
Canad. Math. Bull. Vol. 48 (4), 2005 pp. 614–621

On Finite-to-One Maps

H. Murat Tuncali and Vesko Valov

Abstract. Let f : X → Y be a σ-perfect k-dimensional surjective map of metrizable spaces such that

dim Y ≤ m. It is shown that for every positive integer p with p ≤ m + k + 1 there exists a dense

Gδ-subset H(k,m, p) of C(X, I
k+p) with the source limitation topology such that each fiber of f△g,

g ∈ H(k,m, p), contains at most max{k + m − p + 2, 1} points. This result provides a proof the

following conjectures of S. Bogatyi, V. Fedorchuk and J. van Mill. Let f : X → Y be a k-dimensional

map between compact metric spaces with dim Y ≤ m. Then: (1) there exists a map h : X → I
m+2k

such that f△h : X → Y × I
m+2k is 2-to-one provided k ≥ 1; (2) there exists a map h : X → I

m+k+1

such that f△h : X → Y × I
m+k+1 is (k + 1)-to-one.

1 Introduction

This paper is inspired by the following hypotheses of S. Bogatyi, V. Fedorchuk and J.

van Mill [1].

Let f : X → Y be a k-dimensional map between compact metric spaces with

dim Y ≤ m. Then:

(1) there exists a map h : X → I
m+2k such that f△h : X → Y × I

m+2k is 2-to-one

provided k ≥ 1;

(2) there exists a map h : X → I
m+k+1 such that f△h : X → Y × I

m+k+1 is (k + 1)-to-

one.

The next theorem provides a solution to these two problems.

Theorem 1.1 Let f : X → Y be a σ-perfect k-dimensional surjective map of metriz-

able spaces such that dim Y ≤ m. For every integer p ≥ 1, let H(k,m, p) consist of all

g ∈ C(X, I
k+p) such that each fiber of the map f△g : X → Y × I

k+p contains at most

max{k + m − p + 2, 1} points. Then H(k,m, p) is dense and Gδ in C(X, I
k+p) with

respect to the source limitation topology.

Observe that stronger forms of Hypothesis 1 and Hypothesis 2 follow from The-

orem 1.1 when p = m + k, respectively k arbitrary and p = m + 1. Moreover, if

p = m+k +1, then H(k,m, p) consists of one-to-one maps and Theorem 1.1 implies

[8, Theorem 7.3] and the metrizable case of [10, Theorem 1.1(i)]. When both X and

Y are compact, k = 0 and p = 1, Theorem 1.1 was established by M. Levin and W.

Lewis [5, Proposition 4.4]. This result is one of the ingredients of our proof, another

is a selection theorem proven by V. Gutev and the second author [3, Theorem 1.2].
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Recall that, dim f = sup{dim f −1(y) : y ∈ Y} is the dimension of f . We say

that a surjective map f : X → Y is called σ-perfect if X is the union of countably

many closed sets Xi such that each restriction f |Xi : Xi → f (Xi) is a perfect map. By

C(X,M) we denote the set of all continuous maps from X into M. If (M, d) is a metric

space, then the source limitation topology on C(X,M) is defined in the following

way: a subset U ⊂ C(X,M) is open in C(X,M) with respect to the source limitation

topology provided for every g ∈ U there exists a continuous functionα : X → (0,∞)

such that B(g, α) ⊂ U . Here, B(g, α) denotes the set {h ∈ C(X,M) : d(g(x), h(x)) ≤
α(x) for each x ∈ X}. The source limitation topology does not depend on the metric

d if X is paracompact [4], and C(X,M) with this topology has the Baire property

provided (M, d) is a complete metric space [7]. Moreover, if d is a bounded metric on

M and X is compact, then the source limitation topology coincides with the uniform

convergence topology generated by d.

The paper is organized as follows. In Section 2 we prove the special case of The-

orem 1.1 when both X and Y are compact. The final proof is accomplished in Sec-

tion 3.

All maps are assumed to be continuous and all function spaces, if not explicitly

stated otherwise, are equipped with the source limitation topology. Everywhere in

this paper, by an n-to-one map, where n ≥ 1 is an integer, we mean a map with all

fibers containing at most n points.

2 Proof of Theorem 1.1: The Compact Case

Let ω be an open cover of the space X, m ∈ N and H ⊂ X. We say that a map

g : H → Z is an (m, ω)-map if every z ∈ g(H) has a neighborhood Vz in Z such that

g−1(Vz) can be covered by m elements of ω. We also agree to denote by cov(M) the

family of all open covers of M.

Suppose f : X → Y is a surjective map, ω ∈ cov(X) and n,m ∈ N. Then we

denote by C(X,Y × I
n, f ) the set of all maps h : X → Y × I

n such that πY ◦ h = f ,

where πY : Y × I
p → Y is the projection. For any K ⊂ X, C(m,ω)(X|K,Y × I

n, f )

stands for the set of all h ∈ C(X,Y × I
n, f ) with h|K being an (m, ω)-map, and

C(m,ω)(X|K, I
n) consists of all g ∈ C(X, I

n) such that f△g ∈ C(m,ω)(X|K,Y × I
n, f ).

In case K = X we simply write C(m,ω)(X,Y × I
n, f ) (resp., C(m,ω)(X, I

n)) instead of

C(m,ω)(X|X,Y × I
n, f ) (resp., C(m,ω)(X|X, I

n)).

Proposition 2.1 Let f : X → Y be a surjection between metrizable spaces and {Xi} a

sequence of closed subsets of X such that each restriction f |Xi is a perfect map. Then for

any positive integers m and p the set

A(m, p) = {g ∈ C(X, I
p) : ( f△g)

(

∞
⋃

i=1

Xi

)

is m-to-one}

is Gδ in C(X, I
p).

Proof We need a few lemmas. In all these lemmas we suppose that X, Y and f are

as in Proposition 2.1 and ω ∈ cov(X).
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Lemma 2.2 Let f be a perfect map and g ∈ C(m,ω)(X| f −1(y), I
p) for some y ∈ Y .

Then there exists a neighborhood U y of y in Y such that the restriction g| f −1(U y) is an

(m, ω)-map.

Proof Obviously, g ∈ C(m,ω)(X| f −1(y), I
p) implies that g| f −1(y) is an (m, ω)-map.

Hence, for every x ∈ f −1(y) there exists an open neighborhood Vg(x) of g(x) in I
p

such that g−1(Vg(x)) ∩ f −1(y) can be covered by m elements of ω whose union is

denoted by Wx. Therefore, for every x ∈ f −1(y) we have ( f△g)−1( f (x), g(x)) =

f −1(y) ∩ g−1(g(x)) ⊂ Wx and, since f△g is a closed map, there exists an open

neighborhood Hx = U x
y × Gx of (y, g(x)) in Y × I

p with Sx = ( f△g)−1(Hx) ⊂

Wx. Next, choose finitely many points x(i) ∈ f −1(y), i = 1, 2, . . .n, such that

f −1(y) ⊂
⋃i=n

i=1 Sx(i). Using that f is a closed map we can find a neighborhood U y

of y in Y such that U y ⊂
⋂i=n

i=1 U x(i)
y and f −1(U y) ⊂

⋃i=n
i=1 Sx(i). Let us show that

g| f −1(U y) is an (m, ω)-map. Indeed, if z ∈ f −1(U y), then z ∈ Sx( j) for some j

and g(z) ∈ Gx( j) because Sx( j) = f −1(U
x( j)
y ) ∩ g−1(Gx( j)). Consequently, f −1(U y) ∩

g−1(Gx( j)) ⊂ Sx( j) ⊂ Wx( j). Therefore, Gx( j) is a neighborhood of g(z) such that

f −1(U y) ∩ g−1(Gx( j)) is covered by m elements of ω.

Corollary 2.3 If f is perfect and g ∈ C(m,ω)(X| f −1(y), I
p) for every y ∈ Y , then

g ∈ C(m,ω)(X, I
p).

Proof By Lemma 2.2, for any x ∈ X there exists a neighborhood U y of y = f (x)

in Y such that g| f −1(U y) is an (m, ω)-map. So, we can find a neighborhood Gx of

g(x) in I
p with f −1(U y)∩ g−1(Gx) being covered by m elements of ω. But f −1(U y)∩

g−1(Gx) equals ( f△g)−1(U y × Gx). Hence, f△g is an (m, ω)-map.

Lemma 2.4 For any closed K ⊂ X the set C(m,ω)(X|K, I
p) is open in C(X, I

p) provided

f is perfect.

Proof The proof of this lemma follows the same scheme as the proof of [9, Lemma

2.5], we now apply Lemma 2.2 instead of [9, Lemma 2.3].

Let us finish the proof of Proposition 2.1. We can suppose that the sequence {Xi}
is increasing and fix a sequence {ωi} ⊂ cov(X) such that mesh(ωi) ≤ i−1 for every i.

Denote by πi : C(X, I
p) → C(Xi , I

p), πi(g) = g|Xi , the restriction maps. By Lemma

2.4, every set Bi j , i, j ∈ N, consisting of all h ∈ C(Xi, I
p) with ( f |Xi)△h being

an (m, ω j)-map is open in C(Xi , I
p). So are the sets Ai j = (πi)

−1(Bi j) in C(X, I
p),

because each πi is continuous. It is easily seen that the intersection of all Ai j is exactly

the set A(m, p). Hence, A(m, p) is a Gδ-subset of C(X, I
p).

Corollary 2.5 Theorem 1.1 follows from the validity of its special case when p ≤
k + m + 1

https://doi.org/10.4153/CMB-2005-057-x Published online by Cambridge University Press

https://doi.org/10.4153/CMB-2005-057-x


On Finite-to-One Maps 617

Proof Suppose p = m + k + 1 + n, where n ≥ 1. Then C(X, I
k+p) is homeomorphic

to the product C(X, I
2k+m+1) × C(X, I

n); let π : C(X, I
k+p) → C(X, I

2k+m+1) denote

the projection. According to our assumption, the set A = {h ∈ C(X, I
2k+m+1) :

f△h is one-to-one} is dense in C(X, I
2k+m+1), and so is the set π−1(A) in C(X, I

k+p).

Since max{k + m − p + 2, 1} = 1, H(k,m, p) consists of one-to-one maps. Hence

π−1(A) ⊂ H(k,m, p). The last inclusion yields that H(k,m, p) is dense in C(X, I
k+p).

It only remains to observe that, by Proposition 2.1, H(k,m, p) is Gδ in C(X, I
k+p).

The remaining part of this section is devoted to the proof of the next proposition

which, in combination with Proposition 2.1 and Corollary 2.5, provides a proof of

Theorem 1.1 when both X and Y are compact.

Proposition 2.6 Under the hypotheses of Theorem 1.1, the set H(k,m, p) is dense in

C(X, I
k+p) provided both X and Y are compact metric spaces and p ≤ m + k + 1.

Proof Let us first show that the proof of this proposition can be reduced to the proof

of its special case when k = 0. Indeed, suppose Proposition 2.6 is valid for k = 0 and

every positive p with p ≤ m + 1. Fix ǫ > 0 and h ∈ C(X, I
k+p), where k ≥ 0 and

1 ≤ p ≤ m + k + 1. Then h = h1△h2 with h1 ∈ C(X, I
k) and h2 ∈ C(X, I

p). By

[8], there exists g1 ∈ C(X, I
k) such that f△g1 : X → Y × I

k is a 0-dimensional map

and g1 is ǫ
2
-close to h1. Then, applying our assumption to the map f△g1, we can find

g2 ∈ C(X, I
p) which is ǫ

2
-close to h2 and such that ( f△g1)△g2 is a (k + m − p + 2)-

to-one map. It remains only to observe that the map g = g1△g2 ∈ C(X, I
k+p) is

ǫ-close to h and f△g is a (k + m − p + 2)-to-one map.

So, the following statement will complete the proof:

Σ(m, p): Let f : X → Y be a 0-dimensional surjection between compact metrizable

spaces with dim Y ≤ m. Then for every positive integer p ≤ m + 1, the

set H(0,m, p) = {g ∈ C(X, I
p) : f△g is (m − p + 2)-to-one} is dense in

C(X, I
p).

We are going to prove Σ(m, p) by induction with respect to p. The statement Σ(m, 1)

was proved by M. Levin and W. Lewis [5, Proposition 4.4]. Assume that Σ(m, p)

holds for any p ≤ n and m ≥ p − 1, where n ≥ 1, and let us prove the validity of

Σ(m, n+1). We need to show that for fixed m with n ≤ m, h∗ ∈ C(X, I
n+1) and ǫ > 0

there exists g∗ ∈ H(0,m, n + 1) which is ǫ-close to h∗. To this end, we represent h∗ as

h∗

1△h∗

2 , where h∗

1 ∈ C(X, I
n) and h∗

2 ∈ C(X, I). Next, we use an idea from the proof

of [1, Theorem 5]. By Urysohn’s decomposition theorem (see [2, Theorem 1.5.7]),

there exists an Fσ-subset Y0 ⊂ Y such that dim Y0 ≤ m − 1 and dim(Y\Y0) = 0.

Let Y0 be the union of an increasing sequence of closed sets Yi ⊂ Y , i ≥ 1, and

Xi = f −1(Yi), i ≥ 0. Obviously, dim Yi ≤ m − 1, i ≥ 1 and n ≤ (m − 1) + 1.

Thus, according to our inductive hypothesis we can apply Σ(m − 1, n) for the maps

fi = f |Xi : Xi → Yi , i ≥ 1, to conclude that each set Bi = {g ∈ C(Xi , I
n) :

fi△g is (m − n + 1)-to-one} is dense in C(Xi , I
n). Also, the sets Ai = (πi)

−1(Bi)

are dense in C(X, I
n) because the restriction maps πi : C(X, I

n) → C(Xi , I
n) are open
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and surjective. On the other hand, by Proposition 2.1, each of the sets Ai is Gδ in

C(X, I
n). Hence, the set A0 =

⋂

∞

i=1 Ai is dense and Gδ in C(X, I
n) and obviously, it

consists of all maps q ∈ C(X, I
n) such that ( f△q)|X0 is (m−n+1)-to-one. Therefore,

there exists g∗1 ∈ A0 which is ǫ
2
-close to h∗

1 . Consider the map f△g∗1 : X → Y × I
n

and the set D = {z ∈ Y × I
n : |( f△g∗1 )−1(z)| ≥ m − n + 2}. By [2, Lemma 4.3.7],

D ⊂ Y × I
n is Fσ . Then H = πY (D) does not meet Y0 because of the choice of g∗1 ,

where πY : Y × I
n → Y denotes the projection. Hence, H is 0-dimensional and σ-

compact, so is the set K = f −1(H) (0-dimensionality of K follows by the Hurewicz

theorem on dimension-lowering mappings, see [2, Theorem 1.12.4]). Representing

H as the union of an increasing sequence of closed sets Hi ⊂ Y and applying Σ(0, 1)

for any of the maps f |Ki , where Ki = f −1(Hi), we can conclude (as we did for the set

A0 above) that the set F of all maps q ∈ C(X, I) with ( f△q)|K one-to-one is dense

and Gδ in C(X, I). Consequently, there exists g∗2 ∈ F which is ǫ
2
-close to h∗

2 . Then

g∗ = g∗1 △g∗2 is ǫ-close to h∗. It follows from the definition of the set D and the choice

of the maps g∗1 , g
∗

2 that f△g∗ is (m − n + 1)-to-one, i.e., g∗ ∈ H(0,m, n + 1). This

completes the induction.

3 Proof of Theorem 1.1: The General Case

By Corollary 2.5, we can assume that p ≤ m + k + 1. Representing X as the union of

an increasing sequence of closed sets Xi ⊂ X such that each f |Xi is perfect and using

that all restriction maps πi : C(X, I
k+p) → C(Xi , I

k+p) are open and surjective, we can

show that the proof of Theorem 1.1 is reduced to the case when f is a perfect map

(see the proof of Proposition 2.6 for a similar situation). So, everywhere below we

can suppose that the map f from Theorem 1.1 is perfect.

Another reduction of Theorem 1.1 is provided by the following observation. By

Lemma 2.4, the set Hω(k,m, p) = C(m+k−p+2,ω)(X, I
k+p) is open in C(X, I

k+p) for

every ω ∈ cov(X). Since H(k,m, p) =
⋂

∞

i=1 Hωi
(k,m, p), where {ωi} ⊂ cov(X)

is a sequence with mesh(ωi) < 2−i , it suffices to show that Hω(k,m, p) is dense in

C(X, I
k+p) for every ω ∈ cov(X). The remaining part of this section is devoted to

the proof of this fact. We need a few lemmas. In all these lemmas we suppose that

X, Y , f and the numbers m, k, p are as in Theorem 1.1 with f perfect. We also fix

ω ∈ cov(X).

Lemma 3.1 If C(X, I
k+p) is equipped with the uniform convergence topology, then the

set-valued map ψ from Y into C(X, I
k+p), defined by the formula

ψ(y) = C(X, I
k+p)\C(m+k−p+2,ω)(X| f −1(y), I

k+p),

has a closed graph.

Proof We can prove this lemma by following the arguments from the proof of [9,

Lemma 2.6], but in the present situation there exists a shorter proof.

Let G =
⋃

{y × ψ(y) : y ∈ Y} ⊂ Y × C(X, I
k+p) be the graph of ψ and

{(yn, gn)} a sequence in G converging to (y0, g0) ∈ Y × C(X, I
k+p). It suffices to

show that (y0, g0) ∈ G. Assuming (y0, g0) 6∈ G, we conclude that g0 6∈ ψ(y0),
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so g0 ∈ C(m+k−p+2,ω)(X| f −1(y0), I
k+p). Then, by Lemma 2.2, there exists a neigh-

borhood U of y0 in Y with g0| f −1(U ) being an (m + k − p + 2, ω)-map. We can

suppose that f −1(yn) ⊂ f −1(U ) for every n because lim yn = y0. Consequently,

g0|K is also an (m + k − p + 2, ω)-map, where K denotes the union of all f −1(yn),

n = 0, 1, 2, . . . . Obviously, K is compact and, according to Lemma 2.4 (applied to

the constant map q : K → {0}), the set W of all (m+k−p+2, ω)-maps h ∈ C(K, I
k+p)

is open in C(K, I
k+p). Since the sequence {gn|K} converges to g0|K in C(K, I

k+p) and

g0|K ∈ W , gn|K ∈ W for almost all n. Therefore, there exists j such that g j | f −1(y j)

is an (m + k − p + 2, ω)-map. The last conclusion contradicts the observation that

(y j , g j) ∈ G implies g j 6∈ C(m+k−p+2,ω)(X| f −1(y j), I
k+p). Thus, (y0, g0) ∈ G.

Recall that a closed subset F of the metrizable space M is said to be a Zn-set in

M, where n is a positive integer or 0, if the set C(I
n,M\F) is dense in C(I

n,M) with

respect to the uniform convergence topology.

Lemma 3.2 Let α : X → (0,∞) be a positive continuous function and g0 ∈
C(X, I

k+p). Thenψ(y)∩B(g0, α) is a Zm-set in B(g0, α) for every y ∈ Y , where B(g0, α)

is considered as a subspace of C(X, I
k+p) with the uniform convergence topology.

Proof The proof of this lemma follows the proof of [9, Lemma 2.8]. For the sake

of completeness we provide a sketch. In this proof all function spaces are equipped

with the uniform convergence topology generated by the Euclidean metric d on I
k+p.

Since, by Lemma 3.1, ψ has a closed graph, each ψ(y)∩B(g0, α) is closed in B(g0, α).

We need to show that, for fixed y ∈ Y , δ > 0 and a map u : I
m → B(g0, α) there

exists a map v : I
m → B(g0, α)\ψ(y) which is δ-close to u. Observe that u generates

h ∈ C(I
m × X, I

k+p), h(z, x) = u(z)(x), such that d(h(z, x), g0(x)) ≤ α(x) for any

(z, x) ∈ I
m × X. Since f −1(y) is compact, take λ ∈ (0, 1) such that λ sup{α(x) : x ∈

f −1(y)} < δ
2

and define h1 ∈ C(I
m × f −1(y), I

k+p) by h1(z, x) = (1 − λ)h(z, x) +

λg0(x). Then, for every (z, x) ∈ I
m × f −1(y), we have

(1) d(h1(z, x), g0(x)) ≤ (1 − λ)α(x) < α(x)

and

(2) d(h1(z, x), h(z, x)) ≤ λα(x) <
δ

2
.

Let q < min{r, δ
2
}, where r = inf{α(x) − d(h1(z, x), g0(x)) : (z, x) ∈ I

m × f −1(y)}.

Since dim f −1(y) ≤ k, by Proposition 2.6, applied to the projection

pr : I
m × f −1(y) → I

m,

there is a map h2 ∈ C(I
m × f −1(y), I

k+p) such that d(h2(z, x), h1(z, x)) < q and

h2|({z}× f −1(y)) is an (m + k− p + 2, ω)-map for each (z, x) ∈ I
m × f −1(y). Then,

by (1) and (2), for all (z, x) ∈ I
m × f −1(y) we have

(3) d(h2(z, x), h(z, x)) < δ and d(h2(z, x), g0(x)) < α(x).
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The equality u2(z)(x) = h2(z, x) defines the map u2 : I
m → C( f −1(y), I

k+p). As in

the proof [9, Lemma 2.8], we can show that the map π : B(g0, α) → C( f −1(y), I
k+p),

π(g) = g| f −1(y), is continuous and open and u2(z) ∈ π(B(g0, α)) for every z ∈
I
m. So, θ(z) = π−1(u2(z)) ∩ Bδ(u(z)) defines a convex-valued map from I

m into

B(g0, α) which is lower semi-continuous. Here, Bδ(u(z)) is the open ball in C(X, I
k+p)

(equipped with the uniform metric) having center u(z) and radius δ. By the Michael

selection theorem [6, Theorem 3.2], there is a continuous selection v : I
m →

C(X, I
k+p) for θ. Then v maps I

m into B(g0, α) and v is δ-close to u. Moreover, for any

z ∈ I
m we have π(v(z)) = u2(z) and u2(z), being the restriction h2|({z} × f −1(y)),

is an (m + k − p + 2, ω)-map. Hence, v(z) 6∈ ψ(y) for any z ∈ I
m, i.e., v : I

m →
B(g0, α)\ψ(y).

The next lemma will finally accomplish the proof of Theorem 1.1.

Lemma 3.3 The set Hω(k,m, p) is dense in C(X, I
k+p).

Proof Recall that by Hω(k,m, p) we denoted the set C(m+k−p+2,ω)(X, I
k+p). It suf-

fices to show that, for fixed g0 ∈ C(X, I
k+p) and a positive continuous function

α : X → (0,∞), there exists g ∈ B(g0, α) ∩ C(m+k−p+2,ω)(X, I
k+p). To this end, con-

sider the space C(X, I
k+p) with the uniform convergence topology as a closed and

convex subset of the Banach space E consisting of all bounded maps from X into

R
k+p. We define the constant set-valued (and hence, lower semi-continuous) map φ

from Y into C(X, I
k+p), φ(y) = B(g0, α). According to Lemma 3.2, B(g0, α) ∩ ψ(y)

is a Zm-set in B(g0, α) for every y ∈ Y . So, we have a lower semi-continuous

closed and convex-valued map φ from Y to E and a map ψ : Y → 2E such that ψ
has a closed graph (see Lemma 3.1) and φ(y) ∩ ψ(y) is a Zm-set in φ(y) for each

y ∈ Y . Moreover, dim Y ≤ m, so we can apply [3, Theorem 1.2] to obtain a

continuous map h : Y → E with h(y) ∈ φ(y)\ψ(y) for every y ∈ Y . Observe

that h is a map from Y into B(g0, α) such that h(y) /∈ ψ(y) for every y ∈ Y , i.e.,

h(y) ∈ B(g0, α) ∩ C(m+k−p+2,ω)(X| f −1(y), I
k+p), y ∈ Y . Then g(x) = h( f (x))(x),

x ∈ X, defines a map g ∈ B(g0, α) such that g ∈ C(m+k−p+2,ω)(X| f −1(y), I
k+p) for

every y ∈ Y . Hence, by virtue of Corollary 2.3, g ∈ C(m+k−p+2,ω)(X, I
k+p).
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