Compositio Mathematica 12: 313-331, 1998. 313
© 1998Kluwer Academic Publishers. Printed in the Netherlands.

More congruences for numerical data of an
embedded resolution

WILLEM VEYS*
Departement Wiskunde, Celestijnenlaan 200B, B-3001 Louvain, Belgium;
e-mail: wim.veys@wis.kuleuven.ac.be

Received: 5 November 1996; accepted in final form 15 April 1997

Abstract. To an arbitrary intersection of exceptional varieties of an embedded resolution we associate
a finite number of congruences between naturally occurring multiplicities. This theory generalizes

previous results concerning just one exceptional variety. Moreover we describe precise equalities
which imply the congruences and we give some applications on the poles of Igusa’s local zeta
function.
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Introduction

(0.1). Letk be an algebraically closed field of characteristic zerofaads[z1, . . .,
z,]. Leth: X — A" be an embedded resolution of singularitieg of {0}, consid-
ered as an algebraic set in affine spateWe suppose that this resoluti¢X, /)
is constructed by means of consecutive blowing-ups, according to Hironaka’s
Theorem [H].
We denote byE;,i € S, the irreducible components af *(f~1{0}) and by
N; the multiplicity of E; in the divisor off o h.

(0.2). Fix one exceptional varietiy;. Whenn = 2 the following congruence is
now well known. Say; intersects: times other components;, .. ., Ej. Then

k
Y N;=0 modn; (*)
i-1

and more preciselit | N; = N;(1+ p), wherep is the number of times that a
point of £; occurs as centre of some blowing—up during the resolution process.
The original proof for analytically irreduciblg(z1, z2) was derived by consecutive
work of Strauss [S], Meuser [M] and Igusa [I2], and for gengi(al;, x2) by Loeser

[LI].
(0.3). Whemn is arbitrary we developed in [V2] a general theory of congruences,
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extending(x). The essential feature of dimensien> 3 is thatZ; is subject to

a ‘historical evolution’ during the resolution process. gt C X be the strict
transform inX of the varietyE?, created at some stage of the resolution process
h as exceptional variety of a blowing-up. Then in genéfals notisomorphic to

E?; more preciselyr; itself is obtained fromE? by a sequence of blowing-ups.
(Whenn = 2 this phenomenon does not occur for tlﬁ?’e E; = PL)

In fact we associated a finite number of congruences Motb E;; there are
Basic Congruenceassociated to its creation E§ in the resolution process, gen-
eralizing ), and anAdditional Congruencassociated to each blowing-up of the
sequence that producé out of ES.

(0.4). In this paper we will generalize this theory further to congruences ‘in arbi-
trary codimension’. We first give an example.

Whenn = 3 let £j, and £}, be two intersecting exceptional surfaces and
suppose that the curv® = E; N Ej, is irreducible and projective. Sagp
intersects: times other componenfs,, . .., Ej. Then

k
> N; =0 mod gcdNj,, Nj,),
i=1

where gcd denotes the greatest common divisor. This ‘codimension 2’-congruence
cannot be derived as a consequence of the ordinary ‘codimension 1'-congruences
of [V2]. In fact there is an explicit equalit?_, N; + k2Nj, + k1N, = 0, where

r¢ is the self-intersection number &f on £, .

(0.5). We will associate to each irreducible componerif a nonempty intersec-
tion of exceptional varieties; c s ££; afinite number of congruences mod gegV;,
and moreover we will describe equalities from which they can be obtained. We
want to remark here that the congruences can be proved directly in an elegant way
without reference to the equalities. (Hdit = 1 this was not mentioned explicitly
in[V2].)

We now state these congruences more precisely. In general the \iarggigs
through a historical evolution during the resolution process: it is obtained by a finite
succession of blowing-ups

Tm—1

2 pt2 . ..pt Xl pi...«—— pni&m pm_p,

with irreducible nonsingular centt& ; ¢ D'~! and exceptional variety; C D°
fori =1,...,m. The varietyD° is created at some step of the global resolution
process (in fact at the creation of the ‘last’ of thg, j € J).

There are two kinds of intersections bfwith componentss,, ¢ ¢ J. We have
the strict transforms irD of the exceptional varietie€’, ..., C,,; and also the
strict transforms irD of certain varietie€,, k € 79, (of codimension one) i®°.

We have moreover that the strict transform of eéghi € 70U {1,...,m}, is
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(an irreducible component of) the intersectionidfwith exactly one component
of h=1(f~1{0}); slightly abusing notation let this component have multiplicity
in the divisor off o h.

THEOREM. SetN, := gcd;;N;. Using the notation above we have for=
0,...,m — lthat

(Congruence A)

Nigi= Y. Ny modNy,
keTOU{1,...,i}

wherep, is the multiplicity of the generic point ¢f; on (the strict transform in
D' of) Cj.. We have also
(Congruence B)
. PicD°

NiCr,=0 in ———.
Z kCk Nj PicD°
keT©

WheneveD? is complete, Congruence B induces a finite number of ordinary con-
gruences modv;.

(0.6). Fori € S lety; — 1 be the multiplicity ofE; in the divisor ofh*(dz1 A ... A

dz,) on X. Classically thg(N;,v;),7 € S, are called theaumerical dataof the
resolution(X, k). The numbers-(v;/N;), i € S, form a complete list of candidate
poles for Igusa’s local zeta function gf(when f is defined over a-adic field).

We will mention a straightforward generalization to arbitrary codimension of our
‘codimension one’-theory of relations between numerical data [V1], which enables
us to give some applications of the congruences of this paper concerning the poles
of Igusa’s local zeta function.

(0.7). The plan of the exposition is as follows. In Section 1 we recall briefly the
important aspects of an embedded resolution and in Section 2 we prove the Con-
gruences A and B. Their underlying equalities are studied separately in Section 3;
this part is a bit technical and is not needed for the applications concerning lgusa’s
local zeta function. After developing the more general relations between numerical
data in Section 4, those applications are treated in Section 5.

1. Embedded resolution

(1.1). Letk be an algebraically closed field of characteristic zero and' let
k[z1,...,z,]. LetY = f~1{0} denote the zero set ¢fin affine space\”. We
exclude the trivial casg¢ € k, soY is a hypersurface ia™.

DEFINITION. An embedded resolutigiX, ) for Y C A" consists of a nonsingu-
lar variety X and a proper birational morphisim X — A" such that the restriction
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h|x\n-1y IS @an isomorphism and~1Y has normal crossings i. In particular
the irreducible components af 'Y are nonsingular hypersurfaces.

Remember that a reduced hypersurfacef X hasnormal crossing# for all
z € X there exists a regular system of parameters. ., ¢, in the local ringOx
of X atz suchthatthe ideal i@y , of each irreducible component fcontaining
x is generated by one of the. (Analytically one can think of2 being locally a
union of coordinate hyperplanes.) Alébis said to havaenormal crossings witla
(necessarily smooth) subvariefyof X if for all z € D the ideal ofD in Ox ; is
generated by some of thg

(1.2). Hironaka [H] constructed an embedded resolution as a finite composition of
blowing-upsRecall that ify: Z — Z is theblowing-upof the varietyZ with centre

the closed subsét of Z, then theexceptional divisolZ = ¢~1B is everywhere

of codimension one o#, and the restricti0@|Z\E is an isomorphism. For any

subvarietyl of Z with V' ¢ B the closure ofy 1(V\B) in Z is called thestrict
transform of V by g. If Z and B are nonsingular varieties, then the same is true
for Z andE.

More precisely Hironaka constructed a resolutiéh /) as a suitable compo-
sition of blowing-ups

A= Xl xy X, g I X, E X, = X,
with irreducible nonsingular centi®; C X;,0 < i < r, suchthatcodirB;, X;) >
2. Moreover eacl®; is contained in the (repeated) strict transfornyah X;, and
the reduced hypersurface, consisting of the (repeated) strict transfomsfithe
exceptional varieties aofy, . . ., g;, has normal crossings with;.

Finally »=1Y = (g, o --- 0 g1)~}(Y)) has thus normal crossings iX; its
irreducible components are the strict transforms of the irreducible components
of Y and theexceptional varieties of, being the strict transforms iX of the
exceptional varieties ofy, . . ., g,.

(1.3). LetnowD C X; be any variety which intersecis transversely everywhere
(and is not contained i;) andD C X1 its strict transform byy; 1. We have

the following important fact (see e.g. [GH, page 605] for the first claim; the second
is not difficult to verify).

PROPOSITION, The restrictiogi+1|b:l~) — D is the blowing-up ofD with
(nonsingulay centre3; N D. Moreover the exceptional divisor @f 1|5 is the

intersection ofD with the exceptional divisor of; 1.

Note thatB; N D can eventually be reducible. The total blow-up@fwith
centreB; N D can then be considered as the result of consecutive blowing-ups of
with centres the irreducible components®fn D, which are necessarily disjoint.

We will use this proposition intensively fd? a nonempty intersection of excep-
tional varieties ofh; because of the normal crossings property the transversality
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condition is indeed satisfied.

(1.4). From now on we will denote the irreducible componentsiotY by
E;,i € S, and their multiplicity in the divisor off o h by N;; alternatively
(f oh) = XjesN;E;. We also setF, := N E; for | € S. While working
with the resolution procegswe will in general use the same notation o1, when
created as exceptional variety, and for its strict transforms ingny

2. Self—intersection divisors and congruences

(2.1). From now on we fix intersecting exceptional varietigs;j € J, and an
irreducible componenb of E;. Remark that because of the normal crossings
propertyD is nonsingular and disjoint from eventual other componenis;ofand
that codim{D, X) = |J|.

Let C;,i € T, denote all the irreducible components of the intersections
DN Eyt ¢ J. SetalsoN; := gcd,c;N;. Our starting point is the following
observation.

PROPOSITION 2.2For j € J we denote by ; the self-intersection divisor of
D on Ej\ 3, considered as an element®it D. Then

Z Njg(j) + ZNZCZ =0 inPicD.
JjeJ i€T
Proof. Denote byy: D — X the natural embedding and consider for eaehJ

the decompositioD & Eniy ﬁ—@ X of §. SinceX;csN;E; = 0in PicX we
have that

> N;i§*E; =0 inPicD. (1)
=
Now §*(3;¢sN; E;) = ZierN;C; and for eacly € J we have that*E; =

o (B Ej) = o (E,) = o (D) = D;. Substituting all this in (1) yields the stated
expression. O

COROLLARY 2.3.E,c1rN;C; = 0in PicD/N, PicD.
COROLLARY 2.4.Let D be a projective curve. Thetaking degrees

> N;=0 modN,,
ieT

and more precisely, if; denotes the self-intersection numbefobn £ 5\  ;;, then
EjeJHij + 3ierN; = 0.
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Remarlk2.5. Proposition 2.2 and its corollaries are in fact valid in a more general
context.

(i) They are true fomnyembedded resolution af, i.e. not necessarily obtained
a la Hironaka.

(i) The E;,j € J, can be arbitrary (intersecting) componentshofY". Now
for example whery is irreducible and the strict transform bfis one of the
E;,j € J,thenN; = 1 and the congruences are meaningless. See (2.8) for
an application of the equalities.

(2.6). We now fix the notation for our general congruences and equalities. Using
Proposition 1.3 the following is not difficult to verify.

(i) The varietyD is the strict transform itk of a nonsingular variety)?, created
at some step of the global resolution process. (In faBtappears in this
process at the creation of the ‘last’ of the, ; € J, as exceptional variety of
a blowing-up ofh; and more precisel? is a component of the intersection
of this variety with the othef/;, j € J, at that stage of.)

(i) So D itself is obtained fronD? by a finite succession of blowing-ups

. . . Tm—-1
pe . prt 2 ...pitliopi...« pm-1Im pm_p

with irreducible nonsingular centr&;_; C D’~! and exceptional variety
C; C D'fori =1,...,m. InfactC; is (a component of) the intersection of
D' with some global exceptional variefy, at the stage wherg, is created.

(iii) For i = 1,...,m and for any varietyY C D7,0 < j < i, let the strict
transform ofV in D (by ; o - - - o 7, 1) be denoted by (®).

LetC;,7 € T, be the intersections dd with component#,, ¢ ¢ J. They
consist of the strict transforn@_(Lm), e, T%m) in D ofthe exceptional varieties
Ci,...,Cp and of the strict transformé‘i(m) in D of varietiesC;,i € T°,
(of codimension one) iD°. Those last varieties are the intersectionsD8f
with componentsE,, ¢ ¢ J, at the stage oh where D° is created. (So
T=TU{1,...,m}.)

(iv) SinceU,csE, has normal crossings il we have for each e T thatCZ.(m) IS
(a component of) the intersection Bfwith exactly one component af 1Y,
different from theE);, j € J. For simplicity of notation let this component be
E;.

THEOREM 2.7 Fori =0,...,m — 1 we have that
(Congruence A)

Nigi= Y. Ny modNy,
keTOU{1,...,5}
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wherey,, is the multiplicity of the generic point ¢f; on C,Sf). We have also that

(Congruence B)

. PicD°
NiCr=0 in ————.
IET:O Wk N, PicD°

Remark (i) Of course these congruences are only meaningful wien- 1.

(ii) Ingeneral Congruence B thus has divisors as ‘coefficients’. WhehP#

7., for example ifD° is some projective space, Congruence B becomes an ordinary
congruence.

(iii) More generally, wheneveb? is complete, Congruence B induces a finite
number of numerical congruences. For then we can consider it in DYV,
NumD®, where NumD? is the group of divisors o®° modulo numerical equiv-
alence, which is a quotient of Pi2°. Since NumD? is a finitely generated free
Abelian group we get rankNum D°) congruences.

Proof. Consider for a fixed € {0, ...,m — 1} the blowing-upm; 1: D1 —
Dt. It is not difficult to verify that the classical isomorphism Bi¢™ = ¥ ;
PicD' @ Z.C;41 (with injectiver;, ;) induces

PicD*tt . PicD? o 2
N, PicDi+1 — "t N PicDi ¥ N;Z

Cit1, 2

wherer, , is still injective.
Suppose now tha)]eeToU{l,___Hl}Ng(]lg”l) = 0 in PicD*1/N; PicD*.

This is equivalent td)keToU{lw.ﬂ-}Nk(wgﬁrl(],gi) — pCiy1) + Niy1Ciz1 = 0, and
using (2) we obtain

Y NG =0 in %
kETOU{1,....i} J
and
Nigi= >, g in %-
keTOU{1,....i} J

Starting from the fact thaEieTNiCi(m) = 0in PicD/N; PicD (Corollary 2.3)
we use the arguments above consecutivelyifer m — 1,...,0 to obtain the
Congruences A and finally end up with Congruence B. O

For concrete varietieB° one can make Congruence B more explicit. Wihetis a

projective space bundle over some base variety this has been done in [V2]. (When
|J| = 1 thenD? is always such a bundle.)
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(2.8). Taken = 3 and suppose th&fX, h) is the embedded resolution of an iso-
lated singularityP of the irreducible surfac¥. The equalities of Corollary 2.4 are
useful to determine the self-intersection numbers in the resolution grapleaf,
when an explicit embedded resolutioméfc A3 is given.

Indeed letD be (a component of) the intersection of the strict transforir of
with some exceptional surfadg;, and letD intersectk times other exceptional
surfaces, say1, . . . , E;. We want to know the self-intersection numlagsf D on
the strict transform oY (which is a resolution o € Y). Now Corollary 2.4 says
that

k
Kj+ Njs+ Y N;=0,
1=1

wherex; is the self-intersection number @ on E;, which can very easily be
computed.

3. Precise equalities

(3.1). We keep using the notation of (2.6). The congruences in the preceding
section were completely determined by the configuration ofthé € T, onD; or
equivalently of the?;, i € T, onD°. For example we did not need any information
concerning howD is embedded iX orintheE;, J' C J, or analogously foD°.
In my opinion precisely this feature makes these congruences attracting and useful
for applications. See Section 5.

The underlying equalities for these congruences however depend rather inten-
sively on knowledge about the global resolution process. We will derive them from
the key Lemma 3.3, for which we now introduce the data.

(3.2). We fix some blowing-up with centreB of the global resolution process
occurringafter the creation ofD° (and thus of all the;, 5 € J). We denote the
strict transform ofD? right before and afteg respectively byD' and D and the
restriction ofg to D! by . Sox: D¥ — D' itself is a blowing-up with (eventually
reducible) centreB N DT. (We may suppose tha N Dt # §, otherwise noth-
ing relevant happens.) Analogously we denote for eHcti J the ‘ancesters’ of
E; C X before and afteg respectively bye", ¢ Xt andE*, c X*. For each
j € J we thus have the following diagram

i 1 i

D By X

i g 3)
T T . xt

b Eniy X
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Let alsoz)zj> denote the self-intersection divisor ¥ on E}\{j}, considered as
an element of Pi®, and@%j> the analogous element of AiE.

LEMMA 3.3. We use the notation dB.2). Let Ci,e € &, be the(necessarily
disjoint) irreducible components of the exceptional divisowoandC},z‘ el,all
other irreducible components of the intersectioddfwith component&,, ¢ ¢ J,
in X1,

First case:codim(B N Df, DY) > 2.

So for eacte € £ we have tha¥Z, := «(C?) is of codimension at leagtin DT
and the irreducible components of the intersection®bfwith the E,,¢ ¢ J, in
X1 are precisely the! := 7(CH),i e l.

If Zje]@j@%j> + Zegugagcg = 0in PicD}, then

i) Y a@+> aCf =0 inPicDf, and
JjeJ i€l

(i) ae=3 pa;+3 6ja; foralleeé,

i€l jeJ

whereuge) is the multiplicity of the generic point of, on CZT, andd; = 1if
BCEjanddj:OifBgZEj.
Second caseodim(B N D, DT) = 1.

Sor: DY — Dt is an isomorphism and the irreducible components of the
intersections oD with the B, ¢ ¢ J, in X1 are precisely th&] := (C}), ¢ €
U €.

If ZjeJajiof

i+ SeeivearCy = 0in Pic DY, then

(i) Y a@ly+ Y ali+Y (ae -3 5]-%-) Cf =0 inPicD.

Jjed i€l e Jjed

Proof. We first show for eaclj € .J that in PicD}

o xmt
Dy =m0 — 5 CL. (4)
ecé
Consider the natural embeddings D — X' anday: D* — X* in the diagram
(3) of (3.2) and letE* be the exceptional divisor @fin X*t. Then as in the proof
of Proposition 2.2 we have th@tzj> = a}‘EJ and@fﬁ = aIE;: So

i
D

iy = 0i(g" Bl = §;B") = n"ai B - 8,0} B = w2, —§; > CL.

ecé
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First case.Substituting (4) and the identitieS‘CiT = C} + Zeeguge)cei,i el in
the given expression yields

> a <7T*©2rj) -0y C§>

jedJ ecé
+>a; (w*c‘} — zug@og) +3 aCl=0 inPicD?,
i€l ecé ecé

which is equivalent to

T* (Z a]@}f” + ZQZC;r) + Z (ae — Zﬂge)ai — Z (%CL]) Cét =0.

jeJd i€l ecE i€l jed

Now since Pid)t = 7* Pic Dt @ (@.ceZCY), wherer* is injective, we obtain the
stated results.

Second caseNow substituting (4) and*C! = C} ¢ € | U &, in the given
expression yields

Z aj <7T*©2rj> — 0 Z w*Cl) + Zam*C;r + Z aem*Cl =0 inPicD?,
Jjed ec& 1€l ec&

which clearly implies the stated expression in Pic |

THEOREM 3.4 We use the notation ¢2.6).

(A) Fix: € {0,...,m — 1}. Let B denote the centre of the global blowing-up
in the resolution process by whichC; ; is createdas irreducible component of
the intersection with the global exceptional varijeiynd sev; = 1if B C E£; and
§;=0if B¢ Ejforje J. ForallkeT°U{1,...,i+1} andj € J letm
be the number of centrd3, of global blowing-ups in the subsequent stages of the
resolution process that satisty.” " c B, c E;. Then

Nipp= > mNe+Y <mz<i>1 - > g + 5j> Nj,
keTou{1,...,i} jeJ keTOou{1,...,i}
wherey,, is the multiplicity of the generic point ¢f; on C,Sf).

(B) Forall k € T andj € J let m§j>> be the number of centres, of global
blowing-ups in stages of the resolution procésafter the creation ofD° that

satisfyC\>% ¢ By C E;. Then

Z N,C, = ZNj (Z m,?)Ck _©?j>> in PiCDO7

keT© JjeJ keTO
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WhereBD?j> € Pic D denotes the self-intersection divisorof on the intersection
of theEy, £ € J\{j}, at the stage wher®? is created.

Proof. (A) For simplicity of notation we will suppose tha&t‘*! is exactly
the intersection of the global exceptional variety associatefl teith the strict
transform ofDY; so this strict transform may be identified wiihi 1. The general
case is entirely similar.

For: = 0,...,m we denote b)@E?> € PicD’ the self-intersection divisor of

D' on the intersection of th&,, ¢ € J\{j}, at the appropriate stage of the global
resolution process. Starting from the equality

Z NiCy + Z Njgg?;) =0 inPicD,
keT jed

(Proposition 2.2), consecutive applications of Lemma 3.3(i, iii) yield

> (Nk; - Zmi‘j)Nj) Ce+ > sz)g;;rl) =0 inPicD™.

keTOu{1,...i+1} JjeJ jeJ

Then by Lemma 3.3(ii) we have that

Nis1i— Y miN;
JjeJ

= Z Lok (Nk; - Zm;ﬂNj) + Z5J'va

keTOou{1,...,i} JjeJ JjeJ

which is equivalent to the stated expressionfgr ;.
(B) Further applications of Lemma 3.3(i, iii) finally yield

Z (Nk - Zm;‘”Nj) Cy + ZN]&)% =0 inPicD° O

keto JjeJ JjeJ

Caution Themg> in (A) depend on the chosere {0,...,m — 1}.

(3.5). We can extend all previously obtained results to the following situation.
Instead of the polynomial functiofion A™ we can considerin (1.1) any nonsingular
variety A and any rational functiorf on A. Let nowY denote the support of the
divisor of f, the maph: X — A an embedded resolution &f C A, and again
E;,i € S, the irreducible components af 1Y with multiplicity V; in the divisor
of f o h.

The essential difference is now that thg,7 € S, can also be negative and
eventually even zero. This however does not cause any trouble. Of course when
N, = 0 acongruence mol¥; becomes an equality.
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4. Relations between numerical data in any codimension

(4.1). We now introduce besides thg, i € S, other invariants of the embedded
resolution(X, h) for Y C A". Fori € S lety; — 1 be the multiplicity ofE; in the
divisor of 7*(dz1 A - - - A dz,,) On X; alternatively the canonical divisor aX is
Yies(v; — 1)E;. Remark that; = 1 for any irreducible component of the strict
transform ofY". Classically thé N;, v;), 4 € S, are called th@eumerical dataof the
resolution(X, h).

The rational numbers-(v;/N;),i € S, are important because they form an
exhaustive list of candidate poles for certain zeta functions associatgdste
Section 5. In particular a nonempty intersectionfor which all v;/N;, i € 1, are
equal induces in general a candidate pole of ojider

(4.2). We now fix a nonempty intersectid?y of exceptional varieties such that
so = —(vj/N;)forallj € J,andanirreducible componebtof £;. LetC;,i € T,

still denote all the irreducible components of the intersectibns E,, ¢ ¢ J.
Rememberthat eacly,: € T, is the intersection witt of exactly one component

of h=1Y; slightly abusing notation we let this component have numerical data
(N;,v;) and we denotey; := v; + solV;.

These numbers; occur naturally in the expression for the ‘residue’ of the
candidate poleg for the zeta functions mentioned above; see Section 5. When
|J] = 1 we developed in [V1] a general theory of linear relations between the
«;,1 € T. We now present shortly a straightforward generalization wiigims of
arbitrary codimension.

In the sequel for a nonsingular variely we denote byK, its canonical
divisor.

PROPOSITION 4.3K ) = Xicr(a; — 1)C; in PicD ® Q.
Proof. By definition of the numerical data we have t#é&t = ¥c5(vy — 1) Ey
and>,csN,E, = 0in PicX, and consequently

Kx = Z(Vf -1 E, + SOZ NeEy = — Z E; + Z(V@ + soNy — 1)E;
tes tes jed 73

in PicX ® Q. This implies the stated expression after applyifigimes the adjunc-
tion formula, or at once by [F, Example 3.2.12]. O

Example WhenD is a projective curve of genyswe obtain the relation@— 2 =
Yier(a; — 1).

Remark Proposition 4.3 is valid foany embedded resolution, not necessarily
a la Hironaka.

(4.4). When dimD > 2 we obtain a finite number of relations by analyzing as
before the historical evolution dp.
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THEOREM.We use the notation ¢2.6). Fori = 0,...,m — 1 we have that
(Relation A)

1= Y, prlog—1)+rg,
keTOU{1,...,3}

wherey, is the multiplicity of the generic point &f; on C(i), andr; = codim(Z;,
D). We have also

(Relation B)

Kpo= Y (4 —1)C) inPicD°® Q.
keTo

Idea of the proaflt is quite analogous to the proof of Theorem 2.7 starting
now from Proposition 4.3. Investigating ‘backwards’ the evolution of the canonical
divisorsK i and using the identitie& jyi+1 = 7}, 1 K pi + (r; — 1)Ci 11 We derive
fori=m—1,...,0that

Kpi = Z (ak - 1)Ck in Pic D’ ® Q,
keTOU{1,...,i}

and as a bonus we obtain the Relations A. See [V1] for the complete proof of the
casg.J| = 1, which is in fact also valid in the general case. O

(4.5). For concrete varietigs® we can make Relation B more explicit. For exam-
ple whenD® = P™ then it becomes

de(ak—l)-i-m-i-lzo,
keT

whered,, is the degree of the hypersurfa€g. See [V1] whenDC is an arbitrary
projective space bundle.

5. Poles of zeta functions

(5.1). LetK be afinite extension of the fie@, of p-adic numbersk the valuation
ring of K, P the maximal ideal ofR, and K = R/P the residue field with
cardinalityq. Forz € K we denote by ord € ZU{+oo} its valuation|z| = ¢~ °9*
its absolute value, and &g = z7—°'9% its angular component, whereis a fixed
uniformizing parameter foR.

Let f(z) € K[z] = K[z1,...,zy] andsx: R* — C* a character oRR*, the
group of units ofR. (We formally puts(0) = 0.) To these data one associates
Igusa’s local zeta function

Z(s) = Z(s, [, ) = /Rn =(acf (z))|f (x)[*|dx|,

https://doi.org/10.1023/A:1000425105381 Published online by Cambridge University Press


https://doi.org/10.1023/A:1000425105381

326 WILLEM VEYS

for s € C with R(s) > 0. Here|dz| denotes the Haar measure Brt, normalized
such thatR™ has measure 1. Igusa [11] showed that it is a rational functig of
S0 it extends to a meromorphic function ©n

For more information and references on Igusa’s local zeta function, see for
example the overview paper [D3].

(5.2). From now on we suppose thais trivial on 1+ P, i.e. it is induced by a
character ofK; this is the relevant case (see [D3, Thm 3.3]). Let alsenote the
order of .

We choose an embedded resoluttoX — A" of f~1{0}, constructed entirely
over K (this in possible by [H]), for which we use the notation of (1.1), where
now the E;,i € S, are theK-irreducible components df~1(f~1{0}). We also

setl%l = E)\ Ugg) Eg for | C S. Igusa’s proof of the rationality of (s) yields the
following: All real poles ofZ(s) are among the values (v;/N;), wherej € S
andd|N;.

Moreover the following formula gives a closed expression4¢s) in terms of
the resolution( X, h). In the sequel we denote reduction medy (-) ;

THEOREM 5.3 [D3, Sec. 35uppose that the resolutig¢i’, #) has good reduction
modP (seeD3, (3.2)]). Then

= _nz H 1/1+5N ’

ics el 4

with

=S (=1 TrFrob HY((E) g, £..)].
k

HereL,, is a certain‘-adic sheaf onX ;; associated tor, Tr denotes the trace, and
Frobis the geometric Frobenius &f. (Remark that;* = OwhenE; = ().)

Remarks.4. (i) ‘Good reduction modP’ is a technical condition. Whejfi and
(X, h) are defined over a number field then we have good reduction for all but
a finite number of completion&™ of F'.

(i) Thesheafl,, isinfactzero oruyy, (E;) gz and locally constant of rank one
elsewhere; we can thus restrict the summation above to subsets | for &fhich
foralli el

(i) When s is the trivial character the sheAf, is constant onX and socf” is

just the number of -rational points oru%,)g

(5.5). Let nowE; be a nonempty intersection for which = —(v;/N;) for all
j € J,andsg # —(v;/N;) for other component&; of 1Y that intersect?;.
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For such an intersecting compondnitseta; := v; + sgN;. The contribution of
E; to the formula forZ(s) above is

- (¢
q nHj P vi+sN; _ Z H qu+SN

es(4 )57 ie\J

We are interested in the contribution Bf; to the problem whethey is a pole of
order|J| of Z(s), and thus in the nullity of

= ¢ 7?§i (%)

157 iens ¢

We may suppose thadfN; for all ; € J since otherwise?,, is trivially zero.

Let x(-) denote the Euler—Poindacharacteristic with respect to singular coho-
mology. Inspired by Igusa’s so—called Monodromy Conjecture [D3, Con. 2.3.2]
and the formula of ACampo [A, Thm 3] we expect the following. Fogeneric

projectiveE; with X(z%J) = 0 we should havé?,, = 0.

(5.6). When|J| = 1 thenE; is in fact an exceptional varietyy; and so =
—(vj/N;). Inthe case of curveis: = 2) necessarily; = P, and so the condition

X(on) = 0 is equivalent taF’; intersecting exactly twice other components, say
E1 andE,. Then

o e =1 g1
Boo =iy + ity qar =1 T U2 qua — 1

When. is the trivial character we havg;, = ¢ — 1 andcf; ;, = ¢, = 1 by
Remark 5.4(iii) and consequentl, = 0 if we would have

a1+ az=0. (5)

When is arbitrary using Remark 5.4(ii) it is not difficult to prove thiaj, = O if
moreover we havé|N; < d|N». (See also Example 5.7.3.) This last equivalence
is implied by the congruence

N1+ N>,=0 mode. (6)

Now (6) and (5) are precisely Corollary 2.4 and the example after Proposition 4.3
for |J| = 1!'In fact the nullity of R, was precisely the motivation for developing
these relations and congruencesrioe 2 [S, M, |, L].

Using our theory of relations in codimension one we verified in [V3] that
R,, = 0 when expected for a lot of cases for surfa¢es= 3) and for some
cases in arbitrary dimension assuming tha is the trivial character. Whes is
arbitrary we verified the nullity oz, is some cases for surfaces using our theory
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of congruences (in codimension one); a couple of examples concerning the related
topological zeta function (see (5.9)) appeared in [V2].
Here we should mention that wher> 3 there is a whole zoo of configurations

satisfyingx(z%j) = 0, and the vanishing dk, seems a bit miraculous.

(5.7). Now when|J| is arbitrary we can use the relations and congruences in
arbitrary codimension of this paper to verify analogously the nullity?gf. We

give some examples, assuming that the resoltiork ) has good reduction mael,

and for simplicity also thaE; is irreducible over an algebraic closureof

(5.7.1). If E; is a projective curve them(ﬁj) = 0ifand only if £, :ﬁj is

an elliptic curve, orE; = P! and it intersects exactly twice other components. |
doubtwhether the first case can occur in an embedded resolution configuration. The
second case certainly occurs and as above we havB that 0, using Corollary 2.4

and the example after Proposition 4.3 (for arbitrgf}).

(5.7.2). Whens is the trivial character all cases of [V3] where we verified for
|J| = 1thatR,, = 0 can be extended to arbitrary codimensiéh

(5.7.3). Lett; = P™(m > 2), and let the irreducible components of intersections
of E; with otherEy, ¢ ¢ J, bek hyperplanes in general positi¢d < £ < m+1).

One easily sees thg(L%J) =0.
Let firsts be the trivial character. Then the numbefsn the expressiond are

just the numbers ok -rational points on thé}%l)l—(. When|J| = 1 we proved in
[V3] that Ry, = 0 (by induction om: andk); the same proof is valid for arbitrary
|J|. Let nows< be arbitrary (of orded).

First case:d|N; foralli = 1,..., k. By Remark 5.4(ii) we have that the she&f
in the formula of 5.3 is locally constant dy and thus constant, sindgy = P™ is
simply connected. Consequently the numlegrare just the numbers @ -rational

points on(i’l)g, andR,, = 0 arguing as above.

Second casei 1 N1 andd 1 N; (after permutation of the indices). We will show
that all coefficients;” in (x) are zero, in fact more precisely that all the conomology
groups in the expression of 5.3 fgf are zero, using Proposition 5.8 below. Indeed

by an easy verification or by Proposition 5.8(ii) we have t;h@%l) = 0 for any
relevant 1> J, i.e. for I suchthaty C | C JU{3,...,k} andd|N; for all i € I.
Then Proposition 5.8(i) implies the nullity of all occurring cohomology groups.

Remark now that the eventual remaining cage ‘N, andd|N; for all i =
2,...,k"isruled out by Corollary 2.3. Indeed since Rit = Z this is equivalent
to X%, N; = 0 modN,, which implies thad|-F_; N,. It is an exercise to check
that in this hypothetical case we would in general hRyg+# 0.

(5.7.4). Using the notation of (2.6) we tak¥ =~ P! x Pl and letD' = D = E;
be obtained fronD° by the blowing-upr; at a pointP. Let theC;, i € T°, consist
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of a fibre Cy of one projectiorpri: D° — P! and of two fibresC» andC3 from
the other projectiomr;,, such that moreovef; N Cy = {P}. Consequently the
C;,1 € T, consist ofCy, Co, C3, and the exceptional curvg, of .

P
DO Cl (7T_1 04 Cl EJ

C. 2 Cg 02 03

In this example Congruence B states that

_ PicD°
N N N = n—————.
1C1+ N2C2 + N3C3 =0 i N, Pic D0

Since PicD° = priPicP! @ pr3PicP! = Z @ Z this is equivalent to
N1 =0 modN; and N+ N3=0 modN;.
Furthermore Congruence A is
N4s= N1+ N, modNy.

One now verifies immediately that only the following two possibilities can occur:
(i) d|V; for 1 < i < 4,

(i) d|N1andd 1 N; for2 < i < 4.

Case(i). As in the first case of (5.7.3) the numbers are the numbers ok -

rational points or(Eol)R. Using the structure of Pib° and the fact thak ;o =
priKp1 + pr3 K, itis not difficult to verify that in this case the Relations B and
A of Section 4 ard g = —1, ap + a3 = 0} andas = a1 + ap, respectively. Now

it is an easy exercise to compute tiiag, = 0.

Case(ii). In this case onlyﬁj and(gl:: C1\(C3 U (C4) possibly contribute to
R,,. Both contributions are however zero for we can show tBatbeing the sheaf
of Theorem 5.3,

H*(Cy) g, L) =0 forallk, and (7)
H*(E))g, L) =0 forallk. @)

Indeed (7) is true because of Proposition 5.8 and the factxt(”(;%g) = 0. We
indicate a proof of (8), which gives the reader an idea of the arguments underlying
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Proposition 5.8. First the exact sequence of cohomology with compact support for
the |ncIu5|onSEJ<—>EJ U Cl<—>01, together with (7), yields

HY(E)) g, L) = HY(E; U C)g, L) forall k.

Now sinceﬁj is affine these cohomology groups are zeroKoe 0,1. Using
[SGA4L, Sommes Trig. 1.19.1] and Poinéatuality we have

HE(E, U C)g. L) = HY(E; U C)g. La)
= Hg_k((EJ U Cl)[?a‘é%)a

for all k£, where™ denotes the dual. SHf((f%J)R,ﬁ,{) = 0 also fork = 3,4 and
consequently fok = 2 sinceX(EOJ) =0.

PROPOSITION 5.8Let L, be the sheaf occurring in the formula of Theorgd
Let £; be a nonempty intersection of exceptional varieties wfitty; for all j € J,
and suchthaty;\ Uy, £, is affine.

(i) For 1 O J suchthatd|N; for all i € | we have that
HF(E)g,Ly) =0 for k+#n—|I|=dimE.

(i) If x(E,) = Othen for alll in (i) we have thai(E,) = O.

Proof. See [V4] wher{J| = 1. The general case is analogous. O

(5.9) Finally we introduce the related topological zeta function. Taking heuris-
tically the limit for ¢ — 1 in the formula in 5.3 yields

o 1

peav R (%)
%‘:5 ( I) ZI;II v; + sN;
Vi€|ld|Ni

Denefand Loeser [DL] define thepological zetafunctioﬂt(fg(s, f) associated
to f € C[z1,...,z,] andd € N\{0} as the rational function«{) in the variable
s. They prove that this defining formula does not depend on the chosen resolution
(X, h) by expressing it in an exact way as a limit of Igusa’s local zeta functions.

One can also state the Monodromy Conjectur@ﬂﬁg(s, f), and our vanishing
results about poles of Igusa’s local zeta function are also valid for the topological
zeta function, the latter results being easier then the first.
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