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Abstract

We investigate Lp(γ)–Lq(γ) off-diagonal estimates for the Ornstein–Uhlenbeck semigroup (etL)t>0. For
sufficiently large t (quantified in terms of p and q), these estimates hold in an unrestricted sense, while,
for sufficiently small t, they fail when restricted to maximal admissible balls and sufficiently small annuli.
Our counterexample uses Mehler kernel estimates.
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1. Introduction

Consider the Gaussian measure

dγ(x) := π−n/2e−|x|
2

dx

on the Euclidean space Rn, where n ≥ 1. Naturally associated with this measure space
is the Ornstein–Uhlenbeck operator

L := 1
2 ∆ − 〈x,∇〉 = − 1

2∇
∗∇,

where∇∗ is the adjoint of the gradient operator∇with respect to the Gaussian measure.
This operator generates a heat semigroup (etL)t>0 on L2(γ) = L2(Rn, γ), called the
Ornstein–Uhlenbeck semigroup, with an explicit kernel: for all u ∈ L2(γ) and all
x ∈ Rn,

etLu(x) =

∫
Rn

Mt(x, y)u(y) dγ(y),
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where

Mt(x, y) =
1

(1 − e−2t)n/2 exp
(
−e−t |x − y|2

1 − e−2t

)
exp

(
2e−t 〈x, y〉

1 + e−t

)
(1.1)

is the Mehler kernel. If we equip Rn with the Euclidean distance and the Gaussian
measure, and if we consider operators associated with the Ornstein–Uhlenbeck
operator, we find ourselves within the realm of Gaussian harmonic analysis, where
the Ornstein–Uhlenbeck operator takes the place of the Laplace operator ∆. The
multiplicative factor 1/2, which is not present in the usual definition of the Laplacian,
arises naturally from the probabilistic interpretation of the Ornstein–Uhlenbeck
operator. For a deeper introduction to Gaussian harmonic analysis, see the review
of Sjögren [10] and the introduction of [11].

In this paper, we investigate whether the Ornstein–Uhlenbeck semigroup satisfies
Lp(γ)–Lq(γ) off-diagonal estimates: that is, estimates of (or similar to) the form(∫

F
|etL1E f |q dγ

)1/q
. t−θ exp

(
−c

dist(E, F)2

t

)(∫
E
| f |p dγ

)1/p
, (1.2)

for some parameters c > 0 and θ ≥ 0, where 1 ≤ p < q ≤ ∞, f ∈ Lp(γ) and for some
class of testing sets E, F ⊂ X. Often such estimates hold whenever E and F are
Borel, but, in applications, we generally only need E to be a ball and F to be an
annulus associated with E. Such estimates serve as a replacement for pointwise
kernel estimates in the harmonic analysis of operators whose heat semigroups have
rough kernels, or no kernels at all, most notably in the solution to the Kato square
root problem [2] (see also [4]). Even though the Ornstein–Uhlenbeck semigroup
has a smooth kernel, it would be useful to show that it satisfies some form of off-
diagonal estimates, as this would suggest potential generalisation to perturbations of
the Ornstein–Uhlenbeck operator, whose heat semigroups need not have nice kernels.

Various notions of off-diagonal estimates, including (1.2), have been considered
by Auscher and Martell [3]. However, they only consider doubling metric measure
spaces, ruling out the nondoubling Gaussian measure. Mauceri and Meda [7] observed
that γ is doubling when restricted to admissible balls in the sense that γ(B(x, 2r)) .
γ(B(x, r)) when r ≤min(1, |x|−1). Therefore it is reasonable to expect that the Ornstein–
Uhlenbeck semigroup may satisfy some form of Lp(γ)–Lq(γ) off-diagonal estimates if
we restrict the testing sets E, F to admissible balls and sufficiently small annuli.

Here we demonstrate both the success and failure of off-diagonal estimates of the
form of (1.2), as a first step in the search for the ‘right’ off-diagonal estimates. First,
we give a simple positive result (Theorem 2.3): for p ∈ (1, 2), and for t sufficiently
large (depending on p), (1.2) is satisfied for all Borel E, F ⊂ Rn. This is proved
by interpolating between L2(γ)–L2(γ) Davies–Gaffney-type estimates and Nelson’s
Lp(γ)–L2(γ) hypercontractivity. We follow with a negative result (Theorem 3.1): for
1 ≤ p < q < ∞ and for t sufficiently small (again depending on p and q), (1.2) fails
when E is a ‘maximal’ admissible ball B(cB, |cB|

−1) and when F is a sufficiently
small annulus Ck(B), in the sense that the implicit constant in (1.2) must blow up
exponentially in |cB|. This is shown by direct estimates of the Mehler kernel.
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Notation. Throughout the paper, we will work in finite dimension n ≥ 1. We will
write Lp(γ) = Lp(Rn, γ). Every ball B ⊂ Rn is of the form

B = B(cB, rB) = {x ∈ Rn : |x − cB| < rB}

for some unique centre cB ∈ R
n and radius rB > 0. For each ball B and each scalar

λ > 0, we define the expansion λB = λB(cB, rB) := B(cB, λrB), and we define annuli
(Ck(B))k∈N by

Ck(B) :=

2B if k = 0,
2k+1B \ 2kB if k ≥ 1.

For two sets E, F ⊂ Rn we write

dist(E, F) := inf{|x − y| : x ∈ E, y ∈ F}.

For two nonnegative numbers A and B, we write A .a1,a2,... B to mean that A ≤ CB,
where C is a positive constant depending on the quantities a1, a2, . . . . This constant
will generally change from line to line.

2. A positive result

The Ornstein–Uhlenbeck semigroup satisfies the following ‘Davies–Gaffney-type’
L2(γ)–L2(γ) off-diagonal estimates. These appear in [13, Example 6.1], where they
are attributed to Alan McIntosh.

Theorem 2.1 (McIntosh). There exists a constant C > 0 such that, for all Borel subsets
E, F of Rn and all u ∈ L2(γ),

‖1FetL(1Eu)‖L2(γ) ≤ C
t

dist(E, F)
exp

(
−

dist(E, F)2

2t

)
‖1Eu‖L2(γ).

Furthermore, Nelson [8] established the following hypercontractive behaviour of
the semigroup. This is done only for n = 1 in [8]. A full proof for general n is given in
Nelson’s seminal 1973 paper [9]. These papers won him the 1995 Steele prize.

Theorem 2.2 (Nelson). Let t > 0 and p ∈ (1 + e−2t, 2]. Then etL is a contraction from
Lp(γ) to L2(γ).

Note that p > 1 + e−2t if and only if t > 1
2 log (1/(p − 1)). Thus the hypercontractive

behaviour of the Ornstein–Uhlenbeck semigroup is much more delicate than that of
the usual heat semigroup et∆ on Rn, which is a contraction from Lp(Rn) into Lq(Rn) for
all 1 ≤ p ≤ q ≤ ∞ and all t > 0.

As indicated in the proof of [1, Proposition 3.2], one can interpolate between
Theorems 2.1 and 2.2 to deduce certain Lp(γ)–L2(γ) off-diagonal estimates for the
Ornstein–Uhlenbeck semigroup.
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Theorem 2.3. Suppose that E,F are Borel subsets of Rn. Let t > 0 and p ∈ (1 + e−2t,2].
Then, for all u ∈ Lp(γ),

‖1FetL(1Eu)‖L2(γ) ≤

( Ct
dist(E, F)

exp
(
−

dist(E, F)2

2t

))1−δ(p,t)
‖1Eu‖Lp(γ),

where C is the constant from Theorem 2.1 and where

δ(p, t) :=
(1
2
−

1
p

)/(1
2
−

1
1 + e−2t

)
∈ [0, 1).

Proof. Write

CM :=
Ct

dist(E, F)
exp

(dist(E, F)2

2t

)
.

Theorem 2.1 says that
‖etL‖L2(γ,E)→L2(γ,F) ≤ CM .

For all p0 ∈ (1 + e−2t, p),

‖etL‖Lp0 (γ,E)→L2(γ,F) ≤ ‖etL‖Lp0 (γ)→L2(γ) ≤ 1,

by Theorem 2.2. Therefore, by the Riesz–Thorin theorem,

‖etL‖Lp(γ,E)→Lp(γ,F) ≤ Cθ(p0)
M ,

where p−1 = (1 − θ(p0))/p0 + θ(p0)/2 or, equivalently,

θ(p0) =

( 1
p
−

1
p0

)/(1
2
−

1
p0

)
= 1 −

(1
2
−

1
p

)/(1
2
−

1
p0

)
.

Taking the limit as p0 → 1 + e−2t gives

‖etL‖Lp(γ,E)→Lp(γ,F) ≤ C1−δ(p,t)
M

and completes the proof. �

Remark 2.4. For 1 < p < q < ∞, a Lp(γ)–Lq(γ) version of Theorem 2.3 could
be proved by first establishing Lq(γ)–Lq(γ) off-diagonal estimates—which may be
obtained by interpolating between boundedness on Lq(γ) and the Davies–Gaffney type
estimates—and then arguing by the Lp(γ)–Lq(γ) version of Nelson’s theorem.

This positive result does not rule out the possibility of some restricted Lp(γ)–L2(γ)
off-diagonal estimates for p ≤ 1 + e−2t. In the next section, we show one way in which
these can fail.

3. Lower bounds and negative results

In this section, we show that the Lp(γ)–Lq(γ) off-diagonal estimates of (1.2) are not
satisfied for admissible balls and small annuli when t is sufficiently small (depending
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on p and q). More precisely, we show that (1.2) fails when E is a maximal admissible
ball B (that is, a ball for which rB = min(1, |cB|

−1)) and F is an annulus Ck(B) with k
sufficiently small. These sets typically appear in applications of off-diagonal estimates.

Theorem 3.1. Suppose that 1 ≤ p < q <∞ and that

2
et + 1

> 1 −
( 1

p
−

1
q

)
(3.1)

or, equivalently, that

t < log
((

1 +

( 1
p
−

1
q

))/(
1 −

( 1
p
−

1
q

)))
.

Then the off-diagonal estimates (1.2) do not hold for the class of testing sets

{(E, F) : E = B(cB, |cB|
−1), F = Ck(B), 2k ≤ |cB|}.

Note that 1/p − 1/q ∈ (0, 1), so we always obtain some range of t for which the
off-diagonal estimates (1.2) fail.

Let us compare Theorems 3.1 and 2.3. Having fixed p ∈ (1, 2), we get failure of
Lp(γ)–L2(γ) off-diagonal estimates for maximal admissible balls and small annuli for
etL when

t < log
((

1 +

( 1
p
−

1
2

))/(
1 −

( 1
p
−

1
2

)))
,

and, when t > 1
2 log (1/(p − 1)), the off-diagonal estimates hold for all Borel sets. We

do not know what happens for the remaining values of t.
To prove Theorem 3.1, we rely on the following lower bound.

Lemma 3.2. Suppose that k ≥ 1 is a natural number and that 1 < q <∞, and let B be
a maximal admissible ball with |cB| ≥ 2k. Then(∫

Ck(B)
|(etL1B)(y)|q dγ(y)

)1/q
&k,n,t |cB|

−n(1+1/q) exp
(
|cB|

2
( 2
et + 1

− 1 −
1
q

))
.

Proof of Lemma 3.2. Suppose that x ∈ B and y ∈ C j(B). We argue by computing a
lower bound for the Mehler kernel Mt(x, y), as given in (1.1).

Write x = (x1, x2, . . . , xn) and y = (y1, y2, . . . , yn). First, we focus on the factor
involving the inner product 〈x, y〉. By symmetry, we may assume that cB = |cB|e1.
Using rB = |cB|

−1,

x1y1 ≥ (|cB| − rB)(|cB| − 2k+1rB) ≥ |cB|
2 + O(1),

where we use the big-O notation O(1) to mean that x1y1 − |cB|
2 is bounded as |cB| → ∞.

If n ≥ 2, then, by using xiyi = O(1) for i ≥ 2, we deduce that

〈x, y〉 ≥ |cB|
2 + O(1).

Evidently, this estimate remains true when n = 1.
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Using the Mehler kernel representation of etL, for all y ∈ Ck(B),

etL1B(y) &n,t

∫
B

exp
(
−e−t |x − y|2

1 − e−2t

)
exp

(2|cB|
2

et + 1

)
dγ(x).

Since |x − y| < 2k+1rB ≤ 2, using rB = |cB|
−1 ≤ 2−k,

etL1B(y) &n,t exp
(2|cB|

2

et + 1

)
γ(B)

&n |cB|
−n exp

(2|cB|
2

et + 1
− (|cB| + |cB|

−1)2
)

' |cB|
−n exp

(
|cB|

2
( 2
et + 1

− 1
))
, (3.2)

using a straightforward estimate on γ(B). Next, we estimate

γ(Ck(B)) &n |Ck(B)|e−(|cB |+2k+1rB)2

'n 2knrn
B exp(−(|cB|

2 + 2k+2|cB|rB + 2k+2r2
B))

'k,n |cB|
−ne−|cB |

2
.

Combining this with (3.2) gives(∫
Ck(B)

∣∣∣(etL1B(y))
∣∣∣q dγ(y)

)1/q
&n,t |cB|

−n exp
(
|cB|

2
( 2
et + 1

− 1
))
γ(Ck(B))1/q

&k,n |cB|
−n(1+1/q) exp

(
|cB|

2
( 2
et + 1

− 1 −
1
q

))
,

as claimed. �

Proof of Theorem 3.1. We argue by contradiction. Suppose that etL satisfies the
Lp(γ)–Lq(γ) off-diagonal estimates (1.2) for some θ ≥ 0 and for (E, F), as stated. Fix
a natural number k ≥ 1 and let B be a maximal admissible ball with |cB| > 2k. Lemma
3.2 and the off-diagonal estimates for E = B, F = Ck(B) and f = 1B imply that

|cB|
−n(1+1/q) exp

(
|cB|

2
( 2
et + 1

− 1 −
1
q

))
.k,n,t,θ exp

(
−c

(2k+1 − 1)2r2
B

t

)
γ(B)1/p

' γ(B)1/p

for some c > 0. Since

γ(B)1/p .n |B|1/pe−(|cB |−rB)2/p 'n |cB|
−n/p exp

(
−
|cB|

2

p

)
,

this implies that

exp
(
|cB|

2
( 2
et + 1

− 1 +
1
p
−

1
q

))
.k,n,t,θ |cB|

n(1−(1/p−1/q)).

The left-hand side grows exponentially in |cB| when (3.1) is satisfied. However, the
right-hand side only grows polynomially in |cB|. Thus we have a contradiction. �
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Remark 3.3. By the same argument, we can prove failure of Lp(γ)–Lq(γ) off-diagonal
estimates for the derivatives (LmetL)m∈N of the Ornstein–Uhlenbeck semigroup, with
the same conditions on (p, q, t) and the same class of testing sets (E, F). This relies
on an identification of the kernel of LmetL, which has been done by the second author
in [12].

In this paper we only considered off-diagonal estimates with respect to the Gaussian
measure γ. In future work, it would be very interesting to consider appropriate
weighted measures, following, in particular, [5] and [6], in which (among many other
things) it is shown that estimates of the form ‖etL f ‖L2(γ) . ‖ f Vt‖L1(γ) hold, where Vt

is a certain weight depending on t. Thus the Ornstein–Uhlenbeck semigroup does
satisfy a form of ‘ultracontractivity’, but with the caveat that one must keep track of
t-dependent weights. It seems that this has not yet been explored in the context of
Gaussian harmonic analysis.
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