X. The reader
may easily check that if w »0 and 0 < \t\ « 1 then dego FWJ equals dego H,, where2 l

We have dego H, = 0 for t<0 and deg0 H, = 2 for t >0. According to Theorem 5.2,
there is a proper algebraic (and hence finite) 2 c= R such that t = 0 is a bifurcation point
for Fw, for every w e R - I

REFERENCES
1. E. Becker, J.-P. Cardinal, M.-F. Roy and Z. Szafraniec, Multivariate Bezoutians,

Kronecker symbol and Eisenbud-Levine formula, to appear in Proceedings of MEGA 94
Conference.

2. J. Bochnak, M. Coste and M.-F. Roy, Geometrie algebrique reelle (Springer, 1987).
3. M. Coste, Ensembles semi-algebriques, Real algebraic geometry and quadratic forms

(Rennes, 1981), Lecture Notes in Mathematics 959 (Springer, 1982), 109-138.
4. M. Coste, Sous-ensembles algebriques reels de codimension 2, Real analytic and algebraic

geometry (Trento, 1988), Lecture Notes in Mathematics 1420 (Springer, 1990), 111-120.
5. M. Coste and K. Kurdyka, On the link of a stratum in a real algebraic set, Topology 31

(1992), 323-336.
6. P. Dudziriski, On topological invariants mod 2 of weighted homogeneous polynomials, to

appear.
7. P. Dudziriski, A. Le.cki, P. Nowak-Przygodzki and Z. Szafraniec, On topological invariance

of the Milnor number mod 2, Topology 32 (1993), 573-576.
007,,of the Milnor number mod 2, Topology 32 (1993), 573-576.

8. A. Fekak, Exposants de Lojasiewicz pour les fonctions semi-algebriques, Ann. Polon.
Math. 56 (1992), 123-131.

9. R. M. Hardt, Semi-algebraic local triviality in semi-algebraic mappings, Amer. J. Math. 102
(1980), 291-302.

10. P. Hartman, Ordinary differential equations (Wiley, 1964).
11. M. A. Krasnosielski, Topological methods in the theory of nonlinear integral equations

(Gosudarstv. Izdat. Tehn.-Teor. Lit., 1956).
12. S. Lojasiewicz, Ensembles semi-analytiques (IHES, 1965).
13. C. McCrory and A. Parusiriski, Complex monodromy and the topology of real algebraic

sets, to appear.
14. J. W. Milnor, Singular points of complex hypersurfaces (Princeton University Press, 1968).
15. L. Nirenberg, Topics in nonlinear functional analysis (Courant Institute of Mathematical

Sciences, New York University, 1974).
16. Z. Szafraniec, On the Euler characteristic of analytic and algebraic sets, Topology 25

(1986), 411-414.
17. Z. Szafraniec, On the Euler characteristic mod 2 of real projective varieties, Math. Proc.

Cambridge Philos. Soc. 104 (1988), 479-481.
18. Z. Szafraniec, On the Euler characteristic mod 2 of real projective hypersurfaces, Bull.

Polish Acad. Sci. Math. 37 (1989), 103-107.
19. Z. Szafraniec, Topological invariants of real analytic sets (Wydawnictwo Uniwersytetu

Gdariskiego, 1993).
20. A. N. Varchenko, Theorems on the topological equisingularity of families of algebraic

varieties and families of polynomial mappings, Izv. Akad. Nauk. SSSR Ser. Mat. 36 (1972),
957-1019.

https://doi.org/10.1017/S0017089500031475 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089500031475


REAL POLYNOMIAL VECTOR FIELDS 231

21. C. T. C. Wall, Topological invariance of the Milnor number mod 2, Topology 22 (1983),
345-350.

22. A. Wallace, Linear sections of algebraic varieties, Indiana Univ. Math. J. 20 (1970/71),
1153-1162.

UNIVERSITY OF GDANSK

INSTITUTE OF MATHEMATICS

80-952 GDANSK

WITA STWOSZA 57

POLAND

e-mail: szafran@ksinet.univ.gda.pl

https://doi.org/10.1017/S0017089500031475 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089500031475

