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Abstract. To an arbitrary intersection of exceptional varieties of an embedded resolution we associate
a finite number of congruences between naturally occurring multiplicities. This theory generalizes
previous results concerning just one exceptional variety. Moreover we describe precise equalities
which imply the congruences and we give some applications on the poles of Igusa’s local zeta
function.
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Introduction

(0.1). Letk be an algebraically closed field of characteristic zero andf 2 k[x1; : : : ;

xn]. Leth:X ! A n be an embedded resolution of singularities off�1f0g, consid-
ered as an algebraic set in affine spaceA n . We suppose that this resolution(X;h)
is constructed by means of consecutive blowing-ups, according to Hironaka’s
Theorem [H].

We denote byEi; i 2 S, the irreducible components ofh�1(f�1f0g) and by
Ni the multiplicity ofEi in the divisor off � h.

(0.2). Fix one exceptional varietyEj . Whenn = 2 the following congruence is
now well known. SayEj intersectsk times other componentsE1; : : : ; Ek. Then

kX
i=1

Ni � 0 modNj (�)

and more precisely�k
i=1Ni = Nj(1 + �), where� is the number of times that a

point of Ej occurs as centre of some blowing–up during the resolution process.
The original proof for analytically irreduciblef(x1; x2)was derived by consecutive
work of Strauss [S], Meuser [M] and Igusa [I2], and for generalf(x1; x2) by Loeser
[L].

(0.3). Whenn is arbitrary we developed in [V2] a general theory of congruences,
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314 WILLEM VEYS

extending(�). The essential feature of dimensionn > 3 is thatEj is subject to
a ‘historical evolution’ during the resolution process. LetEj � X be the strict
transform inX of the varietyE0

j , created at some stage of the resolution process
h as exceptional variety of a blowing-up. Then in generalEj is not isomorphic to
E0
j ; more preciselyEj itself is obtained fromE0

j by a sequence of blowing-ups.
(Whenn = 2 this phenomenon does not occur for thenE0

j
�= Ej

�= P1.)
In fact we associated a finite number of congruences modNj to Ej ; there are

Basic Congruencesassociated to its creation asE0
j in the resolution process, gen-

eralizing (�), and anAdditional Congruenceassociated to each blowing-up of the
sequence that producesEj out ofE0

j .

(0.4). In this paper we will generalize this theory further to congruences ‘in arbi-
trary codimension’. We first give an example.

When n = 3 let Ej1 andEj2 be two intersecting exceptional surfaces and
suppose that the curveD := Ej1 \ Ej2 is irreducible and projective. SayD
intersectsk times other componentsE1; : : : ; Ek. Then

kX
i=1

Ni � 0 mod gcd(Nj1; Nj2);

where gcd denotes the greatest common divisor. This ‘codimension 2’-congruence
cannot be derived as a consequence of the ordinary ‘codimension 1’–congruences
of [V2]. In fact there is an explicit equality�k

i=1Ni + �2Nj1 + �1Nj2 = 0, where
�` is the self-intersection number ofD onEj` .

(0.5). We will associate to each irreducible componentD of a nonempty intersec-
tion of exceptional varieties\j2JEj a finite number of congruences modgcdj2JNj ,
and moreover we will describe equalities from which they can be obtained. We
want to remark here that the congruences can be proved directly in an elegant way
without reference to the equalities. (ForjJ j = 1 this was not mentioned explicitly
in [V2].)

We now state these congruences more precisely. In general the varietyD goes
through a historical evolution during the resolution process: it is obtained by a finite
succession of blowing-ups

D0 �1
 � D1 �2

 � � � �Di�1 �i
 � Di

� � �
�m�1
 ��� Dm�1 �m

 � Dm = D;

with irreducible nonsingular centreZi�1 � Di�1 and exceptional varietyCi � Di

for i = 1; : : : ;m. The varietyD0 is created at some step of the global resolution
process (in fact at the creation of the ‘last’ of theEj; j 2 J).

There are two kinds of intersections ofD with componentsE`; ` 62 J . We have
the strict transforms inD of the exceptional varietiesC1; : : : ; Cm; and also the
strict transforms inD of certain varietiesCk; k 2 T

0, (of codimension one) inD0.
We have moreover that the strict transform of eachCi; i 2 T 0 [ f1; : : : ;mg, is
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(an irreducible component of) the intersection ofD with exactly one component
of h�1(f�1f0g); slightly abusing notation let this component have multiplicityNi

in the divisor off � h.

THEOREM. SetNJ := gcdj2JNj . Using the notation above we have fori =
0; : : : ;m� 1 that

(Congruence A)

Ni+1 �
X

k2T 0[f1;:::;ig

�kNk modNJ ;

where�k is the multiplicity of the generic point ofZi on (the strict transform in
Di of) Ck. We have also

(Congruence B)

X
k2T 0

NkCk = 0 in
PicD0

NJ PicD0 :

WheneverD0 is complete, Congruence B induces a finite number of ordinary con-
gruences modNJ .

(0.6). Fori 2 S let �i�1 be the multiplicity ofEi in the divisor ofh�(dx1^ : : :^

dxn) on X. Classically the(Ni; �i); i 2 S, are called thenumerical dataof the
resolution(X;h). The numbers�(�i=Ni); i 2 S, form a complete list of candidate
poles for Igusa’s local zeta function off (whenf is defined over ap-adic field).
We will mention a straightforward generalization to arbitrary codimension of our
‘codimension one’-theory of relations between numerical data [V1], which enables
us to give some applications of the congruences of this paper concerning the poles
of Igusa’s local zeta function.

(0.7). The plan of the exposition is as follows. In Section 1 we recall briefly the
important aspects of an embedded resolution and in Section 2 we prove the Con-
gruences A and B. Their underlying equalities are studied separately in Section 3;
this part is a bit technical and is not needed for the applications concerning Igusa’s
local zeta function. After developing the more general relations between numerical
data in Section 4, those applications are treated in Section 5.

1. Embedded resolution

(1.1). Let k be an algebraically closed field of characteristic zero and letf 2

k[x1; : : : ; xn]. Let Y = f�1f0g denote the zero set off in affine spaceA n . We
exclude the trivial casef 2 k, soY is a hypersurface inA n .

DEFINITION. An embedded resolution(X;h) for Y � A n consists of a nonsingu-
lar varietyX and a proper birational morphismh:X ! A n such that the restriction
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hjXnh�1Y is an isomorphism andh�1Y has normal crossings inX. In particular
the irreducible components ofh�1Y are nonsingular hypersurfaces.

Remember that a reduced hypersurfaceE of X hasnormal crossingsif for all
x 2 X there exists a regular system of parameterst1; : : : ; tn in the local ringOX;x
ofX atx such that the ideal inOX;x of each irreducible component ofE containing
x is generated by one of theti. (Analytically one can think ofE being locally a
union of coordinate hyperplanes.) AlsoE is said to havenormal crossings witha
(necessarily smooth) subvarietyD of X if for all x 2 D the ideal ofD in OX;x is
generated by some of theti.

(1.2). Hironaka [H] constructed an embedded resolution as a finite composition of
blowing-ups. Recall that ifg: ~Z ! Z is theblowing-upof the varietyZ with centre
the closed subsetB of Z, then theexceptional divisorE = g�1B is everywhere
of codimension one on~Z, and the restrictiongj ~ZnE is an isomorphism. For any

subvarietyV of Z with V 6� B the closure ofg�1(V nB) in ~Z is called thestrict
transform of V by g. If Z andB are nonsingular varieties, then the same is true
for ~Z andE.

More precisely Hironaka constructed a resolution(X;h) as a suitable compo-
sition of blowing-ups

A n = X0
g1
 � X1

g2
 � � � �Xi

gi+1
 ��� Xi+1 � � �

gr�1
 ��� Xr�1

gr
 � Xr = X;

with irreducible nonsingular centreBi � Xi;0 6 i < r, such that codim(Bi;Xi) >
2. Moreover eachBi is contained in the (repeated) strict transform ofY in Xi, and
the reduced hypersurface, consisting of the (repeated) strict transforms inXi of the
exceptional varieties ofg1; : : : ; gi, has normal crossings withBi.

Finally h�1Y = (gr � � � � � g1)
�1(Y ) has thus normal crossings inX; its

irreducible components are the strict transforms of the irreducible components
of Y and theexceptional varieties ofh, being the strict transforms inX of the
exceptional varieties ofg1; : : : ; gr.

(1.3). Let nowD � Xi be any variety which intersectsBi transversely everywhere
(and is not contained inBi) and ~D � Xi+1 its strict transform bygi+1. We have
the following important fact (see e.g. [GH, page 605] for the first claim; the second
is not difficult to verify).

PROPOSITION, The restrictiongi+1j ~D: ~D ! D is the blowing-up ofD with
(nonsingular) centreBi \ D. Moreover the exceptional divisor ofgi+1j ~D is the
intersection of~D with the exceptional divisor ofgi+1.

Note thatBi \ D can eventually be reducible. The total blow-up ofD with
centreBi\D can then be considered as the result of consecutive blowing-ups ofD

with centres the irreducible components ofBi \D, which are necessarily disjoint.
We will use this proposition intensively forD a nonempty intersection of excep-

tional varieties ofh; because of the normal crossings property the transversality
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condition is indeed satisfied.

(1.4). From now on we will denote the irreducible components ofh�1Y by
Ei; i 2 S; and their multiplicity in the divisor off � h by Ni; alternatively
(f � h) = �i2SNiEi. We also setEI := \i2IEi for I � S. While working
with the resolution processh we will in general use the same notation forEi, when
created as exceptional variety, and for its strict transforms in anyXk.

2. Self–intersection divisors and congruences

(2.1). From now on we fix intersecting exceptional varietiesEj ; j 2 J , and an
irreducible componentD of EJ . Remark that because of the normal crossings
propertyD is nonsingular and disjoint from eventual other components ofEJ , and
that codim(D;X) = jJ j.

Let Ci; i 2 T , denote all the irreducible components of the intersections
D \ E`; ` 62 J . Set alsoNJ := gcdj2JNj . Our starting point is the following
observation.

PROPOSITION 2.2.For j 2 J we denote byDhji the self-intersection divisor of
D onEJnfjg, considered as an element ofPicD. Then

X
j2J

NjDhji +
X
i2T

NiCi = 0 in PicD:

Proof. Denote by�:D ,! X the natural embedding and consider for eachj 2 J

the decompositionD
�j
,! EJnfjg

�j
,! X of �. Since�i2SNiEi = 0 in PicX we

have that

X
i2S

Ni�
�Ei = 0 in PicD: (1)

Now ��(�i62JNiEi) = �i2TNiCi and for eachj 2 J we have that��Ej =
��j (�

�
jEj) = ��j (EJ) = ��j (D) = Dhji. Substituting all this in (1) yields the stated

expression. 2

COROLLARY 2.3.�i2TNiCi = 0 in PicD=NJ PicD.

COROLLARY 2.4.LetD be a projective curve. Then(taking degrees)

X
i2T

Ni � 0 modNJ ;

and more precisely, if�j denotes the self-intersection number ofD onEJnfjg, then
�j2J�jNj +�i2TNi = 0.
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Remark2.5. Proposition 2.2 and its corollaries are in fact valid in a more general
context.

(i) They are true foranyembedded resolution ofY , i.e. not necessarily obtained
à la Hironaka.

(ii) The Ej ; j 2 J , can be arbitrary (intersecting) components ofh�1Y . Now
for example whenf is irreducible and the strict transform ofY is one of the
Ej; j 2 J , thenNJ = 1 and the congruences are meaningless. See (2.8) for
an application of the equalities.

(2.6). We now fix the notation for our general congruences and equalities. Using
Proposition 1.3 the following is not difficult to verify.

(i) The varietyD is the strict transform inX of a nonsingular varietyD0, created
at some step of the global resolution process. (In factD0 appears in this
process at the creation of the ‘last’ of theEj ; j 2 J , as exceptional variety of
a blowing-up ofh; and more preciselyD0 is a component of the intersection
of this variety with the otherEj; j 2 J , at that stage ofh.)

(ii) SoD itself is obtained fromD0 by a finite succession of blowing-ups

D0 �1
 � D1 �2

 � � � �Di�1 �i
 � Di � � �

�m�1
 ��� Dm�1 �m

 � Dm = D;

with irreducible nonsingular centreZi�1 � Di�1 and exceptional variety
Ci � Di for i = 1; : : : ;m. In factCi is (a component of) the intersection of
Di with some global exceptional varietyE` at the stage whereE` is created.

(iii) For i = 1; : : : ;m and for any varietyV � Dj ;0 6 j < i, let the strict
transform ofV in Di (by �i � � � � � �j+1) be denoted byV (i).

LetCi; i 2 T , be the intersections ofD with componentsE`; ` 62 J . They
consist of the strict transformsC(m)

1 ; : : : ; C
(m)
m inD of the exceptional varieties

C1; : : : ; Cm and of the strict transformsC(m)

i in D of varietiesCi; i 2 T 0,
(of codimension one) inD0. Those last varieties are the intersections ofD0

with componentsE`; ` 62 J , at the stage ofh whereD0 is created. (So
T = T 0 [ f1; : : : ;mg.)

(iv) Since[`2SE` has normal crossings inX we have for eachi 2 T thatC(m)

i is
(a component of) the intersection ofD with exactly one component ofh�1Y ,
different from theEj ; j 2 J . For simplicity of notation let this component be
Ei.

THEOREM 2.7.For i = 0; : : : ;m� 1 we have that

(Congruence A)

Ni+1 �
X

k2T 0[f1;:::;ig

�kNk modNJ ;
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where�k is the multiplicity of the generic point ofZi onC(i)

k . We have also that

(Congruence B)

X
k2T 0

NkCk = 0 in
PicD0

NJ PicD0 :

Remark. (i) Of course these congruences are only meaningful whenNJ > 1.
(ii) In general Congruence B thus has divisors as ‘coefficients’. When PicD0 �=

Z, for example ifD0 is some projective space, Congruence B becomes an ordinary
congruence.

(iii) More generally, wheneverD0 is complete, Congruence B induces a finite
number of numerical congruences. For then we can consider it in NumD0=NJ

NumD0, where NumD0 is the group of divisors onD0 modulo numerical equiv-
alence, which is a quotient of PicD0. Since NumD0 is a finitely generated free
Abelian group we get rank(NumD0) congruences.

Proof. Consider for a fixedi 2 f0; : : : ;m � 1g the blowing-up�i+1:Di+1 !

Di. It is not difficult to verify that the classical isomorphism PicDi+1 �= ��i+1

PicDi � ZCi+1 (with injective��i+1) induces

PicDi+1

NJ PicDi+1
�= ��i+1

PicDi

NJ PicDi
�

Z

NJZ
Ci+1; (2)

where��i+1 is still injective.

Suppose now that�`2T 0[f1;:::;i+1gN`C
(i+1)
` = 0 in PicDi+1=NJ PicDi+1.

This is equivalent to�k2T 0[f1;:::;igNk(�
�
i+1C

(i)

k � �kCi+1) +Ni+1Ci+1 = 0, and
using (2) we obtain

X
k2T 0[f1;:::;ig

NkC
(i)

k = 0 in
PicDi

NJ PicDi

and

Ni+1 =
X

k2T 0[f1;:::;ig

�kNk in
Z

NJZ
:

Starting from the fact that�i2TNiC
(m)

i = 0 in PicD=NJ PicD (Corollary 2.3)
we use the arguments above consecutively fori = m � 1; : : : ;0 to obtain the
Congruences A and finally end up with Congruence B. 2

For concrete varietiesD0 one can make Congruence B more explicit. WhenD0 is a
projective space bundle over some base variety this has been done in [V2]. (When
jJ j = 1 thenD0 is always such a bundle.)
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(2.8). Taken = 3 and suppose that(X;h) is the embedded resolution of an iso-
lated singularityP of the irreducible surfaceY . The equalities of Corollary 2.4 are
useful to determine the self-intersection numbers in the resolution graph ofP 2 Y ,
when an explicit embedded resolution ofY � A 3 is given.

Indeed letD be (a component of) the intersection of the strict transform ofY

with some exceptional surfaceEj , and letD intersectk times other exceptional
surfaces, sayE1; : : : ; Ek. We want to know the self-intersection number� of D on
the strict transform ofY (which is a resolution ofP 2 Y ). Now Corollary 2.4 says
that

�j +Nj�+
kX
i=1

Ni = 0;

where�j is the self-intersection number ofD on Ej , which can very easily be
computed.

3. Precise equalities

(3.1). We keep using the notation of (2.6). The congruences in the preceding
section were completely determined by the configuration of theCi; i 2 T , onD; or
equivalently of theCi; i 2 T

0, onD0. For example we did not need any information
concerning howD is embedded inX or in theEJ 0 ; J

0 � J , or analogously forD0.
In my opinion precisely this feature makes these congruences attracting and useful
for applications. See Section 5.

The underlying equalities for these congruences however depend rather inten-
sively on knowledge about the global resolution process. We will derive them from
the key Lemma 3.3, for which we now introduce the data.

(3.2). We fix some blowing-upg with centreB of the global resolution processh,
occurringafter the creation ofD0 (and thus of all theEj; j 2 J). We denote the
strict transform ofD0 right before and afterg respectively byDy andDz and the
restriction ofg toDz by �. So�:Dz ! Dy itself is a blowing-up with (eventually
reducible) centreB \ Dy. (We may suppose thatB \ Dy 6= ;, otherwise noth-
ing relevant happens.) Analogously we denote for eachJ 0 � J the ‘ancesters’ of
EJ 0 � X before and afterg respectively byEy

J 0 � Xy andEz
J 0 � Xz. For each

j 2 J we thus have the following diagram

Dz
- E

z
Jnfjg

- Xz

Dy

�

?

- E
y
Jnfjg

?

- Xy:

?

g (3)
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Let alsoDy
hji

denote the self-intersection divisor ofDy onEy
Jnfjg

, considered as

an element of PicDy, andDz
hji

the analogous element of PicDz.

LEMMA 3.3. We use the notation of(3:2). Let Cz
e ; e 2 E , be the(necessarily

disjoint) irreducible components of the exceptional divisor of�, andCz
i ; i 2 I, all

other irreducible components of the intersection ofDz with componentsE`; ` 62 J ,
in Xz.

First case:codim(B \Dy;Dy) > 2.
So for eache 2 E we have thatZe := �(Cz

e) is of codimension at least2 in Dy

and the irreducible components of the intersections ofDy with theE`; ` 62 J , in
Xy are precisely theCy

i := �(Cz
i ); i 2 I.

If �j2JajD
z
hji

+�`2I[Ea`C
z
` = 0 in PicDz, then

(i)
X
j2J

ajD
y
j +

X
i2I

aiC
y
i = 0 in PicDy; and

(ii) ae =
X
i2I

�
(e)

i ai +
X
j2J

�jaj for all e 2 E ;

where�(e)i is the multiplicity of the generic point ofZe on C
y
i , and�j = 1 if

B � Ej and�j = 0 if B 6� Ej.

Second case:codim(B \Dy;Dy) = 1.
So �:Dz ! Dy is an isomorphism and the irreducible components of the

intersections ofDy with theE`; ` 62 J , in Xy are precisely theCy
` := �(Cy

` ); ` 2
I [ E .

If �j2JajD
z
hji

+�`2I[Ea`C
z
` = 0 in PicDz, then

(iii )
X
j2J

ajD
y
hji

+
X
i2I

aiC
y
i +

X
e2E

0
@ae �X

j2J

�jaj

1
ACy

e = 0 in PicDy:

Proof. We first show for eachj 2 J that in PicDz

D
z
hji = ��D

y
hji � �j

X
e2E

Cz
e : (4)

Consider the natural embeddings�y:Dy 7! Xy and�z:Dz 7! Xz in the diagram
(3) of (3.2) and letEz be the exceptional divisor ofg in Xz. Then as in the proof
of Proposition 2.2 we have thatDy

hji
= ��yE

y
j andDz

hji
= ��zE

z
j . So

D
z
hji

= ��z(g
�E

y
j � �jE

z) = ����yE
y
j � �j�

�
zE

z = ��D
y
hji
� �j

X
e2E

Cz
e :
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First case.Substituting (4) and the identities��Cy
i = C

z
i + �e2E�

(e)

i Cz
e ; i 2 I; in

the given expression yields

X
j2J

aj

 
��D

y
hji � �j

X
e2E

Cz
e

!

+
X
i2I

ai

 
��C

y
i �

X
e2E

�
(e)

i Cz
e

!
+
X
e2E

aeC
z
e = 0 in PicDz;

which is equivalent to

��

0
@X
j2J

ajD
y
hji

+
X
i2I

aiC
y
i

1
A+

X
e2E

0
@ae �X

i2I

�
(e)
i ai �

X
j2J

�jaj

1
ACz

e = 0:

Now since PicDz �= �� PicDy� (�e2EZC
z
e), where�� is injective, we obtain the

stated results.

Second case. Now substituting (4) and��Cy
e = Cz

e ; ` 2 I [ E , in the given
expression yields

X
j2J

aj

 
��D

y
hji
� �j

X
e2E

��Cy
e

!
+
X
i2I

ai�
�C

y
i +

X
e2E

ae�
�Cy

e = 0 in PicDz;

which clearly implies the stated expression in PicDy. 2

THEOREM 3.4.We use the notation of(2:6).
(A) Fix i 2 f0; : : : ;m� 1g. LetB denote the centre of the global blowing-up

in the resolution processh by whichCi+1 is created(as irreducible component of
the intersection with the global exceptional variety) and set�j = 1 if B � Ej and

�j = 0 if B 6� Ej for j 2 J . For all k 2 T 0 [ f1; : : : ; i + 1g andj 2 J let mhji
k

be the number of centresB` of global blowing-ups in the subsequent stages of the
resolution process that satisfyC(>i+1)

k � B` � Ej . Then

Ni+1 =
X

k2T 0[f1;:::;ig

�kNk +
X
j2J

0
@mhji

i+1�
X

k2T 0[f1;:::;ig

�km
hji
k + �j

1
ANj ;

where�k is the multiplicity of the generic point ofZi onC(i)

k .

(B) For all k 2 T 0 andj 2 J letmhji>
k be the number of centresB` of global

blowing-ups in stages of the resolution processh after the creation ofD0 that
satisfyC(>0)

k � B` � Ej . Then

X
k2T 0

NkCk =
X
j2J

Nj

0
@X
k2T 0

m
hji
k Ck �D

0
hji

1
A in PicD0;
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whereD0
hji 2 PicD0 denotes the self-intersection divisor ofD0 on the intersection

of theE`; ` 2 Jnfjg, at the stage whereD0 is created.
Proof. (A) For simplicity of notation we will suppose thatCi+1 is exactly

the intersection of the global exceptional variety associated toB with the strict
transform ofD0; so this strict transform may be identified withDi+1. The general
case is entirely similar.

For i = 0; : : : ;m we denote byD(i)

hji 2 PicDi the self-intersection divisor of

Di on the intersection of theE`; ` 2 Jnfjg, at the appropriate stage of the global
resolution process. Starting from the equality

X
k2T

NkCk +
X
j2J

NjD
(m)

hji
= 0 in PicD;

(Proposition 2.2), consecutive applications of Lemma 3.3(i, iii) yield

X
k2T 0[f1;:::;i+1g

0
@Nk �

X
j2J

m
hji
k Nj

1
ACk +

X
j2J

NjD
(i+1)
hji

= 0 in PicDi+1:

Then by Lemma 3.3(ii) we have that

Ni+1�
X
j2J

m
hji
i+1Nj

=
X

k2T 0[f1;:::;ig

�k

0
@Nk �

X
j2J

m
hji
k Nj

1
A+

X
j2J

�jNj ;

which is equivalent to the stated expression forNi+1.
(B) Further applications of Lemma 3.3(i, iii) finally yield

X
k2T 0

0
@Nk �

X
j2J

m
hji
k Nj

1
ACk +

X
j2J

NjD
(0)
hji = 0 in PicD0: 2

Caution. Themhji
k in (A) depend on the choseni 2 f0; : : : ;m� 1g.

(3.5). We can extend all previously obtained results to the following situation.
Instead of the polynomial functionf onA n we can consider in (1.1) any nonsingular
varietyA and any rational functionf onA. Let nowY denote the support of the
divisor of f , the maph:X ! A an embedded resolution ofY � A, and again
Ei; i 2 S, the irreducible components ofh�1Y with multiplicity Ni in the divisor
of f � h.

The essential difference is now that theNi; i 2 S, can also be negative and
eventually even zero. This however does not cause any trouble. Of course when
NJ = 0 a congruence modNJ becomes an equality.
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4. Relations between numerical data in any codimension

(4.1). We now introduce besides theNi; i 2 S, other invariants of the embedded
resolution(X;h) for Y � A n . For i 2 S let �i � 1 be the multiplicity ofEi in the
divisor of ��(dx1 ^ � � � ^ dxn) onX; alternatively the canonical divisor onX is
�i2S(�i � 1)Ei. Remark that�i = 1 for any irreducible component of the strict
transform ofY . Classically the(Ni; �i); i 2 S, are called thenumerical dataof the
resolution(X;h).

The rational numbers�(�i=Ni); i 2 S, are important because they form an
exhaustive list of candidate poles for certain zeta functions associated tof , see
Section 5. In particular a nonempty intersectionEI for which all �i=Ni; i 2 I, are
equal induces in general a candidate pole of orderjIj.

(4.2). We now fix a nonempty intersectionEJ of exceptional varieties such that
s0 = �(�j=Nj) for all j 2 J , and an irreducible componentD ofEJ . LetCi; i 2 T ,
still denote all the irreducible components of the intersectionsD \ E`; ` 62 J .
Remember that eachCi; i 2 T , is the intersection withD of exactly one component
of h�1Y ; slightly abusing notation we let this component have numerical data
(Ni; �i) and we denote�i := �i + s0Ni.

These numbers�i occur naturally in the expression for the ‘residue’ of the
candidate poles0 for the zeta functions mentioned above; see Section 5. When
jJ j = 1 we developed in [V1] a general theory of linear relations between the
�i; i 2 T . We now present shortly a straightforward generalization whenEJ is of
arbitrary codimension.

In the sequel for a nonsingular varietyV we denote byKV its canonical
divisor.

PROPOSITION 4.3.KD = �i2T (�i � 1)Ci in PicD 
 Q.
Proof. By definition of the numerical data we have thatKX = �`2S(�` � 1)E`

and�`2SN`E` = 0 in PicX, and consequently

KX =
X
`2S

(�` � 1)E` + s0

X
`2S

N`E` = �
X
j2J

Ej +
X
`62J

(�` + s0N` � 1)E`

in PicX
Q. This implies the stated expression after applyingjJ j times the adjunc-
tion formula, or at once by [F, Example 3.2.12]. 2

Example. WhenD is a projective curve of genusg we obtain the relation 2g�2 =
�i2T (�i � 1).

Remark. Proposition 4.3 is valid foranyembedded resolution, not necessarily
à la Hironaka.

(4.4). When dimD > 2 we obtain a finite number of relations by analyzing as
before the historical evolution ofD.
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THEOREM.We use the notation of(2:6). For i = 0; : : : ;m� 1 we have that

(Relation A)

�i+1 =
X

k2T 0[f1;:::;ig

�k(�k � 1) + ri;

where�k is the multiplicity of the generic point ofZi onC(i)

k , andri = codim(Zi;
Di). We have also

(Relation B)

KD0 =
X
k2T 0

(�k � 1)Ck in PicD0

 Q:

Idea of the proof. It is quite analogous to the proof of Theorem 2.7 starting
now from Proposition 4.3. Investigating ‘backwards’ the evolution of the canonical
divisorsKDi and using the identitiesKDi+1 = ��i+1KDi +(ri�1)Ci+1 we derive
for i = m� 1; : : : ;0 that

KDi =
X

k2T 0[f1;:::;ig

(�k � 1)Ck in PicDi

 Q;

and as a bonus we obtain the Relations A. See [V1] for the complete proof of the
casejJ j = 1, which is in fact also valid in the general case. 2

(4.5). For concrete varietiesD0 we can make Relation B more explicit. For exam-
ple whenD0 �= Pm then it becomesX

k2T

dk(�k � 1) +m+ 1 = 0;

wheredk is the degree of the hypersurfaceCk. See [V1] whenD0 is an arbitrary
projective space bundle.

5. Poles of zeta functions

(5.1). LetK be a finite extension of the fieldQp of p-adic numbers,R the valuation
ring of K, P the maximal ideal ofR, and �K = R=P the residue field with
cardinalityq. Forz 2 K we denote by ordz 2 Z[f+1g its valuation,jzj= q�ordz

its absolute value, and ac(z) = z��ordz its angular component, where� is a fixed
uniformizing parameter forR.

Let f(x) 2 K[x] = K[x1; : : : ; xn] and{:R� ! C� a character ofR�, the
group of units ofR. (We formally put{(0) = 0.) To these data one associates
Igusa’s local zeta function

Z(s) = Z(s; f;{) :=
Z
Rn

{(acf(x))jf(x)jsjdxj;
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for s 2 C with <(s) > 0. Herejdxj denotes the Haar measure onKn, normalized
such thatRn has measure 1. Igusa [I1] showed that it is a rational function ofq�s,
so it extends to a meromorphic function onC .

For more information and references on Igusa’s local zeta function, see for
example the overview paper [D3].

(5.2). From now on we suppose that{ is trivial on 1+ P , i.e. it is induced by a
character of�K; this is the relevant case (see [D3, Thm 3.3]). Let alsod denote the
order of{.

We choose an embedded resolutionh:X ! A n of f�1f0g, constructed entirely
overK (this in possible by [H]), for which we use the notation of (1.1), where
now theEi; i 2 S, are theK-irreducible components ofh�1(f�1f0g). We also

set
�

E I := EIn [`62I E` for I � S. Igusa’s proof of the rationality ofZ(s) yields the
following: All real poles ofZ(s) are among the values�(�j=Nj), wherej 2 S

anddjNj .
Moreover the following formula gives a closed expression forZ(s) in terms of

the resolution(X;h). In the sequel we denote reduction modP by (�) �K .

THEOREM 5.3 [D3, Sec. 3].Suppose that the resolution(X;h) has good reduction
modP (see[D3; (3:2)]). Then

Z(s) = q�n
X
I�S

c{I
Y
i2I

q � 1
q�i+sNi � 1

;

with

c{I =
X
k

(�1)k Tr[Frob;Hk
c ((

�

E I) �K ;L{)]:

HereL{ is a certain`-adic sheaf onX �K associated to{, Tr denotes the trace, and
Frob is the geometric Frobenius of�K. (Remark thatc{I = 0 whenEI = ;:)

Remark5.4. (i) ‘Good reduction modP ’ is a technical condition. Whenf and
(X;h) are defined over a number fieldF , then we have good reduction for all but
a finite number of completionsK of F .

(ii) The sheafL{ is in fact zero on[d-Ni
(Ei) �K and locally constant of rank one

elsewhere; we can thus restrict the summation above to subsets I for whichdjNi

for all i 2 I.
(iii) When { is the trivial character the sheafL{ is constant on�X and soc{I is

just the number of�K-rational points on(
�

E I) �K .

(5.5). Let nowEJ be a nonempty intersection for whichs0 = �(�j=Nj) for all
j 2 J , ands0 6= �(�i=Ni) for other componentsEi of h�1Y that intersectEJ .
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For such an intersecting componentEi set�i := �i + s0Ni. The contribution of
EJ to the formula forZ(s) above is

q�n
(q � 1)jJjQ

j2J(q
�j+sNj � 1)

X
I�J

c{I
Y
i2InJ

q � 1
q�i+sNi � 1

:

We are interested in the contribution ofEJ to the problem whethers0 is a pole of
orderjJ j of Z(s), and thus in the nullity of

Rs0 :=
X
I�J

c{I
Y
i2InJ

q � 1
q�i � 1

: (�)

We may suppose thatdjNj for all j 2 J since otherwiseRs0 is trivially zero.
Let�(�) denote the Euler–Poincaré characteristic with respect to singular coho-

mology. Inspired by Igusa’s so–called Monodromy Conjecture [D3, Con. 2.3.2]
and the formula of A’Campo [A, Thm 3] we expect the following. For ageneric

projectiveEJ with �(
�

EJ) = 0 we should haveRs0 = 0.

(5.6). WhenjJ j = 1 thenEJ is in fact an exceptional varietyEj and s0 =
�(�j=Nj). In the case of curves(n = 2) necessarilyEj

�= P1, and so the condition

�(
�
Ej) = 0 is equivalent toEj intersecting exactly twice other components, say

E1 andE2. Then

Rs0 = c{fjg + c{fj;1g
q � 1
q�1 � 1

+ c{fj;2g
q � 1
q�2 � 1

:

When{ is the trivial character we havec{fjg = q � 1 andc{fj;1g = c{fj;2g = 1 by
Remark 5.4(iii) and consequentlyRs0 = 0 if we would have

�1 + �2 = 0: (5)

When{ is arbitrary using Remark 5.4(ii) it is not difficult to prove thatRs0 = 0 if
moreover we havedjN1 , djN2. (See also Example 5.7.3.) This last equivalence
is implied by the congruence

N1 +N2 � 0 modNj : (6)

Now (6) and (5) are precisely Corollary 2.4 and the example after Proposition 4.3
for jJ j = 1! In fact the nullity ofRs0 was precisely the motivation for developing
these relations and congruences forn = 2 [S, M, I, L].

Using our theory of relations in codimension one we verified in [V3] that
Rs0 = 0 when expected for a lot of cases for surfaces(n = 3) and for some
cases in arbitrary dimensionn, assuming that{ is the trivial character. When{ is
arbitrary we verified the nullity ofRs0 is some cases for surfaces using our theory
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of congruences (in codimension one); a couple of examples concerning the related
topological zeta function (see (5.9)) appeared in [V2].

Here we should mention that whenn > 3 there is a whole zoo of configurations

satisfying�(
�

Ej) = 0, and the vanishing ofRs0 seems a bit miraculous.

(5.7). Now whenjJ j is arbitrary we can use the relations and congruences in
arbitrary codimension of this paper to verify analogously the nullity ofRs0. We
give some examples, assuming that the resolution(X;h)has good reduction modP ,
and for simplicity also thatEJ is irreducible over an algebraic closure ofK.

(5.7.1). If EJ is a projective curve then�(
�
EJ) = 0 if and only if EJ =

�
EJ is

an elliptic curve, orEJ
�= P1 and it intersects exactly twice other components. I

doubt whether the first case can occur in an embedded resolution configuration. The
second case certainly occurs and as above we have thatRs0 = 0, using Corollary 2.4
and the example after Proposition 4.3 (for arbitraryjJ j).

(5.7.2). When{ is the trivial character all cases of [V3] where we verified for
jJ j = 1 thatRs0 = 0 can be extended to arbitrary codimensionjJ j.

(5.7.3). LetEJ
�= Pm(m > 2), and let the irreducible components of intersections

ofEJ with otherE`; ` 62 J , bek hyperplanes in general position(2 6 k 6 m+1).

One easily sees that�(
�
EJ) = 0.

Let first{ be the trivial character. Then the numbersc{I in the expression (�) are

just the numbers of�K-rational points on the(
�

EI) �K . WhenjJ j = 1 we proved in
[V3] that Rs0 = 0 (by induction onn andk); the same proof is valid for arbitrary
jJ j. Let now{ be arbitrary (of orderd).

First case:djNi for all i = 1; : : : ; k. By Remark 5.4(ii) we have that the sheafL�
in the formula of 5.3 is locally constant onEJ and thus constant, sinceEJ

�= Pm is
simply connected. Consequently the numbersc{I are just the numbers of�K-rational

points on(
�
E I) �K , andRs0 = 0 arguing as above.

Second case:d - N1 andd - N2 (after permutation of the indices). We will show
that all coefficientsc{I in (�) are zero, in fact more precisely that all the cohomology
groups in the expression of 5.3 forc{I are zero, using Proposition 5.8 below. Indeed

by an easy verification or by Proposition 5.8(ii) we have that�(
�
E I) = 0 for any

relevant I� J , i.e. for I such thatJ � I � J [ f3; : : : ; kg anddjNi for all i 2 I.
Then Proposition 5.8(i) implies the nullity of all occurring cohomology groups.

Remark now that the eventual remaining case ‘d - N1 anddjNi for all i =
2; : : : ; k’ is ruled out by Corollary 2.3. Indeed since PicPm �= Z this is equivalent
to �k

i=1Ni � 0 modNJ , which implies thatdj�k
i=1Ni. It is an exercise to check

that in this hypothetical case we would in general haveRs0 6= 0.

(5.7.4). Using the notation of (2.6) we takeD0 �= P1� P1 and letD1 = D = EJ

be obtained fromD0 by the blowing-up�1 at a pointP . Let theCi; i 2 T
0; consist
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of a fibreC1 of one projectionpr1:D0 ! P1 and of two fibresC2 andC3 from
the other projectionpr2, such that moreoverC1 \ C2 = fPg. Consequently the
Ci; i 2 T; consist ofC1; C2; C3; and the exceptional curveC4 of �1.

In this example Congruence B states that

N1C1 +N2C2 +N3C3 = 0 in
PicD0

NJ PicD0 :

Since PicD0 �= pr�1PicP1� pr�2PicP1 �= Z� Z this is equivalent to

N1 � 0 modNJ and N2 +N3 � 0 modNJ :

Furthermore Congruence A is

N4 � N1 +N2 modNJ :

One now verifies immediately that only the following two possibilities can occur:

(i) djNi for 1 6 i 6 4,
(ii) djN1 andd - Ni for 2 6 i 6 4.

Case(i). As in the first case of (5.7.3) the numbersc{I are the numbers of�K-

rational points on(
�
E I) �K . Using the structure of PicD0 and the fact thatKD0 =

pr�1KP1 + pr�2KP1, it is not difficult to verify that in this case the Relations B and
A of Section 4 aref�1 = �1; �2 +�3 = 0g and�4 = �1 +�2, respectively. Now
it is an easy exercise to compute thatRs0 = 0.

Case(ii). In this case only
�

EJ and
�

C1:= C1n(C3 [ C4) possibly contribute to
Rs0. Both contributions are however zero for we can show that,L{ being the sheaf
of Theorem 5.3,

Hk
c ((

�
C1) �K ;L{) = 0 for all k; and (7)

Hk
c ((

�
EJ) �K ;L{) = 0 for all k: (8)

Indeed (7) is true because of Proposition 5.8 and the fact that�(
�
C1) = 0. We

indicate a proof of (8), which gives the reader an idea of the arguments underlying
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Proposition 5.8. First the exact sequence of cohomology with compact support for

the inclusions
�

EJ ,!
�

EJ [
�

C1 -
�

C1, together with (7), yields

Hk
c ((

�

EJ) �K ;L{)
�= Hk

c ((
�

EJ [
�

C1) �K ;L{) for all k:

Now since
�

EJ is affine these cohomology groups are zero fork = 0;1. Using
[SGA41

2, Sommes Trig. 1.19.1] and Poincaré duality we have

Hk
c ((

�
EJ [

�
C1) �K ;L{)

�= Hk((
�
EJ [

�
C1) �K ;L{)

�= �H4�k
c ((

�

EJ [
�

C1) �K ;
�L{);

for all k, where� denotes the dual. SoHk
c ((

�
EJ) �K ;L{) = 0 also fork = 3;4 and

consequently fork = 2 since�(
�
EJ) = 0.

PROPOSITION 5.8.LetL� be the sheaf occurring in the formula of Theorem5:3.
LetEJ be a nonempty intersection of exceptional varieties withdjNj for all j 2 J ,
and such thatEJn [d-E`

E` is affine.

(i) For I � J such thatdjNi for all i 2 I we have that

Hk
c ((

�

E I) �K ;L�) = 0 for k 6= n� jIj = dimEI:

(ii) If �(
�

EJ) = 0 then for all I in (i) we have that�(
�

E I) = 0.

Proof. See [V4] whenjJ j = 1. The general case is analogous. 2

(5.9) Finally we introduce the related topological zeta function. Taking heuris-
tically the limit for q ! 1 in the formula in 5.3 yields

X
I�S

8i2I:djNi

�(
�
EI)

Y
i2I

1
�i + sNi

: (��)

Denef and Loeser [DL] define thetopological zeta functionZ(d)
top(s; f)associated

to f 2 C [x1; : : : ; xn] andd 2 Nnf0g as the rational function (��) in the variable
s. They prove that this defining formula does not depend on the chosen resolution
(X;h) by expressing it in an exact way as a limit of Igusa’s local zeta functions.

One can also state the Monodromy Conjecture forZ
(d)
top(s; f), and our vanishing

results about poles of Igusa’s local zeta function are also valid for the topological
zeta function, the latter results being easier then the first.
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