
1 Particle Physics Landscape

In this first chapter, a quick introduction to the Standard Model of particle physics is
given. The concepts of elementary particles, interactions and fields are outlined. The
experimental side of particle physics is also briefly discussed: how to produce ele-
mentary particles, observe them with detectors and make measurements with the data
collected by the detectors.

1.1 Elementary Particles

Elementary particle physics, also commonly denoted as high energy physics, is the science
that studies the units of matter at the most fundamental level and the nature of the fun-
damental interactions, the forces, governing their behaviour. Both the units of matter and
the interactions are believed to be related to elementary particles. Elementary particles are
the simplest objects one can think of: elementary particles have no substructure and thus
are not made up of other objects. In the context of the Standard Model of particle physics,
elementary particles are supposed to have no spatial extension (confirmed by experiments
within the accuracy of their measurements) and are characterised by only a very few quan-
tities: their mass (which could be zero), their spin (the intrinsic angular momentum that
could also be zero) and some quantum numbers (like the electric charge) on which the
forces depend.

Labelling an object as an elementary particle depends on our ability to probe its possi-
ble substructure and thus on our experiments. At the end of the nineteenth century, atomic
nuclei were considered elementary. This is no longer the case, as we know that nuclei are
made up of protons (discovered by E. Rutherford in the late 1910s) and neutrons (J. Chad-
wick in 1932), themselves made up of quarks, as revealed by experiments in the 1970s.
Modern experiments have not found any substructure of quarks. They are thus considered
elementary, a conclusion that could be challenged by future experiments. The electron
(e−), discovered in 1897 by J. J. Thomson, is also considered elementary. Thus, with the
electrons and just two species of quarks, named up (denoted by the symbol u) and down
(denoted by the symbol d), all atoms, and hence all ordinary matter observed in nature,
can be described. The Standard Model manages to reduce Dmitry Mendeleev’s famous
periodic table of elements to just three elementary particles!

If elementary particles do not have any constituents, it does not mean that they are them-
selves necessarily constituents of composite structures. If electrons are the constituents of
atoms, and up and down quarks are the constituents of protons and neutrons, respectively
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(a proton contains two up quarks and one down quark, while a neutron contains two down
quarks and one up quark), then other elementary particles do not have the capability of
forming larger structures. For instance, the electron neutrino (νe) is observed when an
unstable nucleus decays by emitting an electron (nuclear beta decay). Neither νe nor the
electron was present in the nucleus before the decay: their production is the result of the
decay itself, allowed by the famous equivalence between energy and mass proposed by
Einstein (in modern physics, mass is not a conserved quantity; hence, a heavy particle can
potentially decay into lighter ones; only the total energy is conserved). A reason why ele-
mentary particles do not necessarily form larger structures is that most of them are very
unstable, decaying promptly into lighter elementary particles. For instance, the muon (μ−)
discovered in 1937 is a replica of the electron (it carries the same quantum numbers, spin
etc.), except that it is heavier. It decays into lighter particles, while the electron, being the
lightest of its species, is necessarily stable. The differences of properties between muons
and electrons are then entirely the consequence of the difference in their masses. Another
heavy sibling of the electron is the tau (τ−), discovered in 1975. These three elementary
particles strictly carry the same quantum numbers: they all have spin 1/2 in units of �, an
electric charge −e, where e is the charge of the proton, etc. Thus, at a fundamental level,
they all have the same interactions;1 the μ− and τ− are simply about 200 and 3 500 times
heavier than the electron respectively, leading to slightly different properties. In particle
physics, these heavier electrons are said to belong to different generations. Each has its
own neutrinos: the electron neutrino (ve) has already been introduced for the first genera-
tion, the muon neutrino (νμ) for the second and the tau neutrino (ντ ) for the third. The three
neutrinos share common properties with the e−,μ− and τ− related to the (electro-)weak
interaction, as we will discover later. Obviously, they also differ since they are the only
fermions of the Standard Model that have no electric charge. The set of these six elementary
particles defines the lepton family.

Quarks have generations too. As e− and νe, up and down quarks belong to the first gen-
eration. Their heavier siblings, the charm-quark (c) and strange-quark (s), belong to the
second generation, and the top-quark (t) and bottom-quark (b), also called the truth-quark
and beauty-quark, respectively, belong to the third generation. All elementary fermions
(spin 1/2 particles) of the Standard Model are listed in Table 1.1 with some of their prop-
erties. The six kinds of quarks and leptons are distinguished by flavour, i.e. species: there
are six flavours of quarks (up, down, strange, charm, bottom and top) and six flavours of
leptons (electron, muon, tau, electron neutrino, muon neutrino and tau neutrino).

If the ordinary matter in the universe is made with elementary particles of the first gener-
ation, particles from the two other generations have been produced in laboratories, thanks
to high energy accelerators. Note that when extreme conditions are encountered in cosmic
events, such as a core collapse producing a supernova, those particles must be produced,
too. However, since they are highly unstable, only the first generation reaches the earth.2

It is legitimate to ask whether there are other generations of heavier quarks or leptons. So

1 Except with the Higgs boson. We will see in Chapter 11 that the interactions of fermions with the Higgs bosons
are proportional to their mass.

2 Muons or composite particles containing a strange quark have been observed from cosmic rays, but they are
secondary particles. See Section 1.3.1.
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Table 1.1 Elementary fermions of the Standard Model. Masses are indicated in brackets and expressed in
MeV/c2.

Generation

Spina Electric chargeb 1 2 3
Leptons 1/2 0 νe (∼ 0)c νμ (∼ 0)c ντ (∼ 0)c

1/2 −1 e− (0.511) μ− (106) τ− (1777)
Quarks 1/2 2/3 u (∼ 2) c (∼ 1.27× 103) t (172.8× 103)

1/2 −1/3 d (∼ 5) s (∼ 93) b (∼ 4.18× 103)
aIn units of �. bIn units of proton charge. cSee footnote 3.

far, there is no experimental evidence supporting this hypothesis. Moreover, experiments at
the Large Electron-Positron collider (LEP) collider concluded in the 1990s that if there is
a fourth generation, the mass of the corresponding neutrino must be larger than 45 GeV/c2

(under some assumptions). Given that the mass of neutrinos of the first three generations
is ridiculously tiny3 compared with other elementary fermions (an upper limit of the order
1 eV/c2), it seems unlikely to have a fourth generation with such a difference. Therefore,
in the Standard Model, only three generations are assumed. At this stage, one can appre-
ciate the similarity between leptons and quarks within a given generation: the difference
in electric charge between the two quarks is always equal to one unit (of proton charge),
which is also the difference in charge between the two leptons. We shall see that this is a
consequence of the symmetric structure of the Standard Model in the following chapters.

One may wonder why we distinguish quarks from leptons. The reason is that both
kinds of particles do not experience the same interactions, and thus they present very dif-
ferent properties. Whereas leptons can be observed in their free states (i.e., propagating
freely), quarks cannot. Quarks are always confined to bound states that are generically
called hadrons. Protons or neutrons are two examples of hadrons, but there are hundreds
of others. Table 1.2 gives the most common hadrons. One can notice in the table that there
are two kinds of hadrons: those containing three quarks form the family of baryons, and
those containing a quark and an antiquark (antiquarks are denoted by a symbol with a
bar over the quark symbol, i.e., ū) called mesons. Since this is the first time we encounter
an antiparticle, it is worth introducing them. A particle (elementary or not) has a corre-
sponding antiparticle with the same mass, lifetime and spin, but opposite internal quantum
numbers (electric charge is an internal quantum number, and we shall see that there are
others). For instance, the positron (e+) is the antiparticle of the electron: it is stable, has
the same mass as the electron (511 keV/c2), but a positive electric charge. Some particles
are their own antiparticles, for example the π0 that contains as many quarks as antiquarks
of a given flavour (see Table 1.2). The photon (γ ) is an example of an elementary particle

3 In Table 1.1, I oversimplify the notion of neutrino mass, suggesting that νe, νμ and ντ have a definite mass
close to zero. Actually, the neutrinos that have this tiny mass are a quantum mechanical superposition of the
listed neutrinos, with the latter not having, strictly speaking, a definite mass.
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Table 1.2 Example of hadrons.

Baryons Mesons
Name Proton Neutron Lambda Pions Kaons

Symbol p n � π+,π0,π− K+, K0, K0, K−

Quark content uud udd uds ud̄, uū−dd̄√
2

, ūd us̄, ds̄, d̄s, ūs

Mass ( MeV/c2) 938 940 1116 140, 135, 140 494, 498, 498, 494

being its own antiparticle. Obviously, only particles having all their internal quantum num-
bers equal to zero can share this property. When a particle and its antiparticle meet, they
annihilate, reduced to pure energy with no residual quantum numbers, from which another
pair of particle–antiparticle can emerge. An example is the reaction e− + e+ → u+ ū.

1.2 Fundamental Interactions

1.2.1 Quick Overview

Four fundamental interactions (or forces) are known in nature: gravitational, electromag-
netic, weak and strong interactions.

In classical physics, gravitation is the attractive force felt by massive objects and
is described by Newton’s well-known law. In the context of general relativity, gravity
becomes a geometric property of spacetime, which is shaped by the energy and momentum
of all possible objects, not only matter but also radiation. As we shall see in this section,
gravitation does not have any impact on particles, at least when their energy is far from the
Planck scale (defined below). Hence, this book mostly ignores it.

Electromagnetism is the attractive (or repulsive) force felt by objects having opposite
(or the same) electric charges and nicely described at the classical level by Maxwell’s
equations. Its generalisation at the quantum level, the quantum electrodynamics (QED) pre-
sented in this book, describes the interaction as an exchange of photons between charged
particles. Therefore, all charged particles experience the electromagnetic interactions.

The weak interaction is responsible for many decays of unstable particles. It is the inter-
action that explains beta radioactivity, where there is the emission of an electron and an
anti-neutrino, when a neutron decays into a proton, n → p + e− + ν̄e. Hence, the weak
interaction acts on both quarks and leptons. We shall see that despite their very different
manifestations, the electromagnetic and the weak interactions appear as two aspects of a
more basic interaction called the electroweak interaction.

Finally, the strong interaction is the force binding quarks in hadrons. Among elementary
fermions, only quarks experience this interaction. Its description is quite close in spirit
to electromagnetism since in quantum chromodynamics, the theory describing the strong
interaction at the quantum level, it arises through an exchange of a massless particle called
the gluon.
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Table 1.3 Interactions of elementary fermions.

Weak Electromagnetic Strong
Quarks ✓ ✓ ✓

e±,μ±, τ± ✓ ✓ ✗

νe, νμ, ντ ✓ ✗ ✗

Table 1.3 summarises the interactions to which elementary fermions of the Standard
Model are subjected.

Whereas the electromagnetic interaction (and the gravity obviously) is familiar to us
in our everyday life, it is not the case of weak and strong interactions. Electromagnetic
interaction and gravity are long-range interactions, with the strength of the force decreas-
ing inversely proportional to the distance squared (e.g., in Problem 1.1, Coulomb’s law
is deduced from Maxwell’s equations). Macroscopic objects can then experience these
interactions. However, both weak and strong interactions turn out to be only short-range
interactions (at the nucleon scale or even less) as we shall see in Sections 1.2.3 and 1.2.4.

In the subatomic world, the gravitational force can be safely ignored compared to the
three others for two reasons: first, particles are very light; and second, the Newton constant
is also extremely small. For instance, the strength of the gravitational force between two
protons, a distance r apart, is

fG =
GNm2

p

r2
= 5.9× 10−39 �c

r2
,

with GN ∼ 6.7 × 10−39
�c (GeV/c2)−2. On the other hand, the strength of the

electromagnetic force between those protons is

fEM = e2

4πε0r2
= α�c

r2
= 1

137

�c

r2
,

with α ∼ 1/137. (See Table 1, p. xix for the expressions and numerical values of the
constants). The ratio of the two shows that the gravitational force is about 1036 times
weaker than the electromagnetic force! Notice that both interactions would be of the same
order of magnitude, i.e. �c/r2, for masses about the Planck mass mPl = √�c/GN ∼
1.2 × 1019 GeV/c2. Such masses or equivalently such energies4 are far beyond the reach
of any modern accelerator or known cosmic events (the cosmic ray with the highest energy
ever seen on earth is about 3× 1011 GeV and the most powerful accelerator barely boosts
protons to 7 × 103 GeV). If the electromagnetic force is so much stronger than gravity,
then it might be surprising that, in everyday life, the effects of gravity seem to be rather
dominant. The reason for this is simply that in electromagnetism, positive and negative
electric charges compensate each other, with the matter being globally neutral, whereas
the gravitational force increases with mass without any such compensation.

There is another more worrying reason why the gravitational force does not belong to the
corpus of the Standard Model of particle physics. As we will see in the next three sections,

4 In general relativity, the gravity’s source is the energy–momentum tensor, affecting the spacetime curvature,
not only the mass, as in Newtonian physics.
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interactions are described in terms of the exchange of elementary particles using quantum
field theory as a theoretical framework. Unfortunately, there is not yet a well-established
quantum theory of gravitation! Candidates for such a theory to reconcile quantum mechan-
ics and general relativity, such as string theory or loop quantum gravity, are still unproven.
Consequently, only the electromagnetic, weak and strong interactions are described by the
Standard Model of particle physics.

1.2.2 Need for Fields

Modern physics introduces the notion of fields to avoid the issues of forces capable of act-
ing at a distance instantly. As an example, imagine that suddenly the sun vanishes. Since in
modern physics, nothing can propagate faster than light, the effect of the sun disappearance
must take at least eight minutes before reaching the earth, and thus the gravitational force
due to the sun must continue to act during this interval even if the sun is no longer present.
Hence, the sun itself is not enough to explain the transmission of the gravitational force.
This role is played by the gravitational field. Similarly, there is an electromagnetic field, a
strong field and a weak field associated with these interactions. These fields permeate all
of space. They respond locally to sources (masses for classical gravitation, electric charges
for electromagnetism, etc.) and act on another distant point x, propagating the action to it at
a finite velocity (at most the speed of light). The force felt at x thus results from the state of
the field locally at that point. The action at a distance of classical physics is then avoided.

If fields are the natural consequence of the principle of relativity in modern physics,
modern physics also includes another key ingredient, quantum mechanics, which implies
that fields can only exist in well-defined states of definite quantised energy. This is very
similar to the harmonic oscillator quantisation with which the reader should already be
familiar. The next conceptual step is to identify those quanta as particles. At the beginning
of the twentieth century, Einstein was the first to realise that the photon was the quantum
of the electromagnetic field, manifesting a particle-like aspect in the photoelectric effect.
It took about 80 more years to identify the quanta of the weak and strong interactions –
the W± and Z0 bosons for the weak interaction and the gluons for the strong interaction.
These bosons (they are spin 1 particles) are the force carriers of the interactions, with the
action of a force being the result of the exchange of quanta (i.e., the force-carrier particles)
of the associated field. The following chapters will be mostly devoted to their presentation:
quantum numbers carried by the fields, equation of propagation of the field, etc. Table 1.4
summarises some of their properties.

Notice that because of quantum mechanics, even elementary fermions have a wave-like
or field aspect. Therefore, the classical conceptual distinction between matter and forces
based on the notion of particles on the one side and fields on the other is no longer relevant.
All particles, elementary fermions or force carriers, must be described in terms of quanta of
fields. The appropriate theoretical framework is then the relativistic quantum field theory,
briefly introduced in Chapters 5 and 6. It turns out that the force fields (and their quanta)
emerge naturally from the necessity to respect some particular symmetries at the local
level: physics must be invariant under such transformations that depend on the spacetime
point (as opposed to a global symmetry transformation that acts on every spacetime point
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Table 1.4 Elementary bosons of the Standard Model.

Spina Electric Multiplicity Mass Force carrier of
chargeb (GeV/c2)

Photon γ 1 0 1 0 Electromagnetism (QED)
W bosons W± 1 ±1 2 80.4 Weak force
Z boson Z0 1 0 1 91.2 Weak force
Gluons g 1 0 8 0 Strong force (QCD)
Higgs H 0 0 1 125.2 None

aIn units of �. bIn units of proton charge.

in the same manner). Then, the quanta (the force carriers) of the force fields described by
the Standard Model of particle physics must be spin 1 particles (in units of �). For instance,
anticipating Chapter 6, we will see that the gauge invariance of Maxwell’s equations, prob-
ably already known by the reader, is connected to the local phase invariance of the fermion
fields. Indeed, the local phase invariance imposes a specific transformation of the electro-
magnetic field (whose quantum is the photon, a spin 1 boson) that precisely leaves invariant
Maxwell’s equations. This is an example of a gauge theory that will be further generalised
to more complicated symmetries for the other interactions (Chapters 8 and 10 of this book).

1.2.3 Yukawa’s Theory of Short-Range Interactions

Historically, the strong force was first discovered as the nuclear force binding protons and
neutrons in the atomic nucleus. A model due to the Japanese physicist Hideki Yukawa
(1935) assumed a potential of the form

ϕ(r) = g

4π

e−r/r0

r
, (1.1)

where r = |r|, r0 is a representative parameter of the range of the interaction, and g is a
constant analogous to the electric charge, representative of the strength of the interaction.
For r > r0, the potential becomes rapidly negligible, leading to an interaction range of
the order of r0. Since the range of the nuclear force is at most the size of a few protons
(the nuclear force is responsible for the cohesion of nuclei but not for the cohesion of
larger structures), r0 must be of the order of a few fm. Let us emphasise the difference
between Eq. (1.1) and the familiar electrostatic scalar potential due to a point-like charge,
e. Since in electrostatics, the electric field simply satisfies E = −∇V , the Maxwell equation
∇ · E = ρ/ε0 with ρ(r) = eδ(r) implies Poisson’s equation

∇2V = − e

ε0
δ(r),

whose solution (Problem 1.2) is the electrostatic potential

V(r) = e

4πε0

1

r
. (1.2)
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It depends only on 1/r and thus allows a long-range interaction. In addition, unlike V(r),
ϕ(r) in Eq. (1.1) is a solution (Problem 1.2) of

(
∇2 − 1

r2
0

)
ϕ = −gδ(r).

The parameter r0 is naturally related to the characteristic mass

m0 = �

r0c
(1.3)

(check the consistency of the units), so that
(
∇2 −

(
m0c2

�c

)2
)
ϕ = −gδ(r).

Yukawa then extended this equation to the non-static case and interpreted ϕ(r, t) as a
quantised field satisfying in the vacuum

(
∇2 − ∂2

c2∂t2
−

(
m0c2

�c

)2
)
ϕ(r, t) = 0. (1.4)

The parameter m0 is then the mass associated with the quanta of the field ϕ(r, t). The
reader might recognise the relativistic Klein–Gordon equation; more details about this
equation and its quantisation are given in Chapters 5 and 6. Hence, in this model, a
short-range interaction implies a massive field and, thus, a massive carrier of the inter-
action. In his publication (Yukawa, 1935), Yukawa set the value r0 = 2 fm and hence
predicted, according to Eq. (1.3), that the quantum of the field ϕ is a new particle with a
mass mϕ = m0 = 100 MeV/c2. He observed that the scattering of a neutron by a proton
n + p → n + p could be described by the combination of two elementary processes: the
incident neutron emits the quantum particle ϕ and becomes a proton, n → p + ϕ, while
the incident proton absorbs the quantum-particle and becomes a neutron p + ϕ → n. He
stated that the exchanged quantum particle ‘cannot be emitted into the outer space’ since5

mn � mp + mϕ . In modern language, in this scattering, Yukawa stated that the intermedi-
ate particle carrying the interaction must be a virtual particle. Virtuality is allowed by the
uncertainty principle of quantum mechanics

�E�t � �,

whose interpretation is not straightforward [see, e.g., (Aharonov and Bohm, 1961) for an
interesting discussion]. Here, if the intermediate state p + ϕ has a lifetime �t (the time
interval between the emission of ϕ and its absorption), its energy uncertainty is of the
order of �E given by the above relation. For two nucleons separated by a distance r, and
assuming a velocity of ϕ of the order of c (which is, of course, an upper bound),�t ∼ r/c,

5 In the rest frame of ϕ, if the proton has a momentum p, the neutron has p and denoting by pn and pp the
4-momentum of the neutron and the proton, respectively, the conservation of the energy–momentum requires

m2
ϕ = (pn − pp)

2 = m2
n + m2

p − 2

(√
m2

n + |p|2
√

m2
p + |p|2 + |p|2

)
≤ (mn − mp)

2,

which is not possible for mϕ = 100 MeV/c2, given that mn ∼ mp ∼ 940 MeV/c2.
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and thus �E � �c/r. When r is small enough, �E can reach mϕc2 without contradict-
ing the energy conservation principle. This implies that r is at most �c/mϕc2 = r0. The
parameter r0 can then be seen as the range of the interaction. While the presence of the
quantum particle ϕ cannot be observed directly in this scattering, Yukawa’s theory implies
its existence, and some kinematically possible processes should allow its production and
detection. Two years after Yukawa’s paper, while analysing cosmic rays, Anderson and
Neddermeyer (1937, 1938), followed shortly by Street and Stevenson (1937), discovered a
new charged particle whose mass was around 100 MeV/c2. It was a perfect candidate for
ϕ. However, a few years later, experiments showed that these cosmic ray particles barely
interacted with nuclei, contrary to expectation. It turns out that this new particle was actu-
ally the muon. It was only in 1947 that, while analysing cosmic rays, Lattes et al. (1947)
found a heavier particle, with a mass of about 140 MeV/c2, interacting with nuclei in
a manner consistent with Yukawa’s prediction. This particle is known today as the pion,
with its three charge states denoted as π+,π− and π0.

1.2.4 A Glimpse of the Weak and Strong Interactions

Yukawa’s theory relates the range of interactions with the mass of the force carrier via
Eq. (1.3). With masses of the order of 100 GeV/c2 (see Table 1.4), the carriers of the weak
interaction, W± and Z0, imply an interaction range of about 10−18 m. The pions, being
1 000 times lighter, imply a nuclear interaction range of about 10−15 m. They can be con-
sidered as the carriers of the effective strong force at the scale of the nucleon. Notice that
pions are spin 0 bosons and not elementary particles since they are mesons. Therefore, they
cannot be the carriers of the strong interaction at the most fundamental level, i.e. at the scale
of the quarks. Those are the gluons, and as expected they are spin 1 elementary particles.
However, the attentive reader will have remarked that they are massless (cf. Table 1.4).
When the force carrier of an interaction is a massless particle, according to Eq. (1.3), we
would expect an infinite range. The electromagnetic interaction is clearly active over a very
large range since the light of distant galaxies can be observed on earth. However, massless
gluons seem to contradict the apparent short-range behaviour of the strong interaction. In
order to resolve this contradiction, one should dive deep into the theoretical framework of
the strong interaction, quantum chromo dynamics (QCD), a theory presented in Chapter 8.
A simplified summary is given here.

When two quarks strongly interact, they exchange gluons as they similarly exchange
photons in electromagnetic interactions (QED). The role played by the electric charge in
QED is replaced by another kind of charge, the colour. If there is only one elementary elec-
tric charge e (all charges of particles are just a – possibly fractional – multiple of e), quarks
can have three ‘colour charges’, arbitrarily called red, green and blue. Hence, a quark is
labelled by its flavour but also its colour, for instance, ur for a red up quark. Since the
gluons are massless particles, there is intrinsically no theoretical limit to the range of the
interaction. However, there is a specific property of QCD, the colour confinement, that pre-
vents the observation of quarks as free isolated particles. Experimentally, even by smashing
two hadrons at very high energy, detectors observe hadrons again. The higher the energy,
the greater the number of hadrons that is detected, without producing isolated quarks. QCD
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asserts that all particle states observed in nature must be ‘colourless’ (the appropriate term
is colour singlet coming from group theory, meaning that a rotation in the colour space
leaves the state invariant, but at this stage of the book, colourless is probably more suit-
able). Of course, a single quark carrying a colour cannot be colourless. But mesons made
of a quark and an antiquark can: if the quark has a colour, the antiquark has an anti-colour.
For example, if the quark is red, it is sufficient that the antiquark is anti-red to cancel the
overall colour of the quark–antiquark system. Baryons are also colourless because their
three quarks have three different colours: inspired by the colour theory of visual arts,6 the
superposition of red, green and blue produces the achromatic white. (From this perspective,
an anti-colour can be seen as the complementary colour.) How can the colour confinement
be qualitatively explained, and why does it have an impact on the range of the strong inter-
action? We saw that the exchange of a massless boson leads naturally to a Coulomb-like
potential with a 1/r dependence, incompatible with confinement. At very short distances
(< 10−15 m), the QCD colour potential between a quark q1 and an antiquark q̄2, sepa-
rated by the distance r, is indeed in 1/r, adequately described by the exchange of a gluon.
However, for longer distances, there is a linear behaviour, leading to the phenomenological
potential

V(r) = −A

r
+ σ r, (1.5)

where A and σ are two positive constants. Therefore, the stored potential energy between
the q1q̄2 pair increases with distance and can become so high that it exceeds the energy
required to produce a new pair of q3q̄4. It costs less energy to form the two pairs q1q̄4 and
q3q̄2 because the distance between the quark and the antiquark of these pairs is reduced
with respect to the initial distance between q1 and q̄2. Hence, quark–antiquark systems
are necessarily confined. This mechanism is, however, not yet quantitatively understood in
detail. At a larger scale, the residual nuclear force between hadrons can be understood as
follows: far from a hadron, the colour of the quarks constituent of the hadron is not seen,
since the quark configuration is such that the hadron is colourless. Therefore, the strong
interaction between hadrons rapidly vanishes, producing a short-range nuclear force. In
Chapter 8, when we are more familiar with quantum chromodynamics and its Feynman
diagrams, we will see how we can recover the pion model exchange from gluon emissions.
It is often said that nuclear force is analogous to the Van der Waals forces, where elec-
tric dipoles provide intermolecular bondings. Actually, if a similar effect could exist with
colour charge instead of electric charge, its magnitude would be too weak to explain the
bonding between nucleons (Povh et al., 2008, Chapter 16). The mediation via pions (and
possibly heavier mesons) is really required to describe the nuclear force.

After its range, another aspect characterising an interaction is its strength. If it was easy
to define the strength of the gravitation and electromagnetic interactions in Section 1.2.1, it
is less obvious for the weak and strong interactions. The weak interaction is called ‘weak’
because its strength appears to be the weakest of the three interactions described by the
Standard Model. However, we shall see in Chapter 9 that intrinsically, the interaction is

6 The visual arts provide a simple analogy for colour combination, but the exact rules are governed by group
theory.
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Table 1.5 Decays of� and� baryons.

Baryons Quark contents Mass (GeV/c2) Lifetime (s) Decay channels
�0 uds 1 116 2.6× 10−10 p+ π−, n+ π0

�0 uds 1 193 7.4× 10−20 † # �0 + γ
�0(1 385) uds 1 384 ∼ 2× 10−23 † � �0 + π0, �0 + π0

† Such a short lifetime cannot be measured from the decay length distribution in detectors.
# The �0 lifetime can be indirectly measured via the cross-section �+ γ → �0 + γ , where the γ s come
from the Coulomb field of a nucleus (Dydak et al., 1977).
� The �0(1 385) lifetime can only be estimated from the intrinsic energy uncertainty of unstable states, via
τ ∼ �/�E (see Section 3.4).

not that weak, in particular at high energy. Similarly, the strength of the strong interaction
(the strongest of the three) depends on the energy scale: we will see in Chapter 8 that at
high energy, i.e. at very small distances, its strength is rather weak, while for distances of
the order of the size of the hadrons, its strength is extremely powerful. However, even if
the notion of interaction strength becomes complicated, a crude estimate can be inferred
at low energy by comparing the lifetimes of similar particles that decay mostly in a decay
channel involving a specific interaction. Intuitively, the stronger the interaction, the higher
the probability of decay, and therefore the shorter the particle’s lifetime. Let us introduce
two dimensionless constants, αw and αs, for the weak and strong interactions, respectively.
They are analogous to α, the fine structure constant of electromagnetism. We will learn how
to calculate the lifetimes of particles in the following chapters, but at this stage, let us admit
that if the boson, carrier of the interaction, is emitted or absorbed, the lifetime formula gets
a factor proportional to the inverse of the constant. In Table 1.5, three baryons containing
the same quark content (uds) are compared. They differ by their quantum numbers. Both
�0 and �0 are spin 1/2 particles, while �0(1 385) has a spin 3/2. The difference between
�0 and �0 is the isospin quantum number7 since I = 0 for�0 and 1 for �0. Their lifetime
and their most frequent decay channels, accounting for almost 100% of the cases, are listed
in the table. The only interaction allowing a change of generation among the elementary
fermions is the weak interaction. The decays�0 → p+π− and�0 → n+π0 proceed then
via this interaction. At the quark level, the strange quark of the�0 decays as s→ u+W−,
followed by W− → d + ū. The virtual W−, carrier of the weak interaction, is then emitted
and absorbed, yielding a factor α−2

w in the�0 lifetime formula. On the other hand, the decay
�0 → �0 + γ involves the electromagnetic interaction since a real photon is emitted, but
not absorbed. It contributes to a factor α−1 to the�0 lifetime. Hence, the ratio of those two
lifetimes satisfies

τ�0

τ�0
∝ α

α2
w

.

7 Isospin symmetry (introduced in Section 8.1.1) assumes that the up and down quarks belong to a two-
component vector of isospin value I = 1/2. The up quark is the upper component with Iz = +1/2, and
the down quark is the lower component with Iz = −1/2. The maths of the isospin is the same as that of the
usual spin. The up and down quarks were so named because of that symmetry.
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In order to get a crude estimate of the constants, we will assume that the previous formula
is actually an equality, neglecting all other differences in the lifetime formula (like the
phase space). We conclude, using the value α ∼ 1/137, that

αw ∼
√
α
τ�0

τ�0
∼ 10−6.

The weak interaction is thus about 104 weaker than the electromagnetism interaction.
Finally, the decay of �0(1 385) is a strong decay that conserves the isospin numbers (the
π0 has I = 1 and Iz = 0). One of the quarks of the �0(1 385) emits a virtual gluon that
converts into a pair uū or dd̄, becoming the π0. Hence, we expect τ�0(1 385) ∝ α−2

s , allowing
us to conclude

αs ∼
√
α

τ�0

τ�0(1 385)
∼ 1−10.

In summary, at low energy, the strength of the interactions of the Standard Model is roughly

strong: αs ∼ 1−10,
electromagnetism: α = 1/137 ∼ 10−2,
weak: αw ∼ 10−6.

(1.6)

Do not take those numbers too seriously: other decay channels may lead to different esti-
mates. They are just indicative of the order of magnitude of the interaction strengths. We
can, however, keep in mind that the lifetime of particles whose decay is dominated by a
single interaction is typically

strong: τs ∼ 10−24−10−21 s,
electromagnetism: τE.M. ∼ 10−20−10−16 s,
weak: τw ∼ 10−13−103 s.

(1.7)

1.3 Production of Particles

To study particles, the first step is to produce them. Two mechanisms can be identi-
fied: natural production originating from cosmic rays or artificial production requiring an
accelerator.

1.3.1 Cosmic Rays

Until the early 1950s, the only source of high energy particles was the interaction of pri-
mary cosmic rays with the atmosphere. Primary cosmic rays are charged particles, whose
lifetime is long enough to be produced by astrophysical sources and reach the earth. They
are mostly protons, and nuclei, whose relative abondance depends on the energy range con-
sidered. For example, at about 10 GeV per nucleon, 94% are protons, 6% helium nuclei
(alpha particle) and the remaining 1% are stable nuclei synthesised in stars (Particle Data
Group, 2022).
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�Fig. 1.1 Development of cosmic rays air shower. The small grey circles are electrons in the atmosphere.

By entering the stratosphere, primary cosmic rays cause nuclear collisions with mostly
oxygen and nitrogen atoms. These collisions produce secondary particles, including pro-
tons, neutrons and charged mesons, such as pions (π±) and kaons (K±), which typically
decay into muons and neutrinos. Since the lifetimes of charged pions and kaons are large
enough to travel over significant distances, some may collide with another nucleus in the
air before decaying. Neutral pions (π0) are also produced from the primary interaction.
They typically decay almost immediately into a pair of high energy photons that interact
electromagnetically with the Coulomb field of atoms. This results in pairs of electron and
positron, which can further radiate photons (gamma rays). This process continues, creat-
ing a cascade of electrons, positrons and photons. Figure 1.1 illustrates the interaction of
a primary cosmic rays in the atmosphere. The number of particles increases rapidly as the
cascade of particles, also called shower, moves downwards. In each interaction, the parti-
cles lose energy, and eventually will not be able to create new particles. After some point,
more particles are stopped than created, and the number of shower particles declines.

Energetic secondary particles reaching sea level are dominated by neutrinos and muons.
To give an order of magnitude, the neutrino flux around 1 GeV (where the probability
of interaction is maximum) is about 1 cm−2 s−1 from all directions (Gaisser, 1990). For
muons with mean energy above 1 GeV, the intensity of the vertical flux is Iv � 7 ×
10−3 cm−2 s−1 sr−1 (Grieder, 2001). Given that the muon flux intensity varies with the
zenith angle, θ , as I(θ) � Iv cos2 θ (empirical relationship), the muon flux coming from the
sky collected by a horizontal detector is then of the order of 1 cm−2 mn−1 (Problem 1.3).

Before the 1950s, it was the analysis of the secondary particles recorded in cloud cham-
bers at the ground level or detected in photographic emulsions flown in a balloon in the
upper atmosphere that led to the discoveries of the positron (1932), muon (1937), pion
(1947), kaon (1947) and �0 (1950).
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1.3.2 Accelerators

After the 1950s came the era of particle accelerators. They have the great advantage to
provide controlled collisions: the energy of the incident particle and the projectile is rea-
sonably determined, as well as their species, and high energy collisions can be reliably
repeated. The technology of accelerators is complex and deserves a book on its own. See,
for example, Wiedemann (2007). I limit myself here to very general considerations.

Cyclotrons were first built: they consist of two D-shaped cavities, called dees, facing
each other (

D

D) in which a magnetic field bends the trajectory of a charged particle on a
circular path. The dees are kept at different electrical potentials to accelerate the particle
as it passes from one dee to the other. The process is repeated twice per turn and therefore
requires swapping the potentials of the two dees to maintain the acceleration in the appro-
priate direction. At each turn, the energy of the particle increases, and thus, the radius of
the orbit gets larger and larger. After several turns, the particle reaches the rim of the dees
and can hit a target where the collision occurs. Cyclotrons had limitations, for instance,
the velocity of the accelerated particles could not exceed about 0.1c because the circular
motion at high speed could not be maintained synchronous with the accelerating field.

Cyclotrons are now replaced by synchrotrons, where particles orbit in a fixed circular
ring thanks to an adjustable magnetic field. The acceleration is realised thanks to a radio-
frequency (RF) cavity located along the ring. RF cavities are metallic chambers that contain
an electromagnetic field generated by an RF power generator. They are shaped so that elec-
tromagnetic waves become resonant inside the cavity. Their frequency is synchronised to
accelerate the particles every time they pass the RF cavity. The Large Hadron Collider
(LHC) at CERN (European Organisation for Nuclear Research) near Geneva, Switzerland,
is nowadays the most emblematic and powerful synchrotron, colliding two beams of pro-
tons, each at an energy of 6.5 TeV, or for one month a year, beams of heavy ions with
2.56 TeV per nucleons. In the 2020s, it is expected that the proton beam energy would
be upgraded to 13.6 or even 7 TeV (and the heavy ions beam to 2.76 TeV per nucleons).
To accelerate particles to very high energy, synchrotrons require strong magnetic fields
to maintain the particles on their circular path. At the LHC, magnetic fields up to 7.74 T
are generated by 1 232 superconducting dipoles operating at 1.9 K, and eight supercon-
ducting RF cavities delivering 5 MV/m are used for the acceleration. Synchrotrons are
limited by two main factors: the maximum magnetic field strength of the bending mag-
nets and the synchrotron radiation. A charged particle in a circular orbit undergoes an
acceleration and thus emits electromagnetic radiation, the synchrotron radiation, whose
radiated power is proportional to E4/(m4R2), with E and m being the energy and mass of
the particle, respectively, and R the radius of the orbit. To limit this radiation, it is thus
better to use heavy particles and very large synchrotrons. That is why the LHC accelerates
protons to 6.5 TeV in a ring about 27 km in circumference, whereas its predecessor, the
Large Electron–Positron collider (LEP), accelerated electrons at most to 104.5 GeV in that
same ring.

In order to circumvent synchrotron radiation, another strategy is to use linear accelera-
tors. However, unlike circular accelerators, an RF cavity can accelerate particles only once
on a linear trajectory. The acceleration voltage per unit length is thus the limiting factor in
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the energy to which a linear accelerator can boost particles. In addition, beams can only
collide once, limiting the probability of interaction. The Stanford Linear Collider (SLC),
operating until 1998 at Stanford (CA, USA), was the longest linear accelerator (3.2 km),
accelerating electrons and positrons to an energy of 50 GeV. It is, to date (and will stay
even in the near future), the only example of a linear collider that has produced high energy
particle collisions (i.e., tens of GeV) at a high rate.

In summary, particles can be produced from collisions between cosmic rays with the
atmosphere or in a controlled environment using particle accelerators. Although accel-
erators are the primary tool of the high energy physicist, cosmic rays are also studied,
particularly to understand the astrophysical phenomena that accelerate particles to such
high energies, and for neutrino physics (see Chapter 9). In the history of particle physics,
probing collisions of increasingly high energy has led to many discoveries. The higher the
energy, the smaller the spatial extent of the object that can be probed. From this perspec-
tive, the key parameter of accelerators is the maximum energy reached by the accelerated
particles. The other important parameter is the luminosity (defined in Section 3.5). The
luminosity, L, has the dimension of events per unit time per unit area and determines, for a
given reaction, the number of potential collisions that can be produced per second, dN/dt.
More specifically,

dN

dt
= L× σ , (1.8)

where σ is the cross section of the reaction. The cross section is defined in Section 3.5,
but at this stage, let us say that it is a quantity representative of the probability of the
interaction. Therefore, the higher the luminosity, the smaller the cross section to be studied
can be, revealing rare processes. With a luminosity of the order of 1034 cm−2 s−1, the LHC
yields about one billion proton–proton collisions per second at a centre-of-mass energy of
13 TeV. The integrated luminosity, i.e. the integral of the luminosity over the operating
time of the collider, is then directly related to the total amount of collisions produced by
the collider. It is, therefore, a metric of its performance.

1.4 Detection of Particles

The complexity of detectors has considerably increased over time, in particular, because
of the ever higher particle energies involved and the very large number of particles pro-
duced in the collisions generated by modern colliders. Detectors now include devices
able to identify particles and measure with a high precision their positions, momenta,
energies and possibly their lifetimes. The precise description of the technology used in
detectors goes beyond the scope of this book. There are dedicated books about this topic,
such as those authored by Rossi (1952), Leo (1994) and Grupen and Shwartz (2011).
This section is more focused on the interaction mechanisms exploited by particle physics
detectors.
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1.4.1 General Considerations

Most of the particles are highly unstable with a lifetime so short that they almost immedi-
ately decay after their production. Hence, they cannot be observed directly in the detectors,
and only their long-lived decay products can reach detectors or interact long enough with
detectors. Figure 1.2 shows the average distance travelled in the vacuum by a representative
sample of particles, assuming that their velocity is equivalent to the speed of light (ultra-
relativistic approximation). Only a subset of unstable particles can travel over macroscopic
distances, let us say at least a few millimetres, before decaying. All such particles decay
by the weak interaction. If we require that a particle of mass m and lifetime τ travels on
average over a distance l in the vacuum, the minimum energy is constrained to be (see
Problem 1.4)

Emin = mc2

√
1+

(
l

cτ

)2

. (1.9)

To give an order of magnitude, let us choose l = 1 m (the typical size of modern detectors
is a few tens of metres). Figure 1.3 shows the corresponding values of Emin for various par-
ticles. Modern accelerators are powerful enough to produce collisions from which particles
with energies of the order of a few GeV emerge. Therefore, we conclude from Fig. 1.3 that,
statistically, the only particles that can possibly interact with detectors over a significant
distance are:
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γ , e±, ν (ν̄),π±,μ±, K±, K0
S , K0

L, p (p̄), n (n̄),�0 (�0). (1.10)

Particles of this list can be classified into two categories: charged and uncharged particles.
Since they experience different interactions with matter, different devices are needed for
their detection.

1.4.2 Interaction of Charged Particles with Matter

Energy Loss by Ionisation

When a charged particle passes through a medium (called below absorber), it continuously
interacts with the electrons of its atoms, or classically speaking, it undergoes inelastic
collisions with the electrons. Thus, it transfers a fraction of its energy to the electrons of
the absorber, ionising the atoms when the transfer is large enough or exciting them (raising
the electrons to a higher lying shell) otherwise. The energy transfer causes an energy loss
of the incident particle, thus reducing its velocity. The energy transfer to the electrons may
be so large that these electrons may cause further ionisation of the atoms. Such electrons
are called δ-rays. Scattering from nuclei also occurs. Since, in general, the mass of the
incident particle is significantly smaller than that of the nucleus of the absorber (almost
no recoil), very little energy is transferred by this mechanism. In this case, only elastic
scattering occurs.8

The energy loss by ionisation or excitation is statistical in nature, governed by quan-
tum mechanical probabilities. For a macroscopic path length, it occurs many times, and
thus the fluctuations in the energy loss are small. As a first approximation, one can con-
sider the average energy loss. For an incident particle with an electric charge ze, the mean
energy loss by ionisation or excitation per unit length,− dE/ dx, normalised to the absorber
density ρ (g/cm3) is given by the Bethe–Block formula (Bethe, 1930, 1932; Bloch, 1933)

1

ρ

〈
−dE

dx

〉

ion.

� Kz2 Z

A

1

β2

(
ln

2mec2γ 2β2

I
− β2 − · · ·

)
. (1.11)

This formula is an approximation valid for incident charged particles heavier than the
electron, and for moderately relativistic velocities, βγ ∼ 0.1−1, 000, with β = v/c and
γ = 1/

√
1− β2. In Eq. (1.11), K = 0.3071 MeV mol−1 cm2 is a constant, Z is the atomic

number of the absorber, A is its atomic mass in g mol−1 and me is the electron mass. The
parameter I is called the mean excitation energy: it is an effective ionisation potential, aver-
aged over all electrons of the absorber. It depends only on the absorber, and its value for
various absorbers can be found in the literature (e.g., in Particle Data Group, 2022). To
give an order of magnitude, a usual parametrisation for z > 1 is I ∼ 16 Z 0.9 eV (Gru-
pen and Shwartz, 2011). The dots in Eq. (1.11) represent a set of small corrections. They
concern incident particles moving at low velocities that are comparable to or smaller than
those of atomic electrons but also high energy particles whose electric field is screened
by the electric polarisation of the medium. They can be found in Particle Data Group
(2022). The quantity 2mec2γ 2β2 in the numerator of the logarithm in Eq. (1.11) is an

8 By definition, in elastic scattering, the total kinetic energy is conserved.

https://doi.org/10.1017/9781009171595.002 Published online by Cambridge University Press

https://doi.org/10.1017/9781009171595.002


18 Particle Physics Landscape
�

p  [GeV/c]
2

10
1

10 1 10
2

10
3

10

/g
]

2
  
[M

e
V

 c
m

�d
E

/d
x

 
1
/

1

10

2
10

±e

±� ± ±K p

�Fig. 1.4 The energy loss by ionisation or excitation (stopping power), 〈dE/ dx〉 /ρ , as a function of themomentum of different
particles. The absorber here is copper (Z = 29, A = 63.5 g/mol, I = 322 eV), except for the grey curve, which
represents the stopping power of muons in silicon (Z = 14, A = 28.1 g/mol, I = 173 eV).

approximation, valid at moderately relativistic velocities, of the maximum kinetic energy
that can be transferred to an electron.9

For a given absorber, the energy loss in Eq. (1.11), also called the stopping power,
depends only on the velocity (β) and the charge of the incident particle. It does not depend
on its mass, to first order. It is shown in Fig. 1.4 as a function of the momentum p = γmβc,
for different particles passing through copper. The energy loss is maximal at low velocity
since slower particles experience the electron field for a longer time. In this regime, dE/dx
is dominated by 1/β2 and decreases with increasing velocity. It reaches a minimum when
γβ = p/(mc) ∼ 3−4 or, equivalently, when v ∼ 0.95c−0.96c. Particles at this point
are called MIP or Minimum Ionising Particles. According to Fig. 1.4, an MIP loses about
1.4 MeV cm2/g. This value varies little over a wide range of absorbers. At first order, the
incidence of the absorber in Eq. (1.11) comes from the factor Z/A, which changes little
for comparable Z. Hence, when dE/ dx is normalised to the density, as in Eq. (1.11), it
is almost independent of the absorber. At higher energy than that of the MIP, the factor
β becomes almost constant (equal to 1), and the factor in 1/β2 becomes irrelevant. The
energy loss rises though, because of the term in ln(γ 2β2), an effect called the relativis-
tic rise. The previously mentioned corrections become significant, however, and tend to

9 Without this simplification, the correct expression of the numerator in Eq. (1.11) is
√

2mec2γ 2β2Tmax, with
Tmax = 2mec2γ 2β2/(1+ 2γme/m+ (me/m)2), where m is the mass of the incident particle. Equation (1.11)
is recovered when 2γme/m� 1 and m� me.
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moderate the rise. Hence, in practice, most relativistic particles have a mean energy loss
by ionisation that is close to the minimum.

Formula (1.11) is valid for charged particles heavier than the electron. For electrons or
positrons, one has to take into account that the mass of the incident particle and that of the
target electron is the same [the derivation of Eq. (1.11) assumes that the incident particle
remains undeflected during the collision]. In addition, incident electrons cannot be distin-
guished from those of the target, requiring an appropriate treatment in the calculation. The
expression of the energy loss for electrons or positrons due to collisions on electrons can be
found in Leo (1994) and Particle Data Group (2022). They are represented with the dashed
line in Fig. 1.4, where they cannot be distinguished from one another in this momentum
region. At relativistic energies, above tens of MeV, on the other hand, the energy loss of
positrons and electrons is dominated by another source of energy loss: bremsstrahlung, i.e.
the energy loss by radiation (see Section ‘Energy Loss by Radiation: The Bremsstrahlung’).

The dE/ dx curves allow the identification of charged particles. If both the momentum
p = γβmc and the energy loss dE/dx are measured with sufficient accuracy, it gives a
point in the (dE/ dx, p) plane that can be used to determine the species of the particle.

Energy Loss by Radiation: The Bremsstrahlung

Charged particles interact not only with the electrons of atoms (contributing to the energy
loss by ionisation and excitation of the atoms) but also with the Coulomb field of the
nuclei. The incident particle is then deviated from its straight-line course by the electrical
interaction with the nuclei. It contributes to multiple scattering but also to the emission of
electromagnetic radiation due to the acceleration of the charged particle. As synchrotron
radiation is emitted because of the acceleration in a magnetic field, bremsstrahlung is radi-
ation emitted because of the acceleration (or rather a deceleration) in the electric Coulomb
field (the German word bremsstrahlung means ‘deceleration radiation’).

For high energies, the energy loss by bremsstrahlung can be described by Rossi (1952)
〈
−dE

dx

〉

brem.

� 4αNA
Z2

A

(
1

4πε0

(ze)2

mc2

)
E ln

(
183 Z−1/3

)
, (1.12)

where ze, m and E are the charge, mass and energy of the incident charged particle, respec-
tively, and Z and A are, respectively, the atomic number and atomic mass of the absorber.
Whereas the energy loss by ionisation varies logarithmically with energy (Fig. 1.4) and
linearly with Z [Eq. (1.11)], the energy loss by bremsstrahlung increases linearly with E
and quadratically with Z. In addition, it is proportional to the inverse of the particle mass
squared. Hence, at high energy, only low mass particles, namely positrons and electrons,
lose significant energy by bremsstrahlung. The critical energy, Ec, is defined as

〈
−dE

dx

〉

brem.

=
〈
−dE

dx

〉

ion.

for E = Ec. (1.13)

For electrons and positrons, it is about a few tens MeV in most solid absorbers, with an
approximate formula being Ec � 1600 mec2/Z (Leo, 1994). For the next lightest charged
particle, the muon, the energy loss by bremsstrahlung dominates over that by ionisation for
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muon energies of a few hundred GeV (Lohmann et al., 1985).10 With such a high value,
we will restrict ourselves to the bremsstrahlung of electrons and positrons.

Since the energy loss by bremsstrahlung is proportional to energy, Eq. (1.12) can be
rewritten (forgetting the mean value) as

−dE

dx
= E

X0
,

whose solution is

E(x) = E0 exp(−x/X0). (1.14)

Here, the quantity X0 is called the radiation length. It corresponds to the average length
over which the energy is reduced by a factor 1/e, due to bremsstrahlung radiation. Accord-
ing to Eq. (1.12), for electrons and positrons z2 = 1 and m = me, such that introducing
the classical radius of the electron re = e2/(4πε0mec2) = 2.82 × 10−13 cm, the radiation
length in g/cm2 reads

X0 = A

4αNAZ2r2
e ln

(
183 Z−1/3

) . (1.15)

Table 1.6 gives the values of the critical energy and the radiation length for a few common
absorbers. Formula (1.15) is approximate: it neglects the bremsstrahlung due to the elec-
tron cloud and possible screening of the Coulomb field of nuclei by electrons. Therefore,
the values in Table 1.6 differ from the results of Eq. (1.15) by about 10−20%. A better
approximate formula is (Grupen and Shwartz, 2011)

X0 = 716.4 A [g/mol]
Z(Z + 1) ln

(
287
√

Z
) g/cm2. (1.16)

Since the energy loss by bremsstrahlung is proportional to Z2 and thus X0 in 1/Z2 at first
order, if one wants to stop a high energy electron, it is better to use absorbers with a
high atomic number. This determines the choice of the materials used in electromagnetic
calorimeters, as we will see in Section 1.4.4.

Emission of Cherenkov Radiation

Another kind of radiation occurs (but not in the same wavelength spectrum) when a charged
particle traverses a medium at a velocity larger than the phase velocity of light in that
medium, i.e. when the velocity of the particle satisfies

v > c/n,

where n is the index of refraction. The passage of the charged particle transiently polarises
the atoms or the molecules of the medium, generating electric dipoles. Since the polarisa-
tion varies with time, it is well known from classical electrodynamics that the dipoles emit

10 Actually, for high energy muons, another radiation process called pair production dominates, where the inter-
action of a muon with a nucleus produces μ±+e++e−+X, with X being any other decay product. It is about
1.5 times larger than bremsstrahlung at energies above a few hundred GeV (Lohmann et al., 1985). Hence,
the energy loss by ionisation becomes negligible with respect to all other contributions for E � 350 GeV in
copper (Particle Data Group, 2022).
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Table 1.6 Critical energies (electron) and radiation lengths for various absorbers.

Absorber Z A Ec X0

(g/mol) (MeV) (g/cm2) (cm)
Air (dry, 1 atm) − − 87.92 36.62 30390
H2O − − 78.33 36.08 36.08
Pb 82 207.2 7.43 6.37 0.56
Cu 29 63.55 19.42 12.86 1.44
Fe 26 55.85 21.68 13.84 1.76

Source: From Particle Data Group (2022, Section: ‘Atomic and Nuclear
Properties of Materials’).

v < c/n v > c/n

t = 0 t
βct

c
n t

θ

v > c/n

�Fig. 1.5 Illustration of the Cherenkov effect when an electron (black circle) passes through a medium. Left-hand and middle
diagrams: polarisation of the medium when v < c/n and v > c/n, respectively. Atoms are represented by shaded
circles or ellipses. The shading is white for positive charges and black for negative charges. Right-hand side: emission
of Cherenkov light (wavy lines) with its characteristic angle θ . The dotted circles represent the wavefront of the light
at different times.

electromagnetic radiation (see, e.g., Jackson, 1998). The emission stops when the atoms
or the molecules return to their initial state without polarisation. However, when dipoles
are symmetrically arranged with respect to the track of the charged particle, the resulting
electric field of all dipoles vanishes, preventing the emission of the radiation. This is only
possible when the particle travels slower than light in the medium, v < c/n, as illustrated
in the left-hand diagram of Fig. 1.5. In contrast, for velocities greater than c/n (middle
diagram), there is a resultant dipole field along the axis of the particle track (and not else-
where), varying with time. Hence, radiation is emitted at each point along the axis. The
wavelets from all portions of the axis are then in phase with one another (right-hand dia-
gram of Fig. 1.5), such that a distant observer can see the Cherenkov light only at a single
angle, θ , with respect to the track of the particle. By symmetry about the axis of the par-
ticle, the light emitted on each point of the axis propagates along the surface of a cone.
Elementary geometry allows us to determine the opening angle of the cone. Between t = 0
and t, the charged particle travels over a distance vt = βct, while the light emitted at t = 0
defines a wavefront of radius c/n × t. Thus, the cosine of the angle, the ratio of these two
quantities, satisfies
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cos θ = 1

βn
. (1.17)

For example, in water where n = 1.33, the maximum Cherenkov angle is reached when
β = 1, giving θ = 41.4

◦
, while in air (n = 1.000293), it is only θ = 1.39

◦
.

One can show that the number of photons radiated per unit path per unit wavelength is
[see Jelley (1958), an excellent book on the Cherenkov effect and its applications]

d2N

dx dλ
= 2παz2

λ2
sin2 θ = 2παz2

λ2

(
1− 1

β2n2

)
, (1.18)

where the charge of the particle is ze. A naive interpretation of Eq. (1.18) would lead
us to conclude that very short wavelengths should be favoured. However, all media are
more or less dispersive (except the vacuum), meaning that the refractive index actually
depends on the wavelength of the photon (or its energy), n = n(λ). In the X-ray region
and at higher energy, n(λ) is always less than 1,11 forbidding the emission of radiation
since β = v/c > n > 1 is impossible. Hence, ultraviolet and visible photons are the most
numerous. This imposes the use of a transparent medium for the construction of detectors
using the Cherenkov effect.

The energy loss due to the emission of Cherenkov photons is negligible compared with
the ionisation or bremsstrahlung loss. Since Eγ = hc/λ, it follows from Eq. (1.18),

d2N

dx dEγ
= αz2

�c
sin2 θ � 370 z2 sin2 θ eV−1cm−1. (1.19)

Thus, the energy lost by the charged particle is −d2E = Eγ d2N, yielding

−dE

dx

∣∣∣∣
Cher.

= αz2

�c

∫
βn>1

sin2 θ Eγ dEγ � 370 z2
∫
βn>1

sin2 θ Eγ dEγ . (1.20)

Assuming that the medium is reasonably not dispersive between 0 and Emax
γ , the integration

of Eq. (1.20) gives 370 z2 sin2 θ (Emax
γ )2/2. For instance, with Emax

γ = 6.6 eV (ultraviolet
photon, ω ∼ 1016 Hz), a 100 MeV electron (z2 = 1,β ∼ 1) passing through 1 cm of
water (sin2 θ = 0.25) loses about 2 × 10−3 MeV energy. That same electron, according
to Eq. (1.14) and Table 1.6, would lose about 2.7 MeV energy by bremsstrahlung– three
orders of magnitude larger. Note that the energy loss due to Cherenkov radiation is already
included in Eq. (1.11) via the correction factor at high energy that takes into account the
polarisation of the medium. This is the part preventing − dE/dx to rise as log(γβ) at high
energy (Fermi plateau). It is important to realise that both the Cherenkov radiation and
bremsstrahlung radiation are of different nature: the Cherenkov radiation arises only from
the macroscopic properties of the medium, whereas in the case of bremsstrahlung radiation,
it is the individual interaction of the charged particle with the Coulomb field of atoms that
matters.

The measurement of the Cherenkov angle provides another way of identifying particles,
as soon as the momentum p is known, since from Eq. (1.17),

θ = arccos

(
E

npc

)
= arccos

(√
p2c2 + m2c4

npc

)
. (1.21)

11 The phase velocity of light can be greater than c.
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�Fig. 1.6 Cherenkov angle as a function of the momentum of various particles. The medium here is the aerogel, with a reflective
index n = 1.03.

Identification of particles is only possible when the Cherenkov effect is present, i.e. when
β > 1/n. It imposes the following constraints on the energy and momentum of the particle:

E >
n√

n2 − 1
mc2, p >

1√
n2 − 1

mc. (1.22)

Figure 1.6 shows the Cherenkov angles of various particles as a function of their momen-
tum in the aerogel, a mixture of SiO2 and H2O. The region of momenta where identification
is possible is narrow; thus, detectors frequently use several media to extend it.

For completeness, radiation similar to the Cherenkov effect exists when a charged par-
ticle crosses from one medium to another with different dielectric properties, for example,
from the vacuum to a pure dielectric or a perfect conductor. This transition radiation is
emitted at the interface between the two media. Unlike Cherenkov radiation, it occurs
at any velocity of the particle. However, the probability increases with γ , so in practice,
only highly relativistic particles (γ � 103) emit substantial radiation. This characteris-
tic is sometimes used in detectors to discriminate heavy particles, such as hadrons from
lighter ones, typically electrons, since for a given energy E = γmc2, they have very differ-
ent γ factors. The interested reader can consult Grupen and Shwartz (2011) where many
examples of transition radiation detectors are given.

1.4.3 Interaction of Neutral Particles with Matter

Uncharged particles do not interact through the Coulomb force, and therefore, while pass-
ing through a medium, they must first undergo a strong, weak or, in the case of photons,
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electromagnetic interaction. The first interaction of the particle with the medium often
involves the nucleus of constituent atoms of the medium and produces charged particles
that are then detected.

Specific Interactions of High-Energy Photons

Interactions of high energy photon (X-ray or γ -ray) produce electrons through three main
modalities: the photoelectric effect, Compton scattering and pair production of electrons.

In the photoelectric effect, a photon is absorbed by an atomic electron, leading to the
ejection of the electron from the atom: γ + atom → atom+ + e−. This process is the
predominant mode of interaction for γ -rays or X-rays of relatively low energy, typically
below 0.5 MeV. The ejected electron, called photoelectron, has energy given by Ep.e =
hν − Eb, where hν is the energy of the incident photon and Eb is the binding energy of the
photoelectron in its original atomic shell (the recoil of the atoms can be safely ignored).
Since Eb is small compared with γ -ray energy, the photoelectron carries most of the photon
energy. Hence, for an evaluation of the photon energy, this process is ideal.

In Compton scattering, the incoming photon is not absorbed but deflected by an electron,
transferring a portion of its energy to the electron that recoils (to conserve the energy and
momentum): γ + e− → γ + e−. The energy spectrum of the recoil electron is then a
continuum, whose maximum energy is mec2 + Eγ × ε/(1 + ε), with ε = 2Eγ /(mec2).
In Chapter 6, we will learn how to calculate the cross section of this process, assuming
that the electron is free. However, as soon as the photon energy is much larger than the
binding energy of the electron, which is the case for γ -ray photons, the results obtained in
Chapter 6 remain valid (including the maximum value given above). Compton scattering
is the dominant process for photon energy between 0.5 and 10 MeV.

Finally, at energies higher than 10 MeV, pair production dominates. It mostly results
from the interaction of a photon with the Coulomb field of the nucleus: γ + nucleus →
nucleus + e+ + e−. In this process, the photon is thus absorbed as in the photoelectric
effect. Pair production can be viewed as a process similar to bremsstrahlung since for the
latter, e−+nucleus→ nucleus+e−+γ . Both bremsstrahlung and pair production involve
the same set of particles, provided an electron is exchanged for a positron. We will learn
in Chapter 6 that, because of quantum field theory properties, the two processes can then
be calculated from one another. Consequently, just as the energy of electrons decreases
exponentially in matter by bremsstrahlung emission as a function of the radiation length,
X0 [cf. Eq. (1.14)], for pair production, the intensity of high energy photons behaves the
same way, i.e.

I(x) = I0 e−x/λ, (1.23)

where, for photon energy greater than 1 GeV, the attenuation length or mean free path λ is
given by Particle Data Group (2022)

λ � 9

7
X0. (1.24)
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The parameter μ = 1/λ is thus an absorption coefficient. When it is normalised to the
density of the medium μ′ = μ/ρ (like the radiation length), it is called the mass absorption
coefficient.

Interaction of Hadrons

Hadrons experience the strong interaction and can interact with the nuclei of the medium.
For neutral hadrons, such as neutrons, this is the main interaction in matter. Since the strong
force is a short-range interaction, the probability that the hadron is close enough to a given
nucleus (about 1 fm) is low, and hence neutral hadrons are penetrating particles. Charged
hadrons can also have electromagnetic interactions, leading to the mechanisms of energy
loss already presented.

The interactions of neutrons depend strongly on their energy. At low kinetic energy, in
the MeV region and below, elastic scattering of neutrons with nuclei contributes to their
energy loss. Inelastic scattering is also possible, leaving the nucleus in an excited state that
will further de-excite emitting photons or charged particles. When neutrons are sufficiently
slowed down, they may be captured by a nucleus that emits photons, or they may induce a
nuclear reaction (fission etc.). In particle physics, those low-energy neutrons are generally
identified via those secondary particles (photons or charged particles). On the other hand,
neutrons or any hadrons with high energy (kinetic energy above 100 MeV, so most of
the hadrons produced with accelerators) undergo nuclear reactions that produce secondary
hadrons, that themselves generate nuclear reactions and so on. This process produces a
hadronic shower that can be captured by a hadronic calorimeter (see Section ‘Detection of
Hadrons: Hadronic Calorimeters’).

1.4.4 Detectors

Measurement of the Momentum and dE/dx: Tracker Detectors

Track detectors, or trackers for short, are detectors that measure the particle tracks (i.e., the
trajectory of the particle and the energy deposited along the track). Because of the large
number of particles produced by collisions at modern colliders, most detectors measuring
p and dE/dx are nowadays based on semiconductors devices (mainly silicon). The previous
generation of detectors was often gaseous detectors like time projection chambers, where
the passage of the ionising particle created electron–ion pairs collected by an electric field.
In the case of semiconductors, the electric charge is carried by electrons that have been
excited to the conduction band from the valence band and by the corresponding holes cre-
ated in the valence band.12 The crystal lattice of semiconductors is generally doped with
elements that can easily provide an electron (donor) or capture it (acceptor). A few impurity
atoms per billion semiconductor atoms are sufficient. Silicon has four valence electrons.
Donors then have five valence electrons, with the excess electron becoming easily a free
electron (its energy level is very close to the lower bound of the conduction band, about

12 The reader not familiar with solid state physics can consult, for example, Kittel (2005).
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�Fig. 1.7 Working principle of a p–n junction. On the left-hand side, no voltage is applied. On the right-hand side, a reverse bias
is applied to the junction i.e. a positive voltage on the n-side and a negative voltage on the p-side. The effect of the
passage of a particle is illustrated with the drift of the charge carriers.

0.05 eV in silicon). Silicon doped in this way is called n-doped silicon (n for negative). If
acceptors with three valence electrons are added to the crystal lattice, one electron is miss-
ing for the covalent bond, creating a hole (and a new energy level in the energy gap, very
close to the upper bound of the valence band). It forms p-doped silicon. Silicon detectors
are based on p–n junctions, where p-doped silicon and n-doped silicon are in contact, as
illustrated in the left-hand sketch in Fig. 1.7. In the contact area, there is a natural migration
of electrons from the n-region to the p-region to annihilate the holes. Similarly, holes from
the p-region diffuse towards the n-region. Hence, both sides of the junction are filled with
ionised donors and acceptors, which are immobile, as they are bound in the crystal lattice.
This creates an electric field, which balances the diffusion force of electrons and holes,
generating a depleted region of free charges (electrons or holes). When an ionising particle
enters the depleted region, electron–hole pairs are created. Both charge carriers then feel
electrostatic forces and drift in opposite directions. These charges can then be collected
by electrodes, inducing a current pulse. However, the intrinsic electric field is not intense
enough to collect enough charges. Moreover, the depletion region is too thin to allow high
energy particles to lose enough energy. Therefore, a voltage is applied to the junction
(right-hand sketch in Fig. 1.7) such that it increases the electric field and the thickness
of the depleted region. The total charge collected is proportional to the energy deposited
in the depletion layer. The average energy required for the creation of an electron–hole
pair is typically about 3 eV, which is an order of magnitude less than the energy required
for the creation of electron–ion pairs in a gaseous detector.13 Hence, for a given energy,
semiconductors produce about 10 times more electron–hole pairs than electron–ion pairs.
Moreover, they have a greater density and thus a larger stopping power. This explains their
popularity despite their relatively high cost.

Trackers based on silicon use a very large number of silicon sensors with p–n junctions
(some have nearly 100 million) that can be shaped into thin strips or pixels. In its simplest
form, a silicon strip detector is constructed as an array of p-type junctions on a single n-type

13 More specifically, for silicon, it is 3.62 eV at room temperature. Given that the energy gap is 1.14 eV, only
one-third of the energy is spent on the production of the electron–hole pair. The other two-thirds excite the
vibration states of the lattice.
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�Fig. 1.8 Simplified schematic layout of a silicon strip detector. Electrons are represented by the black circles and holes by the
open circles. The quantity Q(x) represents the charge collected over several strips. Weighting the position of the strips
by their charge gives interpolation of the particle position x.

silicon wafer (Fig. 1.8). The typical strip width is 10 µm on an about 25 µm pitch. When a
particle passes through the depleted region (most of the n-type region is usually depleted),
electron–hole pairs are produced, inducing a current in the strips, collected by readout
amplifiers (one per strip). Given that an MIP leaves about 1.66 MeV/cm2 (see the grey
curve in Fig. 1.4), when a particle crosses 300 μm of silicon (density ρ = 2.33 g/cm3),
it loses about 116 keV. With 3.62 eV required to create a pair, we conclude that about 30
000 pairs are produced, giving a clear signal. The distribution of the collected charges over
multiple strips allows the position interpolation of the particle in one dimension. To give
an order of magnitude, the position resolution is about a few micrometres.14 Double-sided
strips with two orthogonal planes of silicon strips as well as an array of silicon pixels give
position information in two dimensions. Detectors installed at accelerators have several
concentric layers of silicon strips or pixels surrounding the collision region. They provide
the third dimension of position reconstruction.

Track detectors frequently operate in a strong magnetic field B that deflects the charged
particle trajectory by virtue of the Lorentz force,

dp
dt
= qv× B, (1.25)

where p = γmv and q is the charge of the particle. Solving this equation (see Problem
1.5) shows that the trajectory is that of non-relativistic mechanics, i.e. a helical trajectory,
except that the mass of the particle, m, is substituted with γm,

⎧⎨
⎩

x(t) = x(0)+ [py(0)+ px(0) sin(ωt)− py(0) cos(ωt)]/(q|B|)
y(t) = y(0)+ [−px(0)+ py(0) sin(ωt)+ px(0) cos(ωt)]/(q|B|)
z(t) = z(0)+ pz(0) ωt/(q|B|),

(1.26)

14 If we assume that a single strip is read out with a pitch p between strips, and that the track could be anywhere
between−p/2 and p/2 with a uniform distribution, simple statistics show that the position resolution is p/

√
12.

With p = 25 µm, we obtain 7 µm.
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where ω = q|B|/(γm) and B is chosen along z. Projected on the plane orthogonal to the
magnetic field, (x, y), the trajectory is a circle with a bending radius R satisfying

R =
∣∣∣∣
p⊥
qB

∣∣∣∣ , (1.27)

where |p⊥| =
√

p2
x + p2

y is the transversal component of the momentum. Notice that |p|,
|p⊥| and pz are constants of the motion [derive Eq. (1.26) to check it]. Therefore, we can
introduce λ, often called the pitch angle of the helix, the angle between the projected track
tangent in the (x, y) plane and the track tangent,

cos λ =
∣∣∣∣
p⊥
p

∣∣∣∣ , tan λ = pz

|p⊥|
. (1.28)

Similarly, let us introduce φ, the angle between the x-axis and the projected track tangent
at t = 0, i.e.

cosφ = px(0)

|p⊥|
, sinφ = py(0)

|p⊥|
.

Using these two angles and Eq. (1.27) yields the simple trajectory equations
⎧⎨
⎩

x(t) = x(0)+ R sinφ + R sin(ωt − φ)
y(t) = y(0)− R cosφ + R cos(ωt − φ)
z(t) = z(0)+ Rωt tan λ.

(1.29)

The quantity Rωt represents the arc length of the track circle in the transverse plane. Figure
1.9 illustrates how the measurement of the signals in several layers of the tracker gives
access to the bending radius in the transverse plane and the arc length (left-hand schema).

The angle λ can then be evaluated by fitting the slope in the plane (arc length, z) as
shown in the right-hand schema. Having R and λ, we can then access the total momentum
thanks to Eqs. (1.27) and (1.28). Using units where the momentum is in GeV/c and the
charge is in units of the elementary charge e yields

|p| cos λ = δ |qB|R, (1.30)

where δ = 10−9c � 0.3. One can show [see Grupen and Shwartz (2011), for instance] that
the relative resolution of the momentum measurement can be parametrised as

σ(|p|)
|p| =

√
a2|p|2 + b2, (1.31)

where a and b are two constants encoding the intrinsic resolution coming from the measure-
ment points along the track and the effect of multiple scattering, respectively. Qualitatively,
the linear dependence of the first term with the momentum can be understood as fol-
lows: when the momentum is very high, the bending radius becomes almost a straight
line, and thus, the uncertainty on the momentum gets very large. This follows from the
fact that what is measured is not directly the bending radius but rather its inverse, the cur-
vature κ = 1/R (see Problem 1.6). Since according to Eq. (1.30) the uncertainty of κ
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�Fig. 1.9 A tracker with nine detecting layers. The trajectory, given by Eq. (1.29), is depicted with the dashed line. The position
measurements on layers are represented by black circles. They enable the measurement of R,φ and λ and thus the
momentum. In this example, the particle is produced in the centre of the detector. Otherwise, the distance of the closest
approach to the origin in the (x, y) plane would have to be determined.

is σ(κ) ∝ σ(1/|p|) = σ(|p|)/|p|2, it follows that σ(|p|)/|p| ∝ |p|. A typical order of
magnitude of the constant a in Eq. (1.31) is 10−3 − 10−4, when |p| is expressed in GeV/c.

Detection of High-Energy Electrons and Photons: Electromagnetic Calorimeters

Calorimeters are detectors that aim to measure the energy of a particle, neutral or charged,
by converting its energy into a measurable signal. Ideally, a calorimeter absorbs the whole
energy of a particle. Their role is complementary to that of trackers that measure the
momentum of a particle, ideally without perturbing the particle track much.

Electromagnetic calorimeters are dedicated to the energy measurement of photons and
electrons. They are optimised to exploit the energy-loss mechanisms of these particles
at high energies, in particular, bremsstrahlung emission for electrons and pair produc-
tion for photons (see Sections 1.4.2 and 1.4.3). Via the interaction with the absorber of
the calorimeter, a high energy electron emits a bremsstrahlung photon, which creates an
electron–positron pair. The members of the pair can in turn emit photons, and the process
continues until the produced particles have energies below the critical energy, at which
point they lose their energy by ionisation or Compton scattering, for electrons and photons,
respectively. This process creates a cascade of electrons, positrons and photons, called an
electromagnetic shower. Similarly, when a high energy photon enters the calorimeter, it
converts first into an electron–positron pair that generates the electromagnetic shower. An
illustration is given in Fig. 1.1, p. 13, where the two photons that are the decay products
of the π0 on the left-hand side of the sketch are the source of the electromagnetic shower
in the air. Air is not a good calorimeter, with its radiation length, X0, being too large (see
Table 1.6). It is much better to use dense materials with high atomic numbers, favouring
large energy loss, such that the value of X0 is small [cf. Eq. (1.15)].

Although the development of the electromagnetic shower is a statistical process, its main
characteristics can be inferred from a simple model (proposed by Heitler), where after each
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radiation length, X0, the number of particles is doubled and their energy is divided by 2.
In other words, in the processes γ → e+ + e− or e± → γ + e±, the energy of the initial
particle is assumed to be symmetrically shared between the particles of the final state. At
a depth of t radiation lengths, the number of particles is then N(t) = 2t, and their mean
energy E(t) = E0/2t, where E0 is the energy of the incident particle in the calorimeter. The
shower should stop its development when the energy of the particles is below the critical
energy, E(t) < Ec. The maximum number of particles is then reached after tmax radiation
lengths, with E(tmax) = Ec, i.e.

tmax = ln(E0/Ec)

ln(2)
, N(tmax) = E0

Ec
. (1.32)

Hence, after an exponential rise of the number of particles, the development of an electro-
magnetic shower reaches a maximum at a depth (in units of the radiation length) that scales
logarithmically with the initial energy E0, while the number of particles is proportional to
E0. For instance, according to Table 1.6, a 100 GeV electromagnetic shower reaches its
maximum at tmaxX0 � 12× 1.76 = 21 cm in iron and about 14× 0.56 = 8 cm in lead. A
calorimeter built with a lead absorber is thus much more compact.

Equation (1.32) gives information only about the longitudinal profile (i.e., along the
direction of the incident particle) of the shower. However, the shower also expands
transversally, in particular, because multiple scattering of electrons becomes significant
below the critical energy. The transversal profile is characterised by a lateral width, RM ,
called the Molière radius, which is given by Particle Data Group (2022)

RM =
√

4παmec2

Ec
X0 � 21.2 [MeV]

Ec
X0. (1.33)

The Molière radius is such that, on average, 90% of the total energy of the shower (and
thus, of the incident particle, approximately) is contained in a cylinder around the shower
axis whose radius is r = RM , and 95% for r = 2RM .

An accurate description of showers based on analytical formulas is complicated. They
are, however, rather well described by Monte-Carlo simulation.15 A simulation of an elec-
tromagnetic shower created by a 100 GeV photon in the air is shown in Fig. 1.10a. The
shape in denser materials is similar, with a much smaller longitudinal and lateral extension.

Calorimeters can be classified into two categories: homogeneous calorimeters and sam-
pling calorimeters. In the first one, the same material combines the properties of an
absorber and the ability to produce a measurable signal. An example is the Compact Muon
Solenoid (CMS) electromagnetic calorimeter, made of 61 200 lead tungstate (PbWO4)
crystals in the central region of the detector (the so-called barrel). These crystals are inor-
ganic scintillators,16 with a length of 25 radiation lengths and a transverse size at the front
face of about RM × RM , (X0 = 0.85 cm and RM = 2.19 cm in PbWO4 crystals). An
electromagnetic shower is then fully contained in length and spreads over a few crystals

15 Monte carlo simulations use random numbers to solve problems with many degrees of freedom.
16 A scintillator is a medium that converts the excitation of its constituents (for example, the crystal lattice),

due to the energy loss of charged particles, into visible (or often ultraviolet) light. There are many types of
scintillators: organic crystals, glass, or various other liquid, plastic or gaseous materials etc. Plastic scintillators
are often used because they can be easily shaped. See Leo (1994) for more details.
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(a)

(b)

�Fig. 1.10 Simulation of showers produced by a 100 GeV photon (a) and a 100 GeV proton (b) in the air. The longitudinal size
is 30.1 km and the transversal size, 10 km. Images from F. Schmidt, J. Knapp, CORSIKA Shower Images, 2005, www-
zeuthen.desy.de/jknapp/fs/showerimages.html.

transversally. Due to the large magnetic field (4 T), conventional photomultipliers (pre-
sented in the next section) cannot be used to detect the scintillation photons (their gain
and linearity are affected by the field). Instead, avalanche photodiodes (denoted APD) are
used to read the scintillation light. They are semiconductor devices (cf. Fig. 1.7) configured
with a high reverse bias voltage and optimised in terms of doping layers to reproduce the
avalanche of conventional photomultipliers when a photon enters the device (see the next
section).

The second category of calorimeters are sampling calorimeters that alternate the layers
of the absorber material with the active media that provide the measurable signal. Hence,
only a sample of the total energy deposition is measured, limiting their energy resolution.
However, they generally have the advantage of being more economical.

The relative energy resolution σ(E)/E of calorimeters improves with the energy of the
incident particle because the higher the energy, the larger the number of particles that are
statistically produced in the shower. A standard parametrisation is

σ(E)

E
=

√(
a√
E

)2

+
(

b

E

)2

+ c2, (1.34)

where a, b and c are constants reflecting the different sources contributing to the resolu-
tion. For showers with energies a few tens of GeV, the dominating term is the stochastic
term, a/

√
E, due to the fluctuations related to the physical development of the shower. At

very high energy (hundreds of GeV and beyond), the limiting factor is the constant term,
c (generally a fraction of percent), which includes instrumental contributions that do not
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�Fig. 1.11 Schematic diagram of a photomultiplier tube. The incident photon is represented by the grey wavy line and electrons
by the grey curves.

depend on the energy of the particle (for instance, inhomogeneity of the calorimeter). Typ-
ical energy resolutions are (1−5%)/

√
E[GeV] and (5−20%)/

√
E[GeV], respectively, for

homogeneous and sampling electromagnetic calorimeters (Fabjan and Gianotti, 2003).

Detection of Visible and Ultraviolet Photons: Photomultipliers

Photomultipliers convert light into a measurable electric current. They are used in many
detectors to convert scintillation or Cherenkov light, for instance. Figure 1.11 shows a
schematic diagram of a photomultiplier tube (denoted PMT).

When a photon impinges upon a photocathode, an electron, called a photoelectron, is
extracted by the photoelectric effect. It is focused by an electric guiding field onto the first
dynode, where it transfers some of its energy to the electrons in the dynode, producing
secondary electrons, which are in turn accelerated toward the next dynode. The process
continues by creating an ‘avalanche’ of electrons, eventually collected by the anode. The
voltage between the photocathode and the anode is subdivided by a chain of resistors such
that it increases gradually from one dynode to the next. Voltages of the order of 1 000–
2 000 volts are typically used to accelerate electrons within the chain of dynodes, with the
most negative voltage connected to the cathode and the most positive voltage connected
to the anode. The current collected at the anode is then proportional to the number of
incident photons. Typically three to five electrons are emitted by a dynode, for each inci-
dent electron. Most of the photomultipliers contain 10–14 stages of dynodes. Hence, gains
ranging from 106 to 108 are achievable, allowing the detection of a single photon. A photo-
multiplier, consisting of N dynodes and producing, on average, δ secondary electrons per
dynode, generates a total charge of δNe Coulombs per photoelectron. Because electrons
follow different paths, there is a natural variation in their transit time (denoted TTS) up to
the anode. Very large photomultipliers can have TTS∼ 5 ns. It thus takes about 5 ns to col-
lect the total charge by the anode. Hence, such a photomultiplier, with N = 12 and δ = 4
(these are typical numbers), would produce a current of about 0.5 mA per photoelectron,
an amply measurable current.
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Photomultipliers are characterised by their TTS but also by their quantum efficiency,
i.e. the number of photoelectrons released by the photocathode divided by the number of
incident photons. Depending on the material of the photocathode, the photomultiplier can
be sensitive to photons in the infrared to ultraviolet spectrum. Most of the photocathodes
are made of semiconductor materials because of their good quantum efficiency, ranging
typically from 10% to 30%.

In recent years, silicon photomultipliers (SiPM)17 have become very popular in particle
physics detectors (in Simon, 2019, many recent applications are given). A SiPM is a set of
pixels where each pixel (whose typical size is a few tens of micrometres and a SiPM can
have over a thousand pixels per mm2) is a silicon photodiode. However, all pixels are built
on a common silicon substrate, and the photodiodes are configured in Geiger mode (i.e.,
producing a large amplitude in response to the detection of even a single photon), by means
of a very strong bias voltage above the breakdown voltage, Vbkd.. Instead of producing an
avalanche (i.e., a charge carrier multiplication) that leads to a signal proportional to the
optical input signal as in the APD, the avalanche is self-sustaining, producing a signal
pulse that is not dependent on the intensity of the optical input signal. It is, therefore, an
all-or-nothing mode. Once there is an avalanche, the bias voltage automatically reduces to
below Vbkd., resulting in the quenching of the avalanche, and quickly returns above that
value after a recovery time, in order to be ready to sense new optical input signals [see
Buzhana et al. (2003) for more technical details]. Hence, if a SiPM pixel operates as a
binary device, the SiPM as a whole is an analogue detector, which can measure the light
intensity by counting the numbers of illuminated pixels, and, if the recovery time of each
pixel is short enough compared to the duration of the light source (recovery times of the
order of a few nanoseconds are possible), by counting the number of times a given pixel
is fired. There are many advantages of SiPMs for detectors; in particular, their small size
greatly improves the detector granularity compared with standard photomultipliers, while
still allowing a single photon to be counted. In addition, they are very fast and insensitive
to magnetic fields. Their dynamic range is, however, intrinsically limited by the number of
pixels.

Detection of Hadrons: Hadronic Calorimeters

Charged or neutral hadrons with high energy (kinetic energy above 100 MeV) undergo
inelastic nuclear reactions with matter that produce secondary hadrons, which in turn gen-
erate nuclear reactions and so on. This process produces a hadronic shower. The quantity
that characterises the development of a hadronic shower is the inelastic nuclear interaction
length λI that is analogous to the electromagnetic radiation length, X0, for electromagnetic
showers. It governs the absorption of hadrons by the matter:

N(x) = N0 e−x/λI ,

where N(x) is the number of hadrons surviving after passing through a length x in the mat-
ter. Generally, λI is much larger than X0. For instance, in iron λI = 16.8 cm, whereas

17 SiPM are also called Multi-Pixel Photon Counter and Geiger-mode avalanche photo diode (MPPC and GAPD),
and by many other names depending on the manufacturer.
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X0 = 1.76 cm. Hence, a hadronic shower tends to develop over a larger length scale
than an electromagnetic one, and hadronic calorimeters must then be thicker than electro-
magnetic calorimeters to contain the shower. In practice, the size of hadronic calorimeters
with respect to that of electromagnetic ones cannot scale as λI/X0. (If the electromagnetic
calorimeter is 1 m thick, the hadronic one should be almost 10 m thick!) Consequently,
only a fraction of the longitudinal development of the shower may be contained, with the
thickness of hadronic calorimeters being typically of the order of 5–10 interaction lengths
(while that of electromagnetic calorimeters ranges from 20 to 30 X0). Because of large
transverse momentum transfers in nuclear interactions, the lateral extension of hadronic
showers is also larger than that of electromagnetic showers. Figure 1.10 illustrates the dif-
ference between a shower initiated by a photon and a proton in the air (for non-dense media
such as air, λI and X0 can be of the same order of magnitude, explaining why the two show-
ers have a similar longitudinal extension in the figure). The dynamics of hadronic showers
are complicated. First, about 40% of the energy of the incident energy is dissipated and
does not contribute to the production of secondary hadrons (Grupen and Shwartz, 2011). It
can go to binding energy, can be transferred to recoils of nuclei or can simply escape detec-
tion through the production of neutrinos. Second, nuclear reactions produce many pions,
of which about one-third are π0 that decay into two photons. They induce an electromag-
netic shower, mainly concentrated around the hadronic shower core since electromagnetic
showers are narrower than hadronic ones. The π0 production, however, is subject to large
fluctuations. Hence, from one event to another, the shower can contain a large or negligible
fraction of electromagnetic contribution. Since, in the end, the measured energy is com-
ing from low- energy charged particles (electrons, pions, protons, etc.) interacting with the
active material, it is then difficult to optimise a calorimeter to respond similarly to elec-
trons and hadrons. All these complications imply that the energy resolution of hadronic
calorimeters is worse than that of pure electromagnetic ones, typically,

σ(E)

E
∼ (30% to 120%)√

E[GeV] .

The best resolution is generally obtained with calorimeters that use uranium as an absorber,
because in 238U, many neutrons and energetic photons are produced by its fission that can
eventually generate a visible signal.

Most of hadronic calorimeters are sampling calorimeters. The nuclear interaction length
of the active material that produces the visible signal is so large that it cannot contain
a significant fraction of the shower. Therefore, layers of absorber material are required.
Iron or copper are very common absorbers, while the active material is often composed of
plastic scintillator tiles.

Detection of Muons

Muons mainly lose their energy by ionisation. To give an order of magnitude, in copper
(ρ = 8.96 g/cm3), an MIP loses about 1.4 × 8.96 ∼ 12.5 MeV/cm (Fig. 1.4). Hence, to
first approximation, a 12.5 GeV muon would travel over 10 m (although the actual range
is shorter because muons at that energy are not MIPs, and therefore they lose slightly more
energy). Muons are thus highly penetrating particles – a unique feature among charged

https://doi.org/10.1017/9781009171595.002 Published online by Cambridge University Press

https://doi.org/10.1017/9781009171595.002


35 1.4 Detection of Particles
�

elementary particles. In other words, they are the only surviving charged particles after
travelling a few metres of matter.

Particle detectors at accelerators use this property extensively (in addition to possible
identification from the dE/ dx or the Cherenkov effect). In the outermost parts of the detec-
tor, beyond the absorbers of the calorimeters, tracking detectors are installed to detect the
passage of muons. Since the flux of particles in these regions is strongly reduced com-
pared to the region close to the collision point, gaseous detectors are often used. In those
detectors, the muon ionises the atoms of the gas, creating electron–ion pairs. The average
energy needed to produce a pair is about 30 eV, with a weak dependence on the gas (com-
pared to the 3 eV in semiconductor devices for electron–hole pairs). A system of anodes
and cathodes with a large potential difference amplifies the number of primary electron–
ion pairs, creating an avalanche proportional to the initial signal. Generally, a noble gas,
such as argon, is chosen since it requires a lower electric field to produce the avalanche.
Many muon detectors work on this principle: cathode strip chambers, drift tubes, resis-
tive plate chambers, gas electron multipliers, etc. They mostly differ by the structure of
their system of anodes or cathodes and the shapes of the latter (wires, strips, plates, etc.),
leading to different performance in terms of timing response and accuracy of the position
measurement.

Particle detectors for non-accelerator physics generally use other techniques to identify
muons. For instance, in water Cherenkov detectors, such as Super-Kamiokande in Japan,
muons produce sharp Cherenkov rings (resulting from the projection of the Cherenkov
light-cone onto photomultipliers), whereas rings originating from electrons are fuzzier
because of the multiple scattering that affects electrons. The analysis of the rings thus
makes it possible to identify the particles.

Notice that for very high energy muons (several hundreds of GeV), the main source of
energy loss is not ionisation but radiative processes (e+e− pair production, bremsstrahlung,
and photonuclear interactions).18 Hence, they can also produce electromagnetic show-
ers (due to e+e− pair production and bremsstrahlung) or hadronic showers (due to
photonuclear interaction) in calorimeters.

Detection of Neutrinos

Neutrinos are stable particles and light enough to travel over large distances at (almost) the
speed of light, even at low energy (cf., Fig. 1.3). However, since they only experience the
weak interaction, the probability that they interact with matter turns out to be ridiculously
weak. Despite this, there are specific detectors dedicated to their detection, as mentioned in
Chapter 9. These detectors usually exploit the production of a charged lepton, coming from
the interaction of a neutrino or anti-neutrino with a nucleon. To give an order of magnitude,
the cross section (whose exact definition is given in Section 3.5) of the reaction νe + n→
e− + p is about 0.9 × 10−38 cm2, for a neutrino energy of 1 GeV (Formaggio and Zeller,
2012). As a typical example, given that the flux of atmospheric neutrinos at that energy is

18 Photonuclear production of muons is the process μ± + nucleon→ μ± + hadrons, where a virtual photon is
exchanged between the muon and the nucleon.
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about 1 cm−2 s−1, we obtain an interaction rate per nucleon of 0.9×10−38 s−1. Hence, only
detectors containing a huge amount of matter can expect to observe these neutrinos via the
detection of the electron or the proton. Since 1 g of matter contains about NA = 6 × 1023

nucleons (the Avogadro number), a one kiloton detector running one year (3.15 × 107 s)
would detect at most 170 neutrinos. This is why modern neutrino detectors, aiming to
observing the atmospheric flux, are usually tens of kilotons. The situation is even worse
for lower energy neutrinos. At about 1 MeV, the cross section of the neutrino/antineutrino-
nucleon inelastic scattering is about σ = 10−43 cm2 (Giunti and Kim, 2007). The mean
free path (introduced in Section 3.5), i.e. the average distance between two interactions, is
given by

λ = 1

ρσ
,

where ρ is the density of nucleons. For example, in lead, ρ = NA × 11.3 (density) �
7 × 1024 nucleons/cm3, and hence, λ ∼ 1.5 × 1018 cm. More than one lightyear in lead
without an interaction!

Detectors operating at colliders cannot afford to have so much material dedicated to the
detection of neutrinos. Therefore, neutrinos usually simply escape those detectors without
leaving signals of their presence. Nevertheless, in the centre-of-mass frame of the two
incident particles from the collision of the beams, the total momentum should be zero by
definition. Hence, if all particle momenta can be observed except those of neutrinos, the
missing momentum can be attributed to the presence of neutrinos (assuming, of course,
that no other unknown particles escape the detector), i.e.

pν � pmiss = −
∑

i

pi,

where i runs over the momenta of the observed particles. However, this method gives
only a crude estimate of the neutrino momentum, limited by the momentum resolution of
the measured particles and the hermiticity of detectors (i.e., their coverage in solid angle,
ideally, 4π ).

Example of a General-Purpose Detector at a Collider

General-purpose detectors aim to cover the full diversity of reactions issued from beam
collisions. They must be able to identify all long-lived particles reaching the detector
after a collision (cf. list 1.10). Detectors at accelerators consist of a succession of concen-
tric sub-detectors surrounding the collision point, each specialised in a given task: track
determination, momentum measurement, energy measurement, and particle identification.
Figure 1.12 shows the layout of a typical detector in the transverse view, i.e. in the view
perpendicular to the beam direction. The concentric sub-detectors form the central part of
the detector called the barrel. The barrel is completed by two end-caps closing the barrel
from each side to detect particles emitted from all angles to the beam axis (end-caps are
not represented in Fig. 1.12). Such a detector is referred to as hermetic. It covers nearly a
solid angle of 4π around the collision point, the only particles not crossing active elements
of the detector being those emitted into the beam pipe (with angles of less than about 1

◦
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�Fig. 1.12 Layout (transverse view) of a general-purpose detector at colliders. The beams circulate in the dimension perpendic-
ular to the page and collide in the centre of the detector. The position of the magnet (a solenoid) in between the
two calorimeters is purely indicative; in some detectors, it surrounds the tracker, while in others, it is outside the two
calorimeters. The magnetic field is perpendicular to the page, towards the reader. Charged particle trajectories are
represented by solid curves, while those of neutral particles are shown by dashed lines.

to the beam axis). Recent examples of such detectors are the ATLAS and CMS detectors
operating at the LHC at CERN.

At the very core of the detector, a tracker is in charge of the momentum measurement
of charged particles. The tracker determines the curvature of the trajectories of the charged
particles in a powerful magnetic field. The innermost layers of the sensitive material (very
often silicon pixels) are located radially at a few centimetres from the interaction point,
which is, to a first approximation, in the centre of the detector in transverse view. They
have the finest granularity of all sub-detectors in order to cope with the high density of
particles, and they are crucial to the reconstruction of tracks from short-lived particles. By
interpolating tracks towards the centre of the detector, the actual position of the interaction
point, usually called the primary vertex, can be estimated. Particles such as B hadrons
containing a b-quark, which have a significant lifetime of the order of 10−12 s, cannot
reach those first layers; however, they travel over a few millimetres before decaying. The
interpolation of the charged tracks of their decay products allows the identification of a
secondary vertex that is displaced with respect to the primary vertex. The distance between
the secondary and primary vertices thus gives a measurement of the distance travelled by
the meson and indirectly its lifetime.

The next sub-detector encountered by long-lived particles is the electromagnetic calo-
rimeter. It stops electrons or photons by absorbing (ideally all) their energy through the
development of electromagnetic showers. An electron is thus distinguished from a photon
by the presence of a track in the tracker.
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Depending on the experiment, a solenoid providing a powerful magnetic field along
the beam axis (typically between 1 and 4 T) can be found surrounding the tracker, the
electromagnetic calorimeter (as shown in Fig. 1.12) or even the hadronic calorimeter (in
CMS for instance). The solenoid is often surrounded by steel or iron structures, the ‘return
yoke’, which confines the high magnetic field to the volume of the detector (it provides
a flux return path for the central solenoid field). Hence, outside the solenoid, there is a
residual magnetic field whose direction is reversed, explaining the strange trajectory of the
muon track in Fig. 1.12. The return yoke structures are not represented in Fig. 1.12. They
are often inserted in the muon sub-detectors or the calorimeters.

Hadrons reaching the hadronic calorimeter develop a hadronic shower (see Section
‘Detection of Hadrons: Hadronic Calormeters’). They are mostly pions, protons and neu-
trons. A neutron does not leave a track in the tracker, while charged hadrons do. Very
long-lived hadrons, such as the K0 and�0, can reach the tracker when sufficiently boosted,
but more likely they decay in the tracker after travelling a significant distance (several
tens of centimetres). Since they often decay into two charged hadrons, their signature in
the detector is of V-shape, with the vertex clearly separated from the primary vertex (see
Fig. 1.12). Incidently, in the early days of particle physics (mid-twentieth century), those
particles were called V-particles.

Finally, the outermost sub-detector is the muon sub-detector. Usually, muons are the only
charged particles that can pass through the rest of the detector without being stopped (see
Section ‘Detection of Muons’). Note, however, that charged pions produced in a hadronic
shower in the hadronic calorimeter can sometimes leak into the muon detector, mimicking
a muon signal.

1.5 What Is a Measurement?

Physics is an experimental science. Even the most beautiful theories must be falsifiable
(to claim to be science) and hence should be confronted, at least conceptually, with experi-
mental measurements. Experimental measurements can be used to estimate a quantity from
some data, and the question then arises of the best estimate of that quantity and its uncer-
tainty. Measurements can also be used to test a hypothesis that is based on a particular
model and to test the consistency of the data with that model. This section assumes that
the reader already has an elementary knowledge of probability theory and statistics. Only
a few topics relevant to particle physics are covered in this section, without proving them
in depth. The reader can (and should) consult statistics textbooks, such as Barlow (1989),
James (2006), Bohm and Zech (2010) and Lyons (1986) to fill in the gaps.

1.5.1 Generalities

Randomness is inherent in particle physics because it is built upon quantum mechanics.
For instance, a muon decays on average in 2.2 microseconds, but sometimes it takes less
and sometimes more. We can calculate the probability that it decays at a given time, but
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we cannot say precisely when it will happen. Even the signal collected by a detector has
a degree of randomness: a charged particle passing through a medium has a certain prob-
ability of ionising the atoms of that medium, which induces intrinsic fluctuations in the
collected current.

Continuous random processes are described by probability density functions (p.d.f.). If x
is a random variable and p(x) is its p.d.f. normalised to unity, then p(x) dx is the probability
of finding x between x and x + dx. The first two moments of the distribution, the mean μ
and variance σ 2, are given by

μ = E[x] =
∫

xp(x) dx, (1.35)

where E[x] is the expectation value and

σ 2 = E[(x− μ)2] = E[x2] − μ2. (1.36)

The square root of the variance, σ , is the standard deviation, and it represents a measure
of the width of the distribution. For outcomes of a process depending on several random
variables, let us say x and y, the covariance is

cov[x, y] = E[xy] − E[x]E[y] = E[(x− μx)(y− μy)], (1.37)

where μx and μy are the means of x and y, respectively. These mean values are given by
Eq. (1.35), inserting a multivariable p.d.f., p(x, y), and performing a double integral over x
and y. The variance of x is trivially deduced from the covariance, with σ 2

x = cov[x, x]. It is
convenient to introduce the dimensionless correlation coefficient

ρxy = cov[x, y]
σxσy

, (1.38)

which varies between−1 and +1. When x and y are independent, namely when the p.d.f. is
factorisable, i.e. p(x, y) = px(x)py(y), the covariance and correlation coefficient are zero.19

It is standard to have random variables that depend on other random variables. If x and y
are two random variables, and x′(x, y) and y′(x, y) are two variables depending on x and y,
the covariance of x′ and y′ is related to that of x and y via the formula

cov[x′, y′] = ∂x′
∂x
∂y′
∂x cov[x, x] + ∂x′

∂y
∂y′
∂y cov[y, y]

+ ∂x′
∂x
∂y′
∂y cov[x, y] + ∂x′

∂y
∂y′
∂x cov[y, x], (1.39)

where all derivatives are evaluated with x = μx, y = μy. The variance, σ 2
x′ = cov[x′, x′], is

then

σ 2
x′ =

(
∂x′

∂x

)2

σ 2
x +

(
∂x′

∂y

)2

σ 2
y + 2

∂x′

∂x

∂x′

∂y
ρxyσxσy. (1.40)

The extension of Formulas (1.39) and (1.40) to more variables, x1, . . . , xn, is straightfor-
ward using the covariance matrix

Vij = cov[xi, xj] = ρijσiσj. (1.41)

19 The converse is not necessarily true: the covariance can be 0 when x and y depend on each other. This is true,
for example, if x is uniformly distributed between 0 and 1 and y = ±x, where the sign is randomly chosen.
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For instance, Eq. (1.40) becomes

σ 2
x′i
=

∑
k,l

∂x′i
∂xk

∂x′i
∂xl

Vkl =
∑

k

(
∂x′i
∂xk

)2

σ 2
k + 2

∑
k>l

∂x′i
∂xk

∂x′i
∂xl
ρklσkσl. (1.42)

Notice that these formulas are an approximation when the variables x′ and y′ are non-linear
combinations of x and y.

Among the infinite possibilities of p.d.f., the Gaussian (or normal) distribution and the
Poisson distribution are the most often encountered. The Gaussian distribution is of the
utmost importance because of the central limit theorem, which states that the sum of n
random variables distributed according to any p.d.f. with finite mean and variance has a
p.d.f. approaching the Gaussian distribution for large n. As many measurements are based
on averaging samples of data, Gaussian distributions are often observed. The well-known
formula of the Gaussian density function with mean μ and variance σ 2 (and thus standard
deviation, σ ) is

G(x ;μ, σ) = 1√
2πσ

exp

[
−1

2

(
x− μ
σ

)2
]

. (1.43)

The Gaussian density function is represented in Fig. 1.13. The probability that the random
variable x lies in the interval [a, b] is given by

pa,b =
∫ b

a
G(x ;μ, σ) dx = FG(b)− FG(a), (1.44)

where FG(x) =
∫ x
−∞ G(x′ ;μ, σ) dx′ is the cumulative function of the Gaussian. Conversely,

the probability of being outside this interval is 1 − pa,b. The canonical values in terms of
numbers of standard deviations from the mean value, μ± nσ , are given in Fig. 1.13. With
the change of variable x→ t = (x − μ)/(√2σ), pa,b, with a = μ− nσ and b = μ+ nσ ,
takes the expression pa,b = erf(n/

√
2), where erf(x) is the error function erf(x) = 1/

√
π ×∫ x

0 exp(−t2) dt.
Whereas the central limit theorem states that a variable that is the sum of a large number

of random variables is described by the Gaussian (or normal) density function, a variable
that is the product of random variables is described by the log-normal density function.
The logarithm of such a variable would follow a Gaussian distribution G(ln(x) ;μ, σ), and
thus the p.d.f. of x satisfies f (x ;μ, σ) dx = G(ln(x) ;μ, σ) d(ln(x)).20 It follows that the
log-normal density function is

f (x ;μ, σ) = 1

x
√

2πσ
exp

[
−1

2

(
ln(x)− μ
σ

)2
]

, (1.45)

with x > 0. The mean and standard deviation are eμ+σ 2/2 and eμ+σ 2/2
√

eσ 2 − 1, respec-
tively. The log-normal distribution is encountered in processes with many small multi-
plicative variations. A typical example is shower development. An electromagnetic shower

20 In general, if x is a vector of random variables described by the p.d.f. px(x) and y is a vector of random variables
obtained by the one-to-one correspondence y = f (x), then the p.d.f. of y is py(y) = px(x)|J| = px(f−1(y))|J|,
where |J| is the determinant of the Jacobian transformation, i.e. Jij = ∂xi/∂yj. In the case of a single random
variable, the relation is equivalent to py(y) dy = px(x) dx.
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–3 –2 –1 0 1 2 3

(x − μ)/σ
a −μ
σ

b −μ
σ

pa,b =
b

a
G(x ;μ,σ) dx

G(x ;μ,σ) = 1√
2πσ

exp – 1
2

x − μ
σ

2

Interval pa,b 1− pa,b

a b
μ− σ μ+ σ 68.27% 31.73%
μ− 2σ μ+ 2σ 95.44% 4.55%
μ− 3σ μ+ 3σ 99.73% 2.7× 10−3

μ− 5σ μ+ 5σ 99.99% 5.7× 10−7

μ− 1.64σ μ+ 1.64σ 90% 10%
μ− 1.96σ μ+ 1.96σ 95% 5%
−∞ μ+ 1.28σ 90% 10%
−∞ μ+ 1.64σ 95% 5%

�Fig. 1.13 The Gaussian density function and the fraction of values, with pa,b, lying within an interval [a, b].

results mainly from the multiplication of the pair-production and bremsstrahlung processes
(see Section ‘Detection of High-Energy Electrons and Photons: Electromagnetic Calorime-
ters’), each with their corresponding energy loss. Hence, fluctuations in shower size at a
given depth, in a sample of showers of the same energy, are approximatively log normal
(Gaisser, 1990, chapter 15).

The Poisson density function is also very often encountered in physics experiments. It
describes the probability of n events occurring (n, an integer number) given that the mean
expected number is μ (a real positive number). The Poisson p.d.f.21 is

P(n ;μ) = μ
n

n! e
−μ. (1.46)

Each event is understood to occur independently of one another. It can be shown that the
Poisson distribution is a limiting case of the binomial distribution.22 By construction, not
only the mean of the Poisson distribution is given by μ but also its variance (the stan-
dard deviation is thus

√
μ). The Poisson distribution then depends on a single number.

Although the Poisson distribution is discrete, it is normalised to unity in the sense that∑∞
n=0 P(n ;μ) = 1. A frequent application is when the mean rate of a process (mean num-

ber of reactions per second) is known, for example, the decay rate of a particle, but one
wishes to evaluate the probability of observing n events during the time t. If the rate is λ,
then the mean number of events during t is μ = λt, and the probability of observing n
events is thus given by P(n ;λt). An even more frequent application is when data are sam-
pled, i.e. when data are analysed in discrete intervals (called bins), for example, bins in
the energy channel of a detector, bins in time of arrival of a particle, etc. One then counts
the number of events in each bin. In most of these cases, this number is assumed to follow

21 It is formally not a p.d.f. since the Poisson distribution is not continuous. For discrete random variables, it is
called a probability mass function (p.m.f.), and it directly gives a probability.

22 Probably, the binomial distribution is already well known by the reader. It describes cases where there are only
two possible outcomes (such as heads and tails in a coin toss). If one calls one of the two outcomes ‘success’,
then the probability of obtaining r success in N independent trials is N!

r!(N−r)! p
r(1 − p)n−r , where p is the

intrinsic probability of success. The Poisson distribution is obtained when p→ 0, N →∞ and N × p = μ.
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�Fig. 1.14 The Poisson distribution. The discrete points for each value ofμ are connected by smooth curves for clarity.

a Poisson distribution (counting can never be negative). If ni events are observed in bin i,
assuming that ni represents the mean number of events of the Poisson distribution of that
bin, the uncertainty is then

√
ni, according to the standard deviation of the Poisson distri-

bution. Notice that it is the estimated uncertainty on the mean of the underlying Poisson
distribution. The quantity

√
ni is therefore not the error on the number of observed events,

which is assumed to be an error-free count. Figure 1.14 presents the Poisson distribution
for various values of μ. Notice that the distribution is not symmetric around μ. However,
it becomes more symmetric as μ increases. In fact, when μ is large (in practice, above 20),
the Poisson distribution P(n ;μ) approaches the Gaussian distribution G(n ;μ, σ = √μ).

1.5.2 Measurement Uncertainties

Measurement uncertainties (or errors, both words are used equivalently) are classified into
two categories: statistical uncertainties often called random uncertainties and systematic
uncertainties (in short systematics). The former arise, for example, from the inherent sta-
tistical nature of the phenomena studied in particle physics. The limiting ability of any
device to give measurement with an infinite accuracy also contributes to these kinds of
errors. In general, statistical uncertainties are supposed to follow a known statistical dis-
tribution. They all share the characteristics that sequential measurements are statistically
uncorrelated. The precision is thus improved by combining several measurements. Indeed,
if ri is the result of the ith measurement and σri , its uncertainty, the error resulting from the
average of N measurements is, according to Eq. (1.42),

σ 2 = 1

N2

N∑
i=1

σ 2
ri

.

Assigning to all measurements the same error σr, it follows that σ = σr/
√

N, scaling with
the inverse of the square root of the number of measurements. Notice that, in general, when
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each measurement has a different uncertainty, it is more appropriate to perform a weighted
average

r = 1∑
i wi

N∑
i=1

wiri,

where wi = 1/σ 2
ri

(justified in Problem 1.7). Assuming no correlation in Eq. (1.42), the
uncertainty of r is then

σ 2 = 1(∑
i wi

)2

N∑
i=1

w2
i σ

2
ri
= 1∑

i wi
. (1.47)

Unlike statistical errors, systematic uncertainties do not necessarily improve with more
data. They generally represent a possible bias, mistake, etc. They are not directly due to
the statistic of the data. A simple example is a thermometer, whose 0

◦
is actually shifted

by a constant value. All measurements will be affected by that value. A more realistic
example in the context of particle physics is a calibration error of a calorimeter that affects
the energy scale, i.e. the response of the calorimeter to the energy of the incident particle.
Another example is a measurement using inputs from a theoretical model that is actually
wrong or inputs from a simulation that does not describe properly the real data. System-
atic errors affect different measurements made in identical conditions in the same manner.
Hence, repeated measurements do not reduce systematic errors. It is always delicate to
estimate systematic errors. There is no universal recipe, and it often relies on the experi-
ence of the experimentalist who can guess what parameter has a significant effect on the
final result of an analysis. A case often encountered is an external input parameter with
known uncertainty σ . For example, the luminosity of an accelerator. The resulting system-
atic uncertainty on the analysis is then obtained by varying the input parameter by±σ . The
deviation from the initial analysis result is then considered as a systematic uncertainty for
this parameter.

At the end of the analysis, all sources of systematic uncertainties have to be combined
with the statistical error. Implicitly we assume that the value x that is measured results from
the summation, x = xtrue+�xstat+∑

i�xi,syst, where�xstat and�xi,syst have the respective
errors σstat and σi,syst. No correlation is assumed between the statistical uncertainty and the
sources of systematic uncertainties. Formula (1.42) then yields

σ 2
x = σ 2

stat +
∑

k,l

ρkl σk,systσl,syst

︸ ︷︷ ︸
≡ σ 2

syst

.

The final result is then generally reported as r = x ± σstat ± σsyst. For example, when the
Higgs boson was discovered by the ATLAS and CMS experiments in 2012, the publication
CMS Collaboration (2012b) reported the mass of the boson as mH = 125.3± 0.4 (stat.)±
0.5 (syst.) GeV/c2. Separately quoting the statistical and systematic uncertainties has the
advantage of indicating whether taking more data would significantly reduce the global
uncertainty.
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1.5.3 Parameter Estimation: Maximum Likelihood and Least-Squares Methods

As physicists, we very often measure quantities that we want to compare with a model. The
model may depend on parameters that we would like to evaluate. Two general methods are
briefly described in this section: the maximum likelihood and least-squares methods.

The Maximum Likelihood Method

Let x = x1, . . . , xn be n independent observations. We assume that they all follow the
same p.d.f., f (x ;θ), which depends on a parameter θ that we wish to evaluate. The joint
probability for obtaining x is the product of the p.d.f. (there should be an extra n! if the order
of observations does not matter, but we will see below that this factor will not play any
role). When this joint probability is interpreted as a function of the parameter of interest, it
is called the likelihood function,

L(θ) ≡ L(x ;θ) =
n∏

i=1

f (xi ;θ). (1.48)

Notice that L(θ) is not the p.d.f. of θ . Let us call θ̂ an estimator of θ . One can show
that when n becomes infinite, then θ̂ , given by the global maximum of the likelihood, is a
consistent estimator, i.e. it converges to the true value of θ . It is unbiased, i.e. its expectation
value is θ , and its variance converges to the minimum possible variance for an unbiased
estimator (it is then qualified as efficient). Beware that these nice properties are only true
in the asymptotic limit, i.e. when n becomes infinite. For small n, the estimator is usually
biased. The name of the method, the maximum likelihood, may suggest that the estimate
is the most likely value, whereas it is actually the estimate that makes the data most likely.
In practice, it is more convenient to find the global minimum of the negative log-likelihood
function (because it converts a product into a sum, which is easier to handle in terms of
numerical accuracy),

L(θ) = − ln (L(θ)) = −
n∑

i=1

ln (f (xi ;θ)). (1.49)

The estimator θ̂ is then a solution of

∂

∂θ
L(θ)

∣∣∣∣
θ=θ̂
= −

n∑
i=1

∂

∂θ
ln (f (xi ;θ))

∣∣∣∣
θ=θ̂
= 0. (1.50)

In general, there is no analytic solution to this equation, and the solution must be found
numerically. Once θ̂ is found, we can expand L(θ) around this value and obtain

L(θ) = L(θ̂)︸︷︷︸
Lmin

+ 1

2!
∂2L(θ)
∂θ2

∣∣∣∣
θ=θ̂
(θ − θ̂ )2 + O(θ − θ̂ )3. (1.51)

Let us set

σθ̂ =
(
∂2L(θ)
∂θ2

)−1/2
∣∣∣∣∣
θ=θ̂

. (1.52)
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Equation (1.51) then becomes

L(θ) = Lmin + 1

2

(
θ − θ̂
σθ̂

)2

+ O(θ − θ̂ )3. (1.53)

Or equivalently,

L(θ) � Lmax × exp

⎛
⎝−1

2

(
θ − θ̂
σθ̂

)2
⎞
⎠ .

The quantity σθ̂ in Eq. (1.52) represents the standard deviation of θ̂ only when L is
reasonably parabolic near θ̂ . Equivalently, σθ̂ can be obtained from Eq. (1.53) since for
θ = θ̂ ± σθ̂ ,

L(θ̂ ± σθ̂ ) = Lmin + 1/2 or L(θ̂ ± σθ̂ )/Lmax = exp(−1/2). (1.54)

The standard deviation is then obtained when L increases by 1/2 from its minimum value.
Similarly, the n standard deviations are obtained when L increases by n2/2 from its min-
imum value. Even for non-parabolic forms, Eq. (1.54) is used to derive the error on θ̂ .
In such a case, the error may not be symmetric around θ̂ . We can do so because estima-
tors obtained with the likelihood method are invariant under parameter transformations: if
α = g(θ), with g being a one-to-one transformation function, then the estimator of α that
maximises the likelihood is just α̂ = g(θ̂). Hence, if L(θ) is not parabolic around θ̂ , we
can perform the appropriate transformation α = g(θ), such that L(α) becomes parabolic.
The invariance property not only applies to the maximum of the likelihood L but also to
its relative values (James, 2006) and thus to the differences of its logarithm L. Hence,
the values of α satisfying L(α) = L(α̂) + 1/2 correspond to the values of θ satisfying
L(θ) = L(θ̂) + 1/2, and the 1σ domain (or any confidence interval) can be found with-
out explicitly finding the transformation function g. Figure 1.15 illustrates the situation for
a non-parabolic shape, where the 68.3% confidence interval [θ−, θ+] containing the true
value of θ (cf. table in Fig. 1.13) is not symmetric around θ̂ . The measured value of θ is
then noted with its errors as θ̂ +σ+−σ− instead of θ̂ ± σθ̂ . For instance, the mass of the u quark
in Particle Data Group (2022) is noted mu = 2.16+0.49

−0.26 MeV. When the number of obser-
vations is large, L gets closer to a parabola (a consequence of the central limit theorem),
and σ−, σ+ in Fig. 1.15 converge to σθ̂ , the standard deviation of θ̂ in the parabolic case.

For a set of parameters θ = θ1, . . . , θm, there are m equations such as Eq. (1.50) to solve,
i.e.

∂

∂θk
L(θ)

∣∣∣∣
θ=θ̂

= −
n∑

i=1

∂

∂θk
ln (f (xi ;θ))

∣∣∣∣
θ=θ̂

= 0, k = 1, . . . , m.

The standard deviation of the parameters is obtained for the parabolic case by finding the
covariance matrix where the elements of its inverse are given by

(
V−1

)
ij =

∂2L(θ)
∂θi∂θj

∣∣∣∣
θ=θ̂

. (1.55)

For non-parabolic cases, Eq. (1.54) extended to the m-dimension space must be applied.
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L(θ) =
lnL(θ)

L(θ̂)

+1/2

+2

+9/2

θ̂θ̂� θ̂+ θ

σ+σ�

�

�Fig. 1.15 The negative log-likelihood function (solid curve) and the parabolic approximation around theminimumvalue (dashed
line). The asymmetric errors are σ+ and σ−, corresponding to the ‘1σ domain’ (68.3%), obtained withL(θ̂) +
1/2. The ‘2σ and 3σ domains’ (95.4% and 99.7%, respectively) are obtained withL(θ̂) + 2 andL(θ̂) + 4.5,
respectively.

For processes where the number of events is not fixed, if one wants to compare the
observed number of events n to a theory prediction ν that might partially depend on
the other parameters θ , an additional Poisson term can be incorporated in the likelihood
function. Equation (1.48) then becomes

L(ν, θ) ≡ L(x ;ν, θ) = e−ν
νn

n!
n∏

i=1

f (xi ;θ). (1.56)

This variation of the maximum likelihood method is called the extended maximum like-
lihood. The unknown parameters θ are now not only encoded in the shape of the data
distribution but also in the number of events. The estimate of the expected number of
events ν̂ is then obtained by the minimisation of

L(ν, θ̂) = − ln(L(ν, θ̂)) = ν − n ln n−
n∑

i=1

ln (f (xi ;θ))+ constant

with respect to all free parameters. If ν does not depend on θ̂ , the constraint ∂L/∂ν = 0
yields ν̂ = n, and the values θ̂ are the same as those obtained from the standard maximum
likelihood method. Otherwise, the additional constraint improves the accuracy on θ̂ .

The Least-Squares Method

Let us suppose that we have n observations of two variables, x and y. The xi variables
(i ∈ [1, n]) are assumed to have negligible uncertainties, whereas yi has an uncertainty
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σi. A situation often encountered is the case of binned data, where x is displayed in a
histogram with n bins, which represents the observed distribution of x. For bin i, x = xi

and yi would be the bin content, i.e. the number of events corresponding to the value xi. Let
us imagine that the relation between xi and yi is given by theoretical supposition, s(xi ;θ),
which depends on a parameter θ that we wish to estimate. For example, x represents the set
of decay times of many identical particles, and s(xi ;θ) would be the exponential function,
with θ being the lifetime of the particle. If s(xi ;θ) describes reasonably well the data, the
variable yi should be very close to s(xi ;θ). The least-squares method consists in minimising
the squares of the residuals,

χ2 =
n∑

i=1

[
yi − s(xi ;θ)

σi

]2

, (1.57)

with respect to the parameter of interest, i.e.

∂χ2

∂θ

∣∣∣∣
θ=θ̂
= 0. (1.58)

Formula (1.57) assumes that the yi variables are uncorrelated. If it is not the case, one has
to take into account their correlation, using the correlation matrix V , and thus Eq. (1.57)
becomes

χ2 =
n∑

i,j=1

[yi − s(xi ;θ)] (V−1
)

ij [yj − s(xj ;θ)]. (1.59)

Strictly speaking, χ2 in Eq. (1.57) or (1.59) is a true chi-square only if yi is Gaus-
sian distributed with mean s(xi ;θ) and standard deviation σi. It is generally a reasonable
assumption since we saw previously that many distributions with large statistics converge
to a Gaussian distribution. In such a case, χ2 follows a distribution called the chi-square
distribution given by the p.d.f.

fχ (χ
2 ;n) = 2−

n
2

�
(

n
2

) (
χ2

) n−2
2 exp

(
−χ

2

2

)
, (1.60)

which has a mean value n and a variance 2n. The Gamma function is defined as �(x) =∫∞
0 tx−1e−t dt and corresponds to (x−1)! when x is an integer. For large n (typically above

30), fχ (χ2 ;n) approaches a Gaussian p.d.f. Notice that because of the constraint (1.58),
we adjust one parameter, reducing the number of degrees of freedom (n.d.f.) by one unit.
Indeed, θ could be chosen to perfectly match one of the yi, and hence the variability of
χ2 will not be due to n independent random variables but to n− 1. Hence, if χ2(θ) in Eq.
(1.57) follows the chi-square distribution fχ (χ2 ;n), χ2(θ̂) actually follows fχ (χ2 ;n − 1).
Similarly, if m parameters θ = θ1, . . . , θm are estimated, the chi-square distribution is given
by fχ (χ2 ;n− m).

The least-squares method is rather general since knowledge of the actual distribution of
yi is not required, only of its variance. It is thus simple to implement. (An example of its
application to estimate parameters is proposed in Problem 1.8.) However, if the distribution
of yi is known, it is better to use the maximum likelihood method since it will be more
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accurate. Notice that both give the same estimator if yi is Gaussian distributed. Indeed, in
such a case, the p.d.f. of the yi (uncorrelated) measurements is

f (y ;θ) =
n∏

i=1

1√
2πσi

exp

[
−1

2

(
yi − s(xi ;θ)

σi

)2
]

,

and thus the negative log-likelihood reads

L(y ;θ) = − ln (f (y ;θ)) = χ2/2+
n∑

i=0

ln
(√

2πσi

)
. (1.61)

Hence, minimising L is equivalent to minimising χ2 (since only χ2 depends on θ ). We
can then take advantage of what we have learned with the likelihood to deduce that, due
to Eq.(1.54), the standard deviation error of the estimated parameter θ in the least-squares
method is obtained when χ2 = χ2

min + 1, while the domain at n-sigma is obtained with
χ2 = χ2

min + n2. Moreover, in the specific case of Gaussian distributed variables, the
transposition of Eq. (1.55) into the least-squares language is

(
V−1

)
ij =

1

2

∂2χ2

∂θi∂θj

∣∣∣∣
θ=θ̂

, (1.62)

and the standard deviation of the parameters can be recovered directly from the reading of
the covariance matrix (at the cost of a matrix inversion). Both methods require the minimi-
sation (or maximisation) of quantities, which generally cannot be performed analytically
and require numeric tools. In the high energy physics community, a software package
called ROOT (Brun and Rademakers, 1996) is extensively used. It provides many tools
and has the great advantage to be free and open source.23

The maximum likelihood and the least-squares methods are extensively used to estimate
parameters with their uncertainties. One may wonder what is the meaning of the parameter
uncertainty or its confidence intervals since, in principle, a parameter (even if unknown) is
not expected to be a random variable. When probabilities are interpreted from a frequentist
point of view,24 quoting that θ = θ̂±σθ means that out of N measurements of the parameter
θ , one should expect that on average about 68.3% contain the true value within their error
intervals. For Bayesians, the parameter θ has a p.d.f. and is therefore seen as a random
variable for which σθ has a clear interpretation.

1.5.4 Model and Hypothesis Testing

Very often, one wants to test hypotheses such as ‘Is there an unknown particle in my data?’,
‘Is this track a muon or an electron?’ and ‘Does the energy loss increase logarithmically

23 See https://root.cern.
24 There are two schools of thought among statisticians: frequentist and Bayesian. For frequentists, if an exper-

iment is reproduced N times in the same condition, then the probability of a given outcome is the number of
times it is observed divided by N when N becomes infinite. It is intuitive, but, in practice, N can never be
infinite. Moreover, how should one define a probability, when an experiment can only be realised once, as, for
example, the big bang? For Bayesians, probabilities are interpreted as a degree of belief that something will
happen. It could be measured, for instance, by considering the odds offered for a bet. This approach extends
to more conceptual objects, such as the probability of a theory. Hence, there is a degree of subjectivity, but the
definition of probabilities does not suffer from frequentist limitations. Both approaches are complementary.

https://doi.org/10.1017/9781009171595.002 Published online by Cambridge University Press

https://root.cern
https://doi.org/10.1017/9781009171595.002


49 1.5 What Is a Measurement?
�

with the velocity of the particle?’. In the first two examples, we compare two hypotheses:
physics beyond the Standard Model against the physics of the Standard Model and track
left by a muon against track left by an electron. The question arises as to which hypoth-
esis is more likely, and one should have clear criteria to claim a discovery or refute it.
In the third example, there is no unique alternative hypothesis to which we can compare
the hypothesis ‘the energy loss increases logarithmically with the velocity of the parti-
cle’. Actually, there are even an infinite number of alternative hypotheses. This last case
is known as the goodness of fit. In all cases, one then needs to define criteria, i.e. a test
statistic, to determine the level of agreement of a hypothesis with the observation.

Goodness of Fit

When a fit is performed, i.e. the adjustment of parameters θ̂ of a model using a functional
form s(x, θ) to the data x, the hypothesis we usually want to test is whether the model is
consistent with the data. The χ2-test is the most popular test statistic [but there are others,
see the textbooks James (2006) and Barlow (1989), for instance]. It consists in calculating
χ2 with Eq. (1.59) and evaluating the p-value, i.e. the probability to get χ2 values that are
equal to or greater than the actual value observed in the data, χ2

obs. Since χ2 is supposed to
follow the chi-square probability function (1.60), the p-value is defined as

p-value =
∫ ∞
χ2

obs

fχ (χ
2 ;ndof) dχ2, (1.63)

where ndof is the number of degrees of freedom. ROOT implements this calculation for us
with the function TMath::Prob(Double_t chi2, Int_t ndf). If m parameters θ̂ were
previously adjusted with the same n data points x, then ndof = n−m. Moreover, if the least-
squares method was used, then χ2

obs = χ2
min. The p-value, being built with the data, is itself

a random variable. By construction, it lies between 0 and 1 and is uniformly distributed
(if the errors are really Gaussian distributed). A large value of χ2

obs, thus of the squares
of the residuals, should indicate a poor fit of the model to the data and leads to a small
p-value. It could also be due to an underestimation of errors. Conversely, a very low χ2

obs

value is probably due to an overestimation of errors. Assuming that the errors are correctly
estimated, the model described by the function s(x, θ) can then be rejected if

p-value < α, (1.64)

where 1 − α is called the confidence level. The choice of α is subjective, but the standard
values of α are 1%, 5% or 10%. Instead of the p-value, one can use the following rule of
thumb as a quick check: since according to the chi-square p.d.f., Eq. (1.60), the mean value
of χ2 is ndof and the standard deviation is

√
2ndof, one expects χ2

obs to be reasonably close
to ndof. More specifically, the rule of thumb consists in checking that |χ2

obs − ndof|/√2ndof

is less than or similar to 1.
When fit parameters are determined with the least-squares method, it is natural to use the

χ2-test to check the goodness of fit. But if the maximum likelihood method is used with
unbinned data, how can we check the quality of the description of the data by the model?
A possible solution is to bin the data and perform a χ2-test using the best-fit parameters
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θ̂ obtained with the first method to predict the bin content. Let us denote by n the number
of bins, by ni the number of events in bin i and by N = ∑

i ni the total number of events.
The binning is chosen such that ni is large enough to consider that the Poisson distribution
approaches a Gaussian (in practice, ni ≥ 5 is acceptable). If the p.d.f. of x is f (x ;θ), the
expected probability at the best-fit parameter θ = θ̂ , for an event to appear in bin i, is

pi(θ̂) = 1

C

∫ x
up
i

xlow
i

f (x ;θ̂) dx, (1.65)

where xlow
i and xup

i are the bin limits and C is a normalisation constant. When the histogram
range covers all possible values of x, C = 1 since the p.d.f. is normalised; otherwise,

C = ∑
i

∫ x
up
i

xlow
i

f (x ;θ̂) dx. In practice, the integral in Eq. (1.65) is often approximated with

�xif (xc
i ;θ̂), where �xi = xup

i − xlow
i and xc

i is the value at the bin centre. When the total
number of events is fixed to N (thus, we only check the shape of the distribution, not the
normalisation), we can calculate the following χ2:

χ2 =
n∑

i=1

[
ni − Npi(θ̂)

]2

Npi(θ̂)
. (1.66)

It follows a chi-square probability function (1.60), with (n − m − 1) degrees of freedom
(the −1 is coming from the constraint on the total number of events). Then, the p-value
(1.63) provides a criterion to evaluate the quality of the fit. Alternative χ2 can be built to
test the goodness of fit. They are described extensively in Baker and Cousins (1984).

The χ2-tests that use the p.d.f. (1.60) are limited by the underlying assumption that the
measurements have Gaussian errors. It is generally a good assumption, but not always. For
instance, binned data can contain nearly empty bins, where the Poisson distribution with a
low mean cannot be approximated by a Gaussian. Also, the real distribution of errors could
look more or less Gaussian, but it actually has long tails that cannot be described by a
Gaussian. A possible workaround is to find a function that transforms the data into another
variable x′ = f (x) whose errors are more Gaussian-like. The χ2-test is then performed on
x′. If it is not possible, one can always generate the expected χ2 distribution with simulated
pseudo-experiments from which a p-value is calculated.

Claiming a Discovery and Setting Limits

Let us imagine that we observe a bump in the distribution of some data, which might be
a hint of a new particle. To quantify whether the bump is significant, we introduce two
hypotheses: the null hypothesis, H0, corresponding to the absence of new physics (i.e., the
known background), considered to be true by default; and the alternative hypothesis, H1,
where a new signal is allowed on top of the usual background. The joint p.d.f., f (x|H), of
the measured variables x = x1, . . . , xn depends on the hypothesis. Let us assume that a test
statistic (which depends on the data), t(x), that discriminates H0 from H1 can be found. It
depends on x, and so is itself a random variable described by its own p.d.f., ft(t|H). The
two hypotheses H0 and H1 can be discriminated if ft(t|H0) and ft(t|H1) are significantly
different. Suppose that by convention, t(x) tends to have larger values when H1 is true. For
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ttcut

Critical region

H0 rejected

Acceptance region

H1 rejected

αβ

ft(t|H0) ft(t|H1)

�Fig. 1.16 Probability distribution of the test statistic t for the null hypothesis H0 and the alternative H1. The critical and accep-
tance regions are delimited by tcut, which determines the values of the significance level, α, and the power of test
1− β (see text).

this purpose, a value tcut is chosen that delimits two regions: the so-called critical region,
when t > tcut, and the acceptance region, when t < tcut. If the H0 hypothesis is true, the
probability to get a value t in the critical region is

∫ ∞
tcut

ft(t|H0) dt = α, (1.67)

while the corresponding probability if H1 is true is
∫ ∞

tcut

ft(t|H1) dt = 1−
∫ tcut

−∞
ft(t|H1) dt = 1− β. (1.68)

The quantities α and β are represented in Fig 1.16 along the different regions. Testing the
null hypothesis H0 against the alternative H1 consists in setting a significance level α (for
instance, α = 1%), which determines the value of tcut, and thus of β. The quantity 1 − α
is usually called the confidence level and is denoted CL, while 1− β is called the power of
the test because if 1− β is large, the alternative hypothesis is well separated from the null
hypothesis. The lower the values of α and β, or equivalently the larger the confidence level
and the power, the better the test statistic is at discriminating between the two hypotheses.
If the observed value of the statistic test, tobs, falls in the critical region, i.e. tobs > tcut,
H0 is considered rejected. Hence, α is the probability of rejecting H0, despite being true:
it is the probability of a false discovery claim. On the other hand, β is the probability of
rejecting H1, although it is true (and thus of not rejecting H0, despite being false): it is the
probability of missing a discovery when there should be one. In the rare cases where H0

and H1 are the only possible hypotheses that could lead to the same data, rejecting one
hypothesis is equivalent to accepting the other. In most cases, it is not equivalent because
of possible alternative hypotheses not considered.

In order to claim a discovery of a new signal on top of the known background, the
two hypotheses H0 = Hbkg and H1 = Hsig+bkg are then tested. The hypothesis Hsig+bkg

usually depends on a parameter of interest that we wish to measure. It is typically the
cross section, σsig, of the new signal. In high energy physics, the convention is to claim
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a discovery, or observation, if Hbkg is rejected with a significance level as low as α =
2.87 × 10−7, equivalent to the one-sided tail probability of Z = 5 standard deviations of
the unit Gaussian.25 One simply says that the significance level is 5σ . As before the p-value
(the observed level of significance) of the hypothesis H is

p-value =
∫ ∞

tobs

ft(t|H) dt. (1.69)

Hence, when H0 = Hbkg is rejected, it implies

pbkg =
∫ ∞

tobs

ft(t|Hbkg) dt < α. (1.70)

If only a significance level of 3σ (i.e., Z = 3 and α = 1.35 × 10−3) can be reached, it
is not considered a discovery, but rather evidence, in the accepted jargon. Discoveries are
rare, but evidence regularly appears before vanishing with the acquisition of more data.
One of the reasons for this is the difficulty of correctly assessing the measurement errors,
which can result from poorly modelled long tails, and thus a poor description of the tail
of the probability distribution of the test statistic. So before getting too excited by an evi-
dence, it is wiser to keep this in mind. In order to convince oneself of the discovery or the
evidence, many additional elements are usually provided. For instance, one gives a confi-
dence interval estimate of σsig, the parameter of interest under Hsig+bkg. Also, a simulation
of the signal is often used to evaluate the expected p-value under the Hbkg hypothesis. A
reasonable agreement between the expected p-value and the measured one in Eq. (1.70)
strengthens the confidence in the result.

When Eq. (1.70) is not satisfied, i.e. when pbkg > α, we fail to reject Hbkg at the signifi-
cance level, α. However, it does not imply that we have no sensitivity at all to values of σsig

under Hsig+bkg. In other words, some values may be excluded and others may not. Another
test is then needed to find the excluded values. It consists in testing the hypotheses Hsig+bkg

for a given value, σ 0
sig, against Hbkg. The hypothesis H0 = Hsig+bkg:σ 0

sig is excluded at the
significance level, α, if its p-value satisfies

psig+bkg =
∫ ∞

tobs

ft(t|Hsig+bkg:σ 0
sig) dt < α.

One varies the value of σ 0
sig and performs the test for each value to obtain the region of

excluded σsig. For a particle-production rate or a cross section, since it is assumed that
a new production mechanism can only add more events than what is expected with the
background only, the excluded region is an interval of the form [σ lim

sig ,+∞]. The standard
p-value threshold for exclusion in high energy physics is α = 0.05, i.e. 95% confidence
level.

Sometimes, the number of background events may fluctuate downwards, leading to the
exclusion of Hsig+bkg, although there is no sensitivity to distinguish Hsig+bkg from Hbkg. In

25 if p = ∫∞
Z

1√
2π

e−x2/2 dx, then Z = �−1(1 − p), where �−1(x) is the inverse function of the cumu-

lative distribution of the unit Gaussian, i.e. �(x) = ∫ x
−∞

1√
2π

e−x′2/2 dx′. Hence, α = 2.87 × 10−7 =∫∞
5

1√
2π

e−x2/2 dx = 1−�(5).
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extreme cases, one may even obtain unphysical σ lim
sig < 0. To prevent those cases, instead

of using the p-value, psig+bkg, the high energy physics community often uses the ratio

CLs = psig+bkg

1− pbkg

to set exclusion limits. Requiring CLs < α is more stringent than psig+bkg < α since CLs

is necessarily larger than psig+bkg. It follows that CLs is more robust against unphysical
exclusions.

One may wonder how to choose the test statistic t(x). In simple analyses, it is natural
to use, for instance, the number of events for counting analyses, or the distribution of an
observable such as the reconstructed energy of a particle. In more complicated analyses,
when the likelihood function is known, a widely used test statistic to establish discovery or
exclusion limits is based on the likelihood ratio.26 With σ̂sig > 0 denoting the best fit value
of the cross section of the signal hypothesis Hsig+bkg (the one maximising the likelihood),
this ratio inspired from Eq. (1.54) is defined as

q(σsig) = L(σsig)

L(σ̂sig)
. (1.71)

Notice that the value σsig = 0 corresponds to hypothesis Hbkg. For large samples, the quan-
tity−2 ln q(σsig) is asymptotically distributed as χ2 with, in our example of Eq. (1.71), one
degree of freedom. It thus becomes easy to construct confidence intervals, as suggested by
Feldman and Cousins (1998). The likelihood ratio also allows the inclusion of systematic
errors as nuisance parameters that must be fitted from the data. This approach (called pro-
file likelihood ratio) is beyond the scope of this introduction. It is detailed in Cowan et al.
(2011).

Problems

1.1 Coulomb’s law. Consider an electric charge density distribution ρ(r) creating the electric
field E. Starting with Maxwell’s equation ∇ · E = ρ/ε0, integrate the equation over a
volume V , and show that ∮

S
E · dS = Q/ε0,

where S is the surface encapsulating the volume V and Q is the charge contained in V .
Assuming a static point-like particle with a charge q0 located at 0, show that the electric
field at r is

E = q0

4πε0|r|2
r
|r| .

Conclude that the force felt by a charge q at r is given by Coulomb’s law,

f = q q0

4πε0|r|2
r
|r| .

26 The popularity of the likelihood ratio is coming from the Neyman–Pearson lemma that states that the likelihood
ratio between two hypotheses represents the optimal test statistic.
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1.2 Yukawa potential. Consider the general equation

(∇2 − λ2)f (r) = −δ(r),

where λ is a real number. Using the Fourier transform f̃ (k) = ∫∫∫
f (r)e−ik·r dr and its

inverse transform f (r) = 1/(2π)3
∫∫∫

f̃ (k)eik·r dk, show that the solution of the equation
is

f (r) = 1

(2π)3

∫∫∫
eik·r

|k|2 + λ2
dk.

Using polar coordinates and orienting the z-axis of the reference frame along the r direction,
check that

f (r) = 1

2π2

1

|r|
∫ ∞

0

sin(|k||r|)
|k|2 + λ2

|k| d|k|.

Using a contour integration in the complex plane (if you are not familiar with this technique,
read Appendix F), show that

f (r) = e−λ|r|

4π |r| .

Deduce the expression of the electrostatic potential, Eq. (1.2), and the Yukawa potential,
Eq. (1.1).

1.3 Let Iv be the vertical flux of muons. Given that the flux intensities coming from the zenith
angle, θ , is given by I(θ) = Iv cos2 θ , show that the muon flux from the sky collected by a
horizontal detector should be Ivπ/2.

1.4 Playing with relativistic formulas that are recalled in Section 2.2, check Eq. (1.9).
1.5 Without loss of generality, let B be a static magnetic field along the z-axis. Check that

the power from the Lorentz force is zero and deduce that γ is a constant of the motion.
Conclude that

γm
dv
dt
= qv× B.

Show that the solution of this equation yields the following coordinates of the trajectory:

x(t) = x(0)+ vy(0)/ω + [vx(0) sin(ωt)− vy(0) cos(ωt)]/ω
y(t) = y(0)− vx(0)/ω + [vy(0) sin(ωt)+ vx(0) cos(ωt)]/ω
z(t) = z(0)+ vz(0)× t,

with ω = q|B|/(γm). One could introduce the variable u = x+ iy to ease the calculation.
Finally, verify that the bending radius in the (x, y) plane satisfies Eq. (1.27).
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1.6 Sagitta determination.
The momentum measurement is related to
the determination of the sagitta, s (image
on the right). Imagine that three points are
used to determine the particle track. In the
approximation where the angle φ is small (or
equivalently s� L), show that

s � R
φ2

8
= L2

8R
.

Using Eq. (1.30) with δ = 0.3 and |q| = 1,
deduce that the transverse momentum is

|p⊥| =
0.3|B|L2

8s
.

s

R

L

φ/2

Hence, conclude that the uncertainty is given by σ(|p⊥|)/|p⊥| = σ(s) 8|p⊥|/(0.3BL2).
1.7 Weighted sum and likelihood. Let ri be the result of the ith measurement and σri its

uncertainty. The ri random variables, i = 1, . . . , n, are assumed to follow a Gaussian p.d.f.
G(ri ;μ, σri). Apply the maximum likelihood method to evaluate the parameter μ. Show
that the minimisation of the negative log-likelihood yields the estimator

μ̂ = 1∑
i wi

N∑
i=1

wiri,

with wi = 1/σ 2
ri

.
1.8 Particle lifetime and least squares. The least-squares method can be solved analytically

when the data are described by a linear function in the parameters to estimate. We will adapt
it to the determination of the lifetime τ of the nuclei constituting a radioactive source. A
detector records its activity during consecutive intervals of �t = 20 ns:

Interval, k 1 2 3 4 5
Number of counts, ni 2 797 1 241 570 264 128

The number of atoms of the source at a time t is given by N(t) = N0 exp(−γ t), with
γ = 1/τ (t = 0 is the beginning of data acquisition).

1. Show that the number of decays (i.e., counts) between t and t + �t satisfies
ln[Ndecay(t)] = −γ t + α, with α = ln[N0(1− exp(−γ�t))].

2. Assuming that the number of counts nk is Gaussian distributed, with a standard deviation
σk = √nk (justified by their large values), what standard deviation should be used for
ln(nk)?

3. Apply the least-squares method to the variable ln(nk) and show that the estimator of γ is

γ̂ = 1

�t

(∑
k nk ln nk

) (∑
k nk(k − 1)

)− (∑
k nk

) (∑
k nk ln nk(k − 1)

)
(∑

k nk
) (∑

k nk(k − 1)2
)− (∑

k nk(k − 1)
)2 ,

where k varies from 1 to 5. Deduce the value of τ and compare it to the true value
τ = 25 ns.
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