More congruences for numerical data of an embedded resolution

WILLEM VEYS*
Departement Wiskunde, Celestijnenlaan 200B, B-3001 Louvain, Belgium;
e-mail: wim.veys@wis.kuleuven.ac.be

Received: 5 November 1996; accepted in final form 15 April 1997

Abstract

To an arbitrary intersection of exceptional varieties of an embedded resolution we associate a finite number of congruences between naturally occurring multiplicities. This theory generalizes previous results concerning just one exceptional variety. Moreover we describe precise equalities which imply the congruences and we give some applications on the poles of Igusa's local zeta function.

Mathematics Subject Classifications (1991): 14E15, 32S45, 14B05, (11S80, 14G20).
Key words: Resolution of singularities, numerical data, Igusa's local zeta function.

Introduction

(0.1). Let k be an algebraically closed field of characteristic zero and $f \in k\left[x_{1}, \ldots\right.$, $\left.x_{n}\right]$. Let $h: X \rightarrow \mathbb{A}^{n}$ be an embedded resolution of singularities of $f^{-1}\{0\}$, considered as an algebraic set in affine space \mathbb{A}^{n}. We suppose that this resolution (X, h) is constructed by means of consecutive blowing-ups, according to Hironaka's Theorem [H].

We denote by $E_{i}, i \in S$, the irreducible components of $h^{-1}\left(f^{-1}\{0\}\right)$ and by N_{i} the multiplicity of E_{i} in the divisor of $f \circ h$.
(0.2). Fix one exceptional variety E_{j}. When $n=2$ the following congruence is now well known. Say E_{j} intersects k times other components E_{1}, \ldots, E_{k}. Then

$$
\begin{equation*}
\sum_{i=1}^{k} N_{i} \equiv 0 \quad \bmod N_{j} \tag{*}
\end{equation*}
$$

and more precisely $\Sigma_{i=1}^{k} N_{i}=N_{j}(1+\rho)$, where ρ is the number of times that a point of E_{j} occurs as centre of some blowing-up during the resolution process. The original proof for analytically irreducible $f\left(x_{1}, x_{2}\right)$ was derived by consecutive work of Strauss [S], Meuser [M] and Igusa [I2], and for general $f\left(x_{1}, x_{2}\right)$ by Loeser [L].
(0.3). When n is arbitrary we developed in [V2] a general theory of congruences,

[^0]extending $(*)$. The essential feature of dimension $n \geqslant 3$ is that E_{j} is subject to a 'historical evolution' during the resolution process. Let $E_{j} \subset X$ be the strict transform in X of the variety E_{j}^{0}, created at some stage of the resolution process h as exceptional variety of a blowing-up. Then in general E_{j} is not isomorphic to E_{j}^{0}; more precisely E_{j} itself is obtained from E_{j}^{0} by a sequence of blowing-ups. (When $n=2$ this phenomenon does not occur for then $E_{j}^{0} \cong E_{j} \cong \mathbb{P}^{1}$.)

In fact we associated a finite number of congruences $\bmod N_{j}$ to E_{j}; there are Basic Congruences associated to its creation as E_{j}^{0} in the resolution process, generalizing (*), and an Additional Congruence associated to each blowing-up of the sequence that produces E_{j} out of E_{j}^{0}.
(0.4). In this paper we will generalize this theory further to congruences 'in arbitrary codimension'. We first give an example.

When $n=3$ let $E_{j_{1}}$ and $E_{j_{2}}$ be two intersecting exceptional surfaces and suppose that the curve $D:=E_{j_{1}} \cap E_{j_{2}}$ is irreducible and projective. Say D intersects k times other components E_{1}, \ldots, E_{k}. Then

$$
\sum_{i=1}^{k} N_{i} \equiv 0 \quad \bmod \operatorname{gcd}\left(N_{j_{1}}, N_{j_{2}}\right)
$$

where gcd denotes the greatest common divisor. This 'codimension 2'-congruence cannot be derived as a consequence of the ordinary 'codimension 1'-congruences of [V2]. In fact there is an explicit equality $\Sigma_{i=1}^{k} N_{i}+\kappa_{2} N_{j_{1}}+\kappa_{1} N_{j_{2}}=0$, where κ_{ℓ} is the self-intersection number of D on $E_{j_{\ell}}$.
(0.5). We will associate to each irreducible component D of a nonempty intersection of exceptional varieties $\cap_{j \in J} E_{j}$ a finite number of congruences mod $\operatorname{gcd}_{j \in J} N_{j}$, and moreover we will describe equalities from which they can be obtained. We want to remark here that the congruences can be proved directly in an elegant way without reference to the equalities. (For $|J|=1$ this was not mentioned explicitly in [V2].)

We now state these congruences more precisely. In general the variety D goes through a historical evolution during the resolution process: it is obtained by a finite succession of blowing-ups

$$
D^{0} \stackrel{\pi_{1}}{\leftarrow} D^{1} \stackrel{\pi_{2}}{\leftarrow} \cdots D^{i-1} \stackrel{\pi_{i}}{\leftarrow} D^{i} \cdots \stackrel{\pi_{m-1}}{\leftarrow} D^{m-1} \stackrel{\pi_{m}}{\leftarrow} D^{m}=D
$$

with irreducible nonsingular centre $Z_{i-1} \subset D^{i-1}$ and exceptional variety $C_{i} \subset D^{i}$ for $i=1, \ldots, m$. The variety D^{0} is created at some step of the global resolution process (in fact at the creation of the 'last' of the $E_{j}, j \in J$).

There are two kinds of intersections of D with components $E_{\ell}, \ell \notin J$. We have the strict transforms in D of the exceptional varieties C_{1}, \ldots, C_{m}; and also the strict transforms in D of certain varieties $C_{k}, k \in T^{0}$, (of codimension one) in D^{0}. We have moreover that the strict transform of each $C_{i}, i \in T^{0} \cup\{1, \ldots, m\}$, is
(an irreducible component of) the intersection of D with exactly one component of $h^{-1}\left(f^{-1}\{0\}\right)$; slightly abusing notation let this component have multiplicity N_{i} in the divisor of $f \circ h$.

THEOREM. Set $N_{J}:=\operatorname{gcd}_{j \in J} N_{j}$. Using the notation above we have for $i=$ $0, \ldots, m-1$ that
(Congruence A)

$$
N_{i+1} \equiv \sum_{k \in T^{0} \cup\{1, \ldots, i\}} \mu_{k} N_{k} \quad \bmod N_{J},
$$

where μ_{k} is the multiplicity of the generic point of Z_{i} on (the strict transform in D^{i} of) C_{k}. We have also
(Congruence B)

$$
\sum_{k \in T^{0}} N_{k} C_{k}=0 \quad \text { in } \quad \frac{\operatorname{Pic} D^{0}}{N_{J} \operatorname{Pic} D^{0}}
$$

Whenever D^{0} is complete, Congruence B induces a finite number of ordinary congruences $\bmod N_{J}$.
(0.6). For $i \in S$ let $\nu_{i}-1$ be the multiplicity of E_{i} in the divisor of $h^{*}\left(\mathrm{~d} x_{1} \wedge \ldots \wedge\right.$ $\left.\mathrm{d} x_{n}\right)$ on X. Classically the $\left(N_{i}, \nu_{i}\right), i \in S$, are called the numerical data of the resolution (X, h). The numbers $-\left(\nu_{i} / N_{i}\right), i \in S$, form a complete list of candidate poles for Igusa's local zeta function of f (when f is defined over a p-adic field). We will mention a straightforward generalization to arbitrary codimension of our 'codimension one'-theory of relations between numerical data [V1], which enables us to give some applications of the congruences of this paper concerning the poles of Igusa's local zeta function.
(0.7). The plan of the exposition is as follows. In Section 1 we recall briefly the important aspects of an embedded resolution and in Section 2 we prove the Congruences A and B. Their underlying equalities are studied separately in Section 3; this part is a bit technical and is not needed for the applications concerning Igusa's local zeta function. After developing the more general relations between numerical data in Section 4, those applications are treated in Section 5.

1. Embedded resolution

(1.1). Let k be an algebraically closed field of characteristic zero and let $f \in$ $k\left[x_{1}, \ldots, x_{n}\right]$. Let $Y=f^{-1}\{0\}$ denote the zero set of f in affine space \mathbb{A}^{n}. We exclude the trivial case $f \in k$, so Y is a hypersurface in \mathbb{A}^{n}.

DEFINITION. An embedded resolution (X, h) for $Y \subset \mathbb{A}^{n}$ consists of a nonsingular variety X and a proper birational morphism $h: X \rightarrow \mathbb{A}^{n}$ such that the restriction
$\left.h\right|_{X \backslash h^{-1} Y}$ is an isomorphism and $h^{-1} Y$ has normal crossings in X. In particular the irreducible components of $h^{-1} Y$ are nonsingular hypersurfaces.

Remember that a reduced hypersurface E of X has normal crossings if for all $x \in X$ there exists a regular system of parameters t_{1}, \ldots, t_{n} in the local ring $\mathcal{O}_{X, x}$ of X at x such that the ideal in $\mathcal{O}_{X, x}$ of each irreducible component of E containing x is generated by one of the t_{i}. (Analytically one can think of E being locally a union of coordinate hyperplanes.) Also E is said to have normal crossings with a (necessarily smooth) subvariety D of X if for all $x \in D$ the ideal of D in $\mathcal{O}_{X, x}$ is generated by some of the t_{i}.
(1.2). Hironaka $[\mathrm{H}]$ constructed an embedded resolution as a finite composition of blowing-ups. Recall that if $g: \tilde{Z} \rightarrow Z$ is the blowing-up of the variety Z with centre the closed subset B of Z, then the exceptional divisor $E=g^{-1} B$ is everywhere of codimension one on \tilde{Z}, and the restriction $\left.g\right|_{\tilde{Z} \backslash E}$ is an isomorphism. For any subvariety V of Z with $V \not \subset B$ the closure of $g^{-1}(V \backslash B)$ in \tilde{Z} is called the strict transform of V by g. If Z and B are nonsingular varieties, then the same is true for \tilde{Z} and E.

More precisely Hironaka constructed a resolution (X, h) as a suitable composition of blowing-ups

$$
\mathbb{A}^{n}=X_{0} \stackrel{g_{1}}{\leftarrow} X_{1} \stackrel{g}{2}_{\leftarrow}^{\cdots} X_{i} \stackrel{g_{i+1}}{\leftarrow} X_{i+1} \cdots \stackrel{g_{r-1}}{\leftarrow} X_{r-1} \stackrel{g_{r}}{\leftarrow} X_{r}=X
$$

with irreducible nonsingular centre $B_{i} \subset X_{i}, 0 \leqslant i<r$, such that $\operatorname{codim}\left(B_{i}, X_{i}\right) \geqslant$ 2. Moreover each B_{i} is contained in the (repeated) strict transform of Y in X_{i}, and the reduced hypersurface, consisting of the (repeated) strict transforms in X_{i} of the exceptional varieties of g_{1}, \ldots, g_{i}, has normal crossings with B_{i}.

Finally $h^{-1} Y=\left(g_{r} \circ \cdots \circ g_{1}\right)^{-1}(Y)$ has thus normal crossings in X; its irreducible components are the strict transforms of the irreducible components of Y and the exceptional varieties of h, being the strict transforms in X of the exceptional varieties of g_{1}, \ldots, g_{r}.
(1.3). Let now $D \subset X_{i}$ be any variety which intersects B_{i} transversely everywhere (and is not contained in B_{i}) and $\tilde{D} \subset X_{i+1}$ its strict transform by g_{i+1}. We have the following important fact (see e.g. [GH, page 605] for the first claim; the second is not difficult to verify).

PROPOSITION, The restriction $\left.g_{i+1}\right|_{\tilde{D}}: \tilde{D} \rightarrow D$ is the blowing-up of D with (nonsingular) centre $B_{i} \cap D$. Moreover the exceptional divisor of $\left.g_{i+1}\right|_{\tilde{D}}$ is the intersection of \tilde{D} with the exceptional divisor of g_{i+1}.

Note that $B_{i} \cap D$ can eventually be reducible. The total blow-up of D with centre $B_{i} \cap D$ can then be considered as the result of consecutive blowing-ups of D with centres the irreducible components of $B_{i} \cap D$, which are necessarily disjoint.

We will use this proposition intensively for D a nonempty intersection of exceptional varieties of h; because of the normal crossings property the transversality
condition is indeed satisfied.
(1.4). From now on we will denote the irreducible components of $h^{-1} Y$ by $E_{i}, i \in S$, and their multiplicity in the divisor of $f \circ h$ by N_{i}; alternatively $(f \circ h)=\Sigma_{i \in S} N_{i} E_{i}$. We also set $E_{\mathrm{I}}:=\cap_{i \in \mathrm{I}} E_{i}$ for I $\subset S$. While working with the resolution process h we will in general use the same notation for E_{i}, when created as exceptional variety, and for its strict transforms in any X_{k}.

2. Self-intersection divisors and congruences

(2.1). From now on we fix intersecting exceptional varieties $E_{j}, j \in J$, and an irreducible component D of E_{J}. Remark that because of the normal crossings property D is nonsingular and disjoint from eventual other components of E_{J}, and that $\operatorname{codim}(D, X)=|J|$.

Let $C_{i}, i \in T$, denote all the irreducible components of the intersections $D \cap E_{\ell}, \ell \notin J$. Set also $N_{J}:=\operatorname{gcd}_{j \in J} N_{j}$. Our starting point is the following observation.

PROPOSITION 2.2. For $j \in J$ we denote by $\mathfrak{D}_{\langle j\rangle}$ the self-intersection divisor of D on $E_{J \backslash\{j\}}$, considered as an element of Pic D. Then

$$
\sum_{j \in J} N_{j} \mathfrak{D}_{\langle j\rangle}+\sum_{i \in T} N_{i} C_{i}=0 \quad \text { in Pic } D
$$

Proof. Denote by $\delta: D \hookrightarrow X$ the natural embedding and consider for each $j \in J$ the decomposition $D \stackrel{\alpha_{j}}{\hookrightarrow} E_{J \backslash\{j\}} \stackrel{\beta_{j}}{\hookrightarrow} X$ of δ. Since $\Sigma_{i \in S} N_{i} E_{i}=0$ in Pic X we have that

$$
\begin{equation*}
\sum_{i \in S} N_{i} \delta^{*} E_{i}=0 \quad \text { in Pic } D \tag{1}
\end{equation*}
$$

Now $\delta^{*}\left(\Sigma_{i \notin J} N_{i} E_{i}\right)=\Sigma_{i \in T} N_{i} C_{i}$ and for each $j \in J$ we have that $\delta^{*} E_{j}=$ $\alpha_{j}^{*}\left(\beta_{j}^{*} E_{j}\right)=\alpha_{j}^{*}\left(E_{J}\right)=\alpha_{j}^{*}(D)=\mathfrak{D}_{\langle j\rangle}$. Substituting all this in (1) yields the stated expression.

COROLLARY 2.3. $\Sigma_{i \in T} N_{i} C_{i}=0$ in Pic $D / N_{J} \operatorname{Pic} D$.
COROLLARY 2.4. Let D be a projective curve. Then (taking degrees)

$$
\sum_{i \in T} N_{i} \equiv 0 \quad \bmod N_{J}
$$

and more precisely, if κ_{j} denotes the self-intersection number of D on $E_{J \backslash\{j\}}$, then $\Sigma_{j \in J} \kappa_{j} N_{j}+\Sigma_{i \in T} N_{i}=0$.

Remark 2.5. Proposition 2.2 and its corollaries are in fact valid in a more general context.
(i) They are true for any embedded resolution of Y, i.e. not necessarily obtained à la Hironaka.
(ii) The $E_{j}, j \in J$, can be arbitrary (intersecting) components of $h^{-1} Y$. Now for example when f is irreducible and the strict transform of Y is one of the $E_{j}, j \in J$, then $N_{J}=1$ and the congruences are meaningless. See (2.8) for an application of the equalities.
(2.6). We now fix the notation for our general congruences and equalities. Using Proposition 1.3 the following is not difficult to verify.
(i) The variety D is the strict transform in X of a nonsingular variety D^{0}, created at some step of the global resolution process. (In fact D^{0} appears in this process at the creation of the 'last' of the $E_{j}, j \in J$, as exceptional variety of a blowing-up of h; and more precisely D^{0} is a component of the intersection of this variety with the other $E_{j}, j \in J$, at that stage of h.)
(ii) So D itself is obtained from D^{0} by a finite succession of blowing-ups

$$
D^{0} \stackrel{\pi_{1}}{\leftarrow} D^{1} \stackrel{\pi_{2}}{\leftarrow} \cdots D^{i-1} \stackrel{\pi_{i}}{\leftarrow} D^{i} \cdots \stackrel{\pi_{m-1}}{\leftarrow} D^{m-1} \stackrel{\pi_{m}}{\leftarrow} D^{m}=D
$$

with irreducible nonsingular centre $Z_{i-1} \subset D^{i-1}$ and exceptional variety $C_{i} \subset D^{i}$ for $i=1, \ldots, m$. In fact C_{i} is (a component of) the intersection of D^{i} with some global exceptional variety E_{ℓ} at the stage where E_{ℓ} is created.
(iii) For $i=1, \ldots, m$ and for any variety $V \subset D^{j}, 0 \leqslant j<i$, let the strict transform of V in D^{i} (by $\pi_{i} \circ \cdots \circ \pi_{j+1}$) be denoted by $V^{(i)}$.

Let $C_{i}, i \in T$, be the intersections of D with components $E_{\ell}, \ell \notin J$. They consist of the strict transforms $C_{1}^{(m)}, \ldots, C_{m}^{(m)}$ in D of the exceptional varieties C_{1}, \ldots, C_{m} and of the strict transforms $C_{i}^{(m)}$ in D of varieties $C_{i}, i \in T^{0}$, (of codimension one) in D^{0}. Those last varieties are the intersections of D^{0} with components $E_{\ell}, \ell \notin J$, at the stage of h where D^{0} is created. (So $T=T^{0} \cup\{1, \ldots, m\}$.)
(iv) Since $\cup_{\ell \in S} E_{\ell}$ has normal crossings in X we have for each $i \in T$ that $C_{i}^{(m)}$ is (a component of) the intersection of D with exactly one component of $h^{-1} Y$, different from the $E_{j}, j \in J$. For simplicity of notation let this component be E_{i}.

THEOREM 2.7. For $i=0, \ldots, m-1$ we have that
(Congruence A)

$$
N_{i+1} \equiv \sum_{k \in T^{0} \cup\{1, \ldots, i\}} \mu_{k} N_{k} \quad \bmod N_{J}
$$

where μ_{k} is the multiplicity of the generic point of Z_{i} on $C_{k}^{(i)}$. We have also that (Congruence B)

$$
\sum_{k \in T^{0}} N_{k} C_{k}=0 \quad \text { in } \frac{\operatorname{Pic} D^{0}}{N_{J} \operatorname{Pic} D^{0}}
$$

Remark. (i) Of course these congruences are only meaningful when $N_{J}>1$.
(ii) In general Congruence B thus has divisors as 'coefficients'. When Pic $D^{0} \cong$ \mathbb{Z}, for example if D^{0} is some projective space, Congruence B becomes an ordinary congruence.
(iii) More generally, whenever D^{0} is complete, Congruence B induces a finite number of numerical congruences. For then we can consider it in $\operatorname{Num} D^{0} / N_{J}$ Num D^{0}, where Num D^{0} is the group of divisors on D^{0} modulo numerical equivalence, which is a quotient of Pic D^{0}. Since Num D^{0} is a finitely generated free Abelian group we get rank ($\operatorname{Num} D^{0}$) congruences.

Proof. Consider for a fixed $i \in\{0, \ldots, m-1\}$ the blowing-up $\pi_{i+1}: D^{i+1} \rightarrow$ D^{i}. It is not difficult to verify that the classical isomorphism Pic $D^{i+1} \cong \pi_{i+1}^{*}$ Pic $D^{i} \oplus \mathbb{Z} C_{i+1}$ (with injective π_{i+1}^{*}) induces

$$
\begin{equation*}
\frac{\operatorname{Pic} D^{i+1}}{N_{J} \operatorname{Pic} D^{i+1}} \cong \pi_{i+1}^{*} \frac{\operatorname{Pic} D^{i}}{N_{J} \operatorname{Pic} D^{i}} \oplus \frac{\mathbb{Z}}{N_{J} \mathbb{Z}} C_{i+1} \tag{2}
\end{equation*}
$$

where π_{i+1}^{*} is still injective.
Suppose now that $\Sigma_{\ell \in T^{0} \cup\{1, \ldots, i+1\}} N_{\ell} C_{\ell}^{(i+1)}=0$ in Pic D^{i+1} / N_{J} Pic D^{i+1}. This is equivalent to $\Sigma_{k \in T^{0} \cup\{1, \ldots, i\}} N_{k}\left(\pi_{i+1}^{*} C_{k}^{(i)}-\mu_{k} C_{i+1}\right)+N_{i+1} C_{i+1}=0$, and using (2) we obtain

$$
\sum_{k \in T^{0} \cup\{1, \ldots, i\}} N_{k} C_{k}^{(i)}=0 \quad \text { in } \frac{\operatorname{Pic} D^{i}}{N_{J} \operatorname{Pic} D^{i}}
$$

and

$$
N_{i+1}=\sum_{k \in T^{0} \cup\{1, \ldots, i\}} \mu_{k} N_{k} \quad \text { in } \frac{\mathbb{Z}}{N_{J} \mathbb{Z}}
$$

Starting from the fact that $\Sigma_{i \in T} N_{i} C_{i}^{(m)}=0$ in Pic $D / N_{J} \operatorname{Pic} D$ (Corollary 2.3) we use the arguments above consecutively for $i=m-1, \ldots, 0$ to obtain the Congruences A and finally end up with Congruence B.

For concrete varieties D^{0} one can make Congruence B more explicit. When D^{0} is a projective space bundle over some base variety this has been done in [V2]. (When $|J|=1$ then D^{0} is always such a bundle.)
(2.8). Take $n=3$ and suppose that (X, h) is the embedded resolution of an isolated singularity P of the irreducible surface Y. The equalities of Corollary 2.4 are useful to determine the self-intersection numbers in the resolution graph of $P \in Y$, when an explicit embedded resolution of $Y \subset \mathbb{A}^{3}$ is given.

Indeed let D be (a component of) the intersection of the strict transform of Y with some exceptional surface E_{j}, and let D intersect k times other exceptional surfaces, say E_{1}, \ldots, E_{k}. We want to know the self-intersection number κ of D on the strict transform of Y (which is a resolution of $P \in Y$). Now Corollary 2.4 says that

$$
\kappa_{j}+N_{j} \kappa+\sum_{i=1}^{k} N_{i}=0
$$

where κ_{j} is the self-intersection number of D on E_{j}, which can very easily be computed.

3. Precise equalities

(3.1). We keep using the notation of (2.6). The congruences in the preceding section were completely determined by the configuration of the $C_{i}, i \in T$, on D; or equivalently of the $C_{i}, i \in T^{0}$, on D^{0}. For example we did not need any information concerning how D is embedded in X or in the $E_{J^{\prime}}, J^{\prime} \subset J$, or analogously for D^{0}. In my opinion precisely this feature makes these congruences attracting and useful for applications. See Section 5.

The underlying equalities for these congruences however depend rather intensively on knowledge about the global resolution process. We will derive them from the key Lemma 3.3, for which we now introduce the data.
(3.2). We fix some blowing-up g with centre B of the global resolution process h, occurring after the creation of D^{0} (and thus of all the $E_{j}, j \in J$). We denote the strict transform of D^{0} right before and after g respectively by D^{\dagger} and D^{\ddagger} and the restriction of g to D^{\ddagger} by π. So π : $D^{\ddagger} \rightarrow D^{\dagger}$ itself is a blowing-up with (eventually reducible) centre $B \cap D^{\dagger}$. (We may suppose that $B \cap D^{\dagger} \neq \emptyset$, otherwise nothing relevant happens.) Analogously we denote for each $J^{\prime} \subset J$ the 'ancesters' of $E_{J^{\prime}} \subset X$ before and after g respectively by $E_{J^{\prime}}^{\dagger} \subset X^{\dagger}$ and $E_{J^{\prime}}^{\ddagger} \subset X^{\ddagger}$. For each $j \in J$ we thus have the following diagram

Let also $\mathfrak{D}_{\langle j\rangle}^{\dagger}$ denote the self-intersection divisor of D^{\dagger} on $E_{J \backslash\{j\}}^{\dagger}$, considered as an element of Pic D^{\dagger}, and $\mathfrak{D}_{\langle j\rangle}^{\ddagger}$ the analogous element of Pic D^{\ddagger}.

LEMMA 3.3. We use the notation of (3.2). Let $C_{e}^{\ddagger}, e \in \mathcal{E}$, be the (necessarily disjoint) irreducible components of the exceptional divisor of π, and $C_{i}^{\ddagger}, i \in \mathrm{I}$, all other irreducible components of the intersection of D^{\ddagger} with components $E_{\ell}, \ell \notin J$, in X^{\ddagger}.

First case: $\operatorname{codim}\left(B \cap D^{\dagger}, D^{\dagger}\right) \geqslant 2$.
So for each $e \in \mathcal{E}$ we have that $Z_{e}:=\pi\left(C_{e}^{\ddagger}\right)$ is of codimension at least 2 in D^{\dagger} and the irreducible components of the intersections of D^{\dagger} with the $E_{\ell}, \ell \notin J$, in X^{\dagger} are precisely the $C_{i}^{\dagger}:=\pi\left(C_{i}^{\ddagger}\right), i \in \mathrm{I}$.

If $\Sigma_{j \in J} a_{j} \mathfrak{D}_{\langle j\rangle}^{\ddagger}+\Sigma_{\ell \in \mathrm{IU} \mathrm{\mathcal{E}}} a_{\ell} C_{\ell}^{\ddagger}=0$ in Pic D^{\ddagger}, then
(i) $\quad \sum_{j \in J} a_{j} \mathfrak{D}_{j}^{\dagger}+\sum_{i \in \mathrm{I}} a_{i} C_{i}^{\dagger}=0 \quad$ in Pic D^{\dagger}, \quad and
(ii) $a_{e}=\sum_{i \in \mathrm{I}} \mu_{i}^{(e)} a_{i}+\sum_{j \in J} \delta_{j} a_{j} \quad$ for all $e \in \mathcal{E}$,
where $\mu_{i}^{(e)}$ is the multiplicity of the generic point of Z_{e} on C_{i}^{\dagger}, and $\delta_{j}=1$ if $B \subset E_{j}$ and $\delta_{j}=0$ if $B \not \subset E_{j}$.
Second case: $\operatorname{codim}\left(B \cap D^{\dagger}, D^{\dagger}\right)=1$.
So $\pi: D^{\ddagger} \rightarrow D^{\dagger}$ is an isomorphism and the irreducible components of the intersections of D^{\dagger} with the $E_{\ell}, \ell \notin J$, in X^{\dagger} are precisely the $C_{\ell}^{\dagger}:=\pi\left(C_{\ell}^{\dagger}\right), \ell \in$ $\mathrm{I} \cup \mathcal{E}$.

If $\Sigma_{j \in J} a_{j} \mathfrak{D}_{\langle j\rangle}^{\ddagger}+\Sigma_{\ell \in \mathrm{IU} \mathrm{\mathcal{E}}} a_{\ell} C_{\ell}^{\ddagger}=0$ in Pic D^{\ddagger}, then
(iii) $\sum_{j \in J} a_{j} \mathfrak{D}_{\langle j\rangle}^{\dagger}+\sum_{i \in \mathrm{I}} a_{i} C_{i}^{\dagger}+\sum_{e \in \mathcal{E}}\left(a_{e}-\sum_{j \in J} \delta_{j} a_{j}\right) C_{e}^{\dagger}=0 \quad$ in Pic D^{\dagger}.

Proof. We first show for each $j \in J$ that in Pic D^{\ddagger}

$$
\begin{equation*}
\mathfrak{D}_{\langle j\rangle}^{\ddagger}=\pi^{*} \mathfrak{D}_{\langle j\rangle}^{\dagger}-\delta_{j} \sum_{e \in \mathcal{E}} C_{e}^{\ddagger} . \tag{4}
\end{equation*}
$$

Consider the natural embeddings $\alpha_{\dagger}: D^{\dagger} \mapsto X^{\dagger}$ and $\alpha_{\ddagger}: D^{\ddagger} \mapsto X^{\ddagger}$ in the diagram (3) of (3.2) and let E^{\ddagger} be the exceptional divisor of g in X^{\ddagger}. Then as in the proof of Proposition 2.2 we have that $\mathfrak{D}_{\langle j\rangle}^{\dagger}=\alpha_{\dagger}^{*} E_{j}^{\dagger}$ and $\mathfrak{D}_{\langle j\rangle}^{\ddagger}=\alpha_{\ddagger}^{*} E_{j}^{\ddagger}$. So

$$
\mathfrak{D}_{\langle j\rangle}^{\ddagger}=\alpha_{\ddagger}^{*}\left(g^{*} E_{j}^{\dagger}-\delta_{j} E^{\ddagger}\right)=\pi^{*} \alpha_{\dagger}^{*} E_{j}^{\dagger}-\delta_{j} \alpha_{\ddagger}^{*} E^{\ddagger}=\pi^{*} \mathfrak{D}_{\langle j\rangle}^{\dagger}-\delta_{j} \sum_{e \in \mathcal{E}} C_{e}^{\ddagger} .
$$

First case. Substituting (4) and the identities $\pi^{*} C_{i}^{\dagger}=C_{i}^{\ddagger}+\Sigma_{e \in \mathcal{E}} \mu_{i}^{(e)} C_{e}^{\ddagger}, i \in \mathrm{I}$, in the given expression yields

$$
\begin{aligned}
& \sum_{j \in J} a_{j}\left(\pi^{*} \mathfrak{D}_{\langle j\rangle}^{\dagger}-\delta_{j} \sum_{e \in \mathcal{E}} C_{e}^{\ddagger}\right) \\
& \quad+\sum_{i \in \mathrm{I}} a_{i}\left(\pi^{*} C_{i}^{\dagger}-\sum_{e \in \mathcal{E}} \mu_{i}^{(e)} C_{e}^{\ddagger}\right)+\sum_{e \in \mathcal{E}} a_{e} C_{e}^{\ddagger}=0 \quad \text { in Pic } D^{\ddagger}
\end{aligned}
$$

which is equivalent to

$$
\pi^{*}\left(\sum_{j \in J} a_{j} \mathfrak{D}_{\langle j\rangle}^{\dagger}+\sum_{i \in \mathrm{I}} a_{i} C_{i}^{\dagger}\right)+\sum_{e \in \mathcal{E}}\left(a_{e}-\sum_{i \in \mathrm{I}} \mu_{i}^{(e)} a_{i}-\sum_{j \in J} \delta_{j} a_{j}\right) C_{e}^{\ddagger}=0
$$

Now since Pic $D^{\ddagger} \cong \pi^{*} \operatorname{Pic} D^{\dagger} \oplus\left(\oplus_{e \in \mathcal{E}} \mathbb{Z} C_{e}^{\ddagger}\right)$, where π^{*} is injective, we obtain the stated results.
Second case. Now substituting (4) and $\pi^{*} C_{e}^{\dagger}=C_{e}^{\ddagger}, \ell \in \mathrm{I} \cup \mathcal{E}$, in the given expression yields

$$
\sum_{j \in J} a_{j}\left(\pi^{*} \mathfrak{D}_{\langle j\rangle}^{\dagger}-\delta_{j} \sum_{e \in \mathcal{E}} \pi^{*} C_{e}^{\dagger}\right)+\sum_{i \in \mathrm{I}} a_{i} \pi^{*} C_{i}^{\dagger}+\sum_{e \in \mathcal{E}} a_{e} \pi^{*} C_{e}^{\dagger}=0 \quad \text { in Pic } D^{\ddagger}
$$

which clearly implies the stated expression in Pic D^{\dagger}.
THEOREM 3.4. We use the notation of (2.6).
(A) Fix $i \in\{0, \ldots, m-1\}$. Let B denote the centre of the global blowing-up in the resolution process h by which C_{i+1} is created (as irreducible component of the intersection with the global exceptional variety) and set $\delta_{j}=1$ if $B \subset E_{j}$ and $\delta_{j}=0$ if $B \not \subset E_{j}$ for $j \in J$. For all $k \in T^{0} \cup\{1, \ldots, i+1\}$ and $j \in J$ let $m_{k}^{\langle j\rangle}$ be the number of centres B_{ℓ} of global blowing-ups in the subsequent stages of the resolution process that satisfy $C_{k}^{(\geqslant i+1)} \subset B_{\ell} \subset E_{j}$. Then

$$
N_{i+1}=\sum_{k \in T^{0} \cup\{1, \ldots, i\}} \mu_{k} N_{k}+\sum_{j \in J}\left(m_{i+1}^{\langle j\rangle}-\sum_{k \in T^{0} \cup\{1, \ldots, i\}} \mu_{k} m_{k}^{\langle j\rangle}+\delta_{j}\right) N_{j},
$$

where μ_{k} is the multiplicity of the generic point of Z_{i} on $C_{k}^{(i)}$.
(B) For all $k \in T^{0}$ and $j \in J$ let $m_{k}^{\langle j\rangle\rangle}$ be the number of centres B_{ℓ} of global blowing-ups in stages of the resolution process h after the creation of D^{0} that satisfy $C_{k}^{(\geqslant 0)} \subset B_{\ell} \subset E_{j}$. Then

$$
\sum_{k \in T^{0}} N_{k} C_{k}=\sum_{j \in J} N_{j}\left(\sum_{k \in T^{0}} m_{k}^{\langle j\rangle} C_{k}-\mathfrak{D}_{\langle j\rangle}^{0}\right) \quad \text { in Pic } D^{0}
$$

where $\mathfrak{D}_{\langle j\rangle}^{0} \in \operatorname{Pic} D^{0}$ denotes the self-intersection divisor of D^{0} on the intersection of the $E_{\ell}, \ell \in J \backslash\{j\}$, at the stage where D^{0} is created.

Proof. (A) For simplicity of notation we will suppose that C^{i+1} is exactly the intersection of the global exceptional variety associated to B with the strict transform of D^{0}; so this strict transform may be identified with D^{i+1}. The general case is entirely similar.

For $i=0, \ldots, m$ we denote by $\mathfrak{D}_{\langle j\rangle}^{(i)} \in \operatorname{Pic} D^{i}$ the self-intersection divisor of D^{i} on the intersection of the $E_{\ell}, \ell \in J \backslash\{j\}$, at the appropriate stage of the global resolution process. Starting from the equality

$$
\sum_{k \in T} N_{k} C_{k}+\sum_{j \in J} N_{j} \mathfrak{D}_{\langle j\rangle}^{(m)}=0 \quad \text { in Pic } D
$$

(Proposition 2.2), consecutive applications of Lemma 3.3(i, iii) yield

$$
\sum_{k \in T^{0} \cup\{1, \ldots, i+1\}}\left(N_{k}-\sum_{j \in J} m_{k}^{\langle j\rangle} N_{j}\right) C_{k}+\sum_{j \in J} N_{j} \mathfrak{D}_{\langle j\rangle}^{(i+1)}=0 \quad \text { in Pic } D^{i+1} .
$$

Then by Lemma 3.3(ii) we have that

$$
\begin{aligned}
& N_{i+1}-\sum_{j \in J} m_{i+1}^{\langle j\rangle} N_{j} \\
& \quad=\sum_{k \in T^{0} \cup\{1, \ldots, i\}} \mu_{k}\left(N_{k}-\sum_{j \in J} m_{k}^{\langle j\rangle} N_{j}\right)+\sum_{j \in J} \delta_{j} N_{j},
\end{aligned}
$$

which is equivalent to the stated expression for N_{i+1}.
(B) Further applications of Lemma 3.3(i, iii) finally yield

$$
\sum_{k \in T^{0}}\left(N_{k}-\sum_{j \in J} m_{k}^{\langle j\rangle} N_{j}\right) C_{k}+\sum_{j \in J} N_{j} \mathfrak{D}_{\langle j\rangle}^{(0)}=0 \quad \text { in Pic } D^{0}
$$

Caution. The $m_{k}^{\langle j\rangle}$ in (A) depend on the chosen $i \in\{0, \ldots, m-1\}$.
(3.5). We can extend all previously obtained results to the following situation. Instead of the polynomial function f on \mathbb{A}^{n} we can consider in (1.1) any nonsingular variety A and any rational function f on A. Let now Y denote the support of the divisor of f, the map $h: X \rightarrow A$ an embedded resolution of $Y \subset A$, and again $E_{i}, i \in S$, the irreducible components of $h^{-1} Y$ with multiplicity N_{i} in the divisor of $f \circ h$.

The essential difference is now that the $N_{i}, i \in S$, can also be negative and eventually even zero. This however does not cause any trouble. Of course when $N_{J}=0$ a congruence $\bmod N_{J}$ becomes an equality.

4. Relations between numerical data in any codimension

(4.1). We now introduce besides the $N_{i}, i \in S$, other invariants of the embedded resolution (X, h) for $Y \subset \mathbb{A}^{n}$. For $i \in S$ let $\nu_{i}-1$ be the multiplicity of E_{i} in the divisor of $\pi^{*}\left(\mathrm{~d} x_{1} \wedge \cdots \wedge \mathrm{~d} x_{n}\right)$ on X; alternatively the canonical divisor on X is $\Sigma_{i \in S}\left(\nu_{i}-1\right) E_{i}$. Remark that $\nu_{i}=1$ for any irreducible component of the strict transform of Y. Classically the $\left(N_{i}, \nu_{i}\right), i \in S$, are called the numerical data of the resolution (X, h).

The rational numbers $-\left(\nu_{i} / N_{i}\right), i \in S$, are important because they form an exhaustive list of candidate poles for certain zeta functions associated to f, see Section 5. In particular a nonempty intersection E_{I} for which all $\nu_{i} / N_{i}, i \in \mathrm{I}$, are equal induces in general a candidate pole of order $|\mathbf{I}|$.
(4.2). We now fix a nonempty intersection E_{J} of exceptional varieties such that $s_{0}=-\left(\nu_{j} / N_{j}\right)$ for all $j \in J$, and an irreducible component D of E_{J}. Let $C_{i}, i \in T$, still denote all the irreducible components of the intersections $D \cap E_{\ell}, \ell \notin J$. Remember that each $C_{i}, i \in T$, is the intersection with D of exactly one component of $h^{-1} Y$; slightly abusing notation we let this component have numerical data $\left(N_{i}, \nu_{i}\right)$ and we denote $\alpha_{i}:=\nu_{i}+s_{0} N_{i}$.

These numbers α_{i} occur naturally in the expression for the 'residue' of the candidate pole s_{0} for the zeta functions mentioned above; see Section 5. When $|J|=1$ we developed in [V1] a general theory of linear relations between the $\alpha_{i}, i \in T$. We now present shortly a straightforward generalization when E_{J} is of arbitrary codimension.

In the sequel for a nonsingular variety V we denote by K_{V} its canonical divisor.

PROPOSITION 4.3. $K_{D}=\Sigma_{i \in T}\left(\alpha_{i}-1\right) C_{i}$ in Pic $D \otimes \mathbb{Q}$.
Proof. By definition of the numerical data we have that $K_{X}=\Sigma_{\ell \in S}\left(\nu_{\ell}-1\right) E_{\ell}$ and $\Sigma_{\ell \in S} N_{\ell} E_{\ell}=0$ in Pic X, and consequently

$$
K_{X}=\sum_{\ell \in S}\left(\nu_{\ell}-1\right) E_{\ell}+s_{0} \sum_{\ell \in S} N_{\ell} E_{\ell}=-\sum_{j \in J} E_{j}+\sum_{\ell \notin J}\left(\nu_{\ell}+s_{0} N_{\ell}-1\right) E_{\ell}
$$

in Pic $X \otimes \mathbb{Q}$. This implies the stated expression after applying $|J|$ times the adjunction formula, or at once by [F, Example 3.2.12].

Example. When D is a projective curve of genus g we obtain the relation $2 g-2=$ $\Sigma_{i \in T}\left(\alpha_{i}-1\right)$.

Remark. Proposition 4.3 is valid for any embedded resolution, not necessarily à la Hironaka.
(4.4). When $\operatorname{dim} D \geqslant 2$ we obtain a finite number of relations by analyzing as before the historical evolution of D.

THEOREM. We use the notation of (2.6). For $i=0, \ldots, m-1$ we have that
(Relation A)

$$
\alpha_{i+1}=\sum_{k \in T^{0} \cup\{1, \ldots, i\}} \mu_{k}\left(\alpha_{k}-1\right)+r_{i},
$$

where μ_{k} is the multiplicity of the generic point of Z_{i} on $C_{k}^{(i)}$, and $r_{i}=\operatorname{codim}\left(Z_{i}\right.$, D^{i}). We have also
(Relation B)

$$
K_{D^{0}}=\sum_{k \in T^{0}}\left(\alpha_{k}-1\right) C_{k} \quad \text { in Pic } D^{0} \otimes \mathbb{Q}
$$

Idea of the proof. It is quite analogous to the proof of Theorem 2.7 starting now from Proposition 4.3. Investigating 'backwards' the evolution of the canonical divisors $K_{D^{i}}$ and using the identities $K_{D^{i+1}}=\pi_{i+1}^{*} K_{D^{i}}+\left(r_{i}-1\right) C_{i+1}$ we derive for $i=m-1, \ldots, 0$ that

$$
K_{D^{i}}=\sum_{k \in T^{0} \cup\{1, \ldots, i\}}\left(\alpha_{k}-1\right) C_{k} \quad \text { in Pic } D^{i} \otimes \mathbb{Q}
$$

and as a bonus we obtain the Relations A. See [V1] for the complete proof of the case $|J|=1$, which is in fact also valid in the general case.
(4.5). For concrete varieties D^{0} we can make Relation B more explicit. For example when $D^{0} \cong \mathbb{P}^{m}$ then it becomes

$$
\sum_{k \in T} d_{k}\left(\alpha_{k}-1\right)+m+1=0
$$

where d_{k} is the degree of the hypersurface C_{k}. See [V1] when D^{0} is an arbitrary projective space bundle.

5. Poles of zeta functions

(5.1). Let K be a finite extension of the field \mathbb{Q}_{p} of p-adic numbers, R the valuation ring of K, P the maximal ideal of R, and $\bar{K}=R / P$ the residue field with cardinality q. For $z \in K$ we denote by ord $z \in \mathbb{Z} \cup\{+\infty\}$ its valuation, $|z|=q^{-\operatorname{ord} z}$ its absolute value, and $\operatorname{ac}(z)=z \pi^{-\operatorname{ord} z}$ its angular component, where π is a fixed uniformizing parameter for R.

Let $f(x) \in K[x]=K\left[x_{1}, \ldots, x_{n}\right]$ and $\varkappa: R^{\times} \rightarrow \mathbb{C}^{\times}$a character of R^{\times}, the group of units of R. (We formally put $\varkappa(0)=0$.) To these data one associates Igusa's local zeta function

$$
Z(s)=Z(s, f, \varkappa):=\int_{R^{n}} \varkappa(\operatorname{ac} f(x))|f(x)|^{s}|\mathrm{~d} x|,
$$

for $s \in \mathbb{C}$ with $\Re(s)>0$. Here $|\mathrm{d} x|$ denotes the Haar measure on K^{n}, normalized such that R^{n} has measure 1. Igusa [I1] showed that it is a rational function of q^{-s}, so it extends to a meromorphic function on \mathbb{C}.

For more information and references on Igusa's local zeta function, see for example the overview paper [D3].
(5.2). From now on we suppose that \varkappa is trivial on $1+P$, i.e. it is induced by a character of \bar{K}; this is the relevant case (see [D3, Thm 3.3]). Let also d denote the order of \varkappa.

We choose an embedded resolution $h: X \rightarrow \mathbb{A}^{n}$ of $f^{-1}\{0\}$, constructed entirely over K (this in possible by $[\mathrm{H}]$), for which we use the notation of (1.1), where now the $E_{i}, i \in S$, are the K-irreducible components of $h^{-1}\left(f^{-1}\{0\}\right)$. We also set $\stackrel{\circ}{E}_{\mathrm{I}}:=E_{\mathrm{I}} \backslash \cup_{\ell \notin \mathrm{I}} E_{\ell}$ for $\mathrm{I} \subset S$. Igusa's proof of the rationality of $Z(s)$ yields the following: All real poles of $Z(s)$ are among the values $-\left(\nu_{j} / N_{j}\right)$, where $j \in S$ and $d \mid N_{j}$.

Moreover the following formula gives a closed expression for $Z(s)$ in terms of the resolution (X, h). In the sequel we denote reduction $\bmod P$ by $(\cdot)_{\bar{K}}$.

THEOREM 5.3 [D3, Sec. 3]. Suppose that the resolution (X, h) has good reduction $\bmod P($ see $[\mathrm{D} 3,(3.2)])$. Then

$$
Z(s)=q^{-n} \sum_{\mathrm{I} \subset S} c_{\mathrm{I}}^{\varkappa} \prod_{i \in \mathrm{I}} \frac{q-1}{q^{\nu_{i}+s N_{i}}-1}
$$

with

$$
c_{\mathrm{I}}^{\varkappa}=\sum_{k}(-1)^{k} \operatorname{Tr}\left[\operatorname{Frob}, H_{c}^{k}\left(\left(\stackrel{\circ}{E}_{\mathrm{I}}\right)_{\bar{K}}, \mathcal{L}_{\varkappa}\right)\right] .
$$

Here \mathcal{L}_{\varkappa} is a certain ℓ-adic sheaf on $X_{\bar{K}}$ associated to $\varkappa, \operatorname{Tr}$ denotes the trace, and Frob is the geometric Frobenius of $\bar{K} .\left(\right.$ Remark that $c_{\mathrm{I}}^{\varkappa}=0$ when $E_{\mathrm{I}}=\emptyset$.)

Remark 5.4. (i) 'Good reduction $\bmod P$ ' is a technical condition. When f and (X, h) are defined over a number field F, then we have good reduction for all but a finite number of completions K of F.
(ii) The sheaf \mathcal{L}_{\varkappa} is in fact zero on $\cup_{d \nmid N_{i}}\left(E_{i}\right)_{\bar{K}}$ and locally constant of rank one elsewhere; we can thus restrict the summation above to subsets I for which $d \mid N_{i}$ for all $i \in \mathrm{I}$.
(iii) When \varkappa is the trivial character the sheaf \mathcal{L}_{\varkappa} is constant on \bar{X} and so c_{I}^{\varkappa} is just the number of \bar{K}-rational points on $\left(\stackrel{\circ}{E}_{\mathrm{I}}\right)_{\bar{K}}$.
(5.5). Let now E_{J} be a nonempty intersection for which $s_{0}=-\left(\nu_{j} / N_{j}\right)$ for all $j \in J$, and $s_{0} \neq-\left(\nu_{i} / N_{i}\right)$ for other components E_{i} of $h^{-1} Y$ that intersect E_{J}.

For such an intersecting component E_{i} set $\alpha_{i}:=\nu_{i}+s_{0} N_{i}$. The contribution of E_{J} to the formula for $Z(s)$ above is

$$
q^{-n} \frac{(q-1)^{|J|}}{\prod_{j \in J}\left(q^{\nu_{j}+s N_{j}}-1\right)} \sum_{\mathrm{I} \supset J} c_{\mathrm{I}}^{\varkappa_{1}} \prod_{i \in I \backslash J} \frac{q-1}{q^{\nu_{i}+s N_{i}}-1} .
$$

We are interested in the contribution of E_{J} to the problem whether s_{0} is a pole of order $|J|$ of $Z(s)$, and thus in the nullity of

$$
\begin{equation*}
R_{s_{0}}:=\sum_{\mathrm{I} \supset J} c_{\mathrm{I}}^{\varkappa} \prod_{i \in \mathrm{I} \backslash J} \frac{q-1}{q^{\alpha_{i}}-1} . \tag{*}
\end{equation*}
$$

We may suppose that $d \mid N_{j}$ for all $j \in J$ since otherwise $R_{s_{0}}$ is trivially zero.
Let $\chi(\cdot)$ denote the Euler-Poincaré characteristic with respect to singular cohomology. Inspired by Igusa's so-called Monodromy Conjecture [D3, Con. 2.3.2] and the formula of A'Campo [A, Thm 3] we expect the following. For a generic projective E_{J} with $\chi\left(\stackrel{\circ}{E}_{J}\right)=0$ we should have $R_{s_{0}}=0$.
(5.6). When $|J|=1$ then E_{J} is in fact an exceptional variety E_{j} and $s_{0}=$ $-\left(\nu_{j} / N_{j}\right)$. In the case of curves $(n=2)$ necessarily $E_{j} \cong \mathbb{P}^{1}$, and so the condition $\chi\left(\stackrel{\circ}{E}_{j}\right)=0$ is equivalent to E_{j} intersecting exactly twice other components, say E_{1} and E_{2}. Then

$$
R_{s_{0}}=c_{\{j\}}^{\varkappa}+c_{\{j, 1\}}^{\varkappa} \frac{q-1}{q^{\alpha_{1}}-1}+c_{\{j, 2\}}^{\varkappa} \frac{q-1}{q^{\alpha_{2}}-1} .
$$

When \varkappa is the trivial character we have $c_{\{j\}}^{\varkappa}=q-1$ and $c_{\{j, 1\}}^{\varkappa}=c_{\{j, 2\}}^{\varkappa}=1$ by Remark 5.4(iii) and consequently $R_{s_{0}}=0$ if we would have

$$
\begin{equation*}
\alpha_{1}+\alpha_{2}=0 \tag{5}
\end{equation*}
$$

When \varkappa is arbitrary using Remark 5.4(ii) it is not difficult to prove that $R_{s_{0}}=0$ if moreover we have $d\left|N_{1} \Leftrightarrow d\right| N_{2}$. (See also Example 5.7.3.) This last equivalence is implied by the congruence

$$
\begin{equation*}
N_{1}+N_{2} \equiv 0 \quad \bmod N_{j} \tag{6}
\end{equation*}
$$

Now (6) and (5) are precisely Corollary 2.4 and the example after Proposition 4.3 for $|J|=1$! In fact the nullity of $R_{s_{0}}$ was precisely the motivation for developing these relations and congruences for $n=2[\mathrm{~S}, \mathrm{M}, \mathrm{I}, \mathrm{L}]$.

Using our theory of relations in codimension one we verified in [V3] that $R_{s_{0}}=0$ when expected for a lot of cases for surfaces $(n=3)$ and for some cases in arbitrary dimension n, assuming that \varkappa is the trivial character. When \varkappa is arbitrary we verified the nullity of $R_{s_{0}}$ is some cases for surfaces using our theory
of congruences (in codimension one); a couple of examples concerning the related topological zeta function (see (5.9)) appeared in [V2].

Here we should mention that when $n \geqslant 3$ there is a whole zoo of configurations satisfying $\chi\left(\stackrel{\circ}{E}_{j}\right)=0$, and the vanishing of $R_{s_{0}}$ seems a bit miraculous.
(5.7). Now when $|J|$ is arbitrary we can use the relations and congruences in arbitrary codimension of this paper to verify analogously the nullity of $R_{s_{0}}$. We give some examples, assuming that the resolution (X, h) has good reduction $\bmod P$, and for simplicity also that E_{J} is irreducible over an algebraic closure of K.
(5.7.1). If E_{J} is a projective curve then $\chi\left(\stackrel{\circ}{E}_{J}\right)=0$ if and only if $E_{J}=\stackrel{\circ}{E}_{J}$ is an elliptic curve, or $E_{J} \cong \mathbb{P}^{1}$ and it intersects exactly twice other components. I doubt whether the first case can occur in an embedded resolution configuration. The second case certainly occurs and as above we have that $R_{s_{0}}=0$, using Corollary 2.4 and the example after Proposition 4.3 (for arbitrary $|J|$).
(5.7.2). When \varkappa is the trivial character all cases of [V3] where we verified for $|J|=1$ that $R_{s_{0}}=0$ can be extended to arbitrary codimension $|J|$.
(5.7.3). Let $E_{J} \cong \mathbb{P}^{m}(m \geqslant 2)$, and let the irreducible components of intersections of E_{J} with other $E_{\ell}, \ell \notin J$, be k hyperplanes in general position $(2 \leqslant k \leqslant m+1)$. One easily sees that $\chi\left(\stackrel{\circ}{E}_{J}\right)=0$.

Let first \varkappa be the trivial character. Then the numbers c_{I}^{\varkappa} in the expression $(*)$ are just the numbers of \bar{K}-rational points on the $\left({ }_{(}^{\circ}\right)_{\mathrm{I}}$. When $|J|=1$ we proved in [V3] that $R_{s_{0}}=0$ (by induction on n and k); the same proof is valid for arbitrary $|J|$. Let now \varkappa be arbitrary (of order d).

First case: $d \mid N_{i}$ for all $i=1, \ldots, k$. By Remark 5.4(ii) we have that the sheaf \mathcal{L}_{χ} in the formula of 5.3 is locally constant on E_{J} and thus constant, since $E_{J} \cong \mathbb{P}^{m}$ is simply connected. Consequently the numbers $c_{\mathrm{I}}^{\varkappa}$ are just the numbers of \bar{K}-rational points on $\left({ }_{E_{\mathrm{I}}}\right)_{\bar{K}}$, and $R_{s_{0}}=0$ arguing as above.
Second case: $d \nmid N_{1}$ and $d \nmid N_{2}$ (after permutation of the indices). We will show that all coefficients $c_{I}^{2 x}$ in $(*)$ are zero, in fact more precisely that all the cohomology groups in the expression of 5.3 for c_{I}^{\varkappa} are zero, using Proposition 5.8 below. Indeed by an easy verification or by Proposition 5.8 (ii) we have that $\chi\left(\stackrel{\circ}{E}_{\mathrm{I}}\right)=0$ for any relevant I $\supset J$, i.e. for I such that $J \subset \mathrm{I} \subset J \cup\{3, \ldots, k\}$ and $d \mid N_{i}$ for all $i \in \mathrm{I}$. Then Proposition 5.8(i) implies the nullity of all occurring cohomology groups.

Remark now that the eventual remaining case ' $d \nmid N_{1}$ and $d \mid N_{i}$ for all $i=$ $2, \ldots, k$ ' is ruled out by Corollary 2.3. Indeed since Pic $\mathbb{P}^{m} \cong \mathbb{Z}$ this is equivalent to $\Sigma_{i=1}^{k} N_{i} \equiv 0 \bmod N_{J}$, which implies that $d \mid \Sigma_{i=1}^{k} N_{i}$. It is an exercise to check that in this hypothetical case we would in general have $R_{s_{0}} \neq 0$.
(5.7.4). Using the notation of (2.6) we take $D^{0} \cong \mathbb{P}^{1} \times \mathbb{P}^{1}$ and let $D^{1}=D=E_{J}$ be obtained from D^{0} by the blowing-up π_{1} at a point P. Let the $C_{i}, i \in T^{0}$, consist
of a fibre C_{1} of one projection $p r_{1}: D^{0} \rightarrow \mathbb{P}^{1}$ and of two fibres C_{2} and C_{3} from the other projection $p r_{2}$, such that moreover $C_{1} \cap C_{2}=\{P\}$. Consequently the $C_{i}, i \in T$, consist of C_{1}, C_{2}, C_{3}, and the exceptional curve C_{4} of π_{1}.

In this example Congruence B states that

$$
N_{1} C_{1}+N_{2} C_{2}+N_{3} C_{3}=0 \quad \text { in } \frac{\operatorname{Pic} D^{0}}{N_{J} \operatorname{Pic} D^{0}}
$$

Since Pic $D^{0} \cong p r_{1}^{*} \operatorname{Pic} \mathbb{P}^{1} \oplus p r_{2}^{*} \operatorname{Pic} \mathbb{P}^{1} \cong \mathbb{Z} \oplus \mathbb{Z}$ this is equivalent to

$$
N_{1} \equiv 0 \quad \bmod N_{J} \quad \text { and } \quad N_{2}+N_{3} \equiv 0 \quad \bmod N_{J}
$$

Furthermore Congruence A is

$$
N_{4} \equiv N_{1}+N_{2} \quad \bmod N_{J}
$$

One now verifies immediately that only the following two possibilities can occur:
(i) $d \mid N_{i}$ for $1 \leqslant i \leqslant 4$,
(ii) $d \mid N_{1}$ and $d \nmid N_{i}$ for $2 \leqslant i \leqslant 4$.

Case (i). As in the first case of (5.7.3) the numbers $c_{\mathrm{I}}^{2 \kappa}$ are the numbers of \bar{K} rational points on $\left(\stackrel{\circ}{E}_{\mathrm{I}}\right)_{\bar{K}}$. Using the structure of Pic D^{0} and the fact that $K_{D^{0}}=$ $p r_{1}^{*} K_{\mathbb{P}^{1}}+p r_{2}^{*} K_{\mathbb{P}^{1}}$, it is not difficult to verify that in this case the Relations B and A of Section 4 are $\left\{\alpha_{1}=-1, \alpha_{2}+\alpha_{3}=0\right\}$ and $\alpha_{4}=\alpha_{1}+\alpha_{2}$, respectively. Now it is an easy exercise to compute that $R_{s_{0}}=0$.

Case (ii). In this case only $\stackrel{\circ}{E}_{J}$ and $\stackrel{\circ}{C}_{1}:=C_{1} \backslash\left(C_{3} \cup C_{4}\right)$ possibly contribute to $R_{s_{0}}$. Both contributions are however zero for we can show that, \mathcal{L}_{\varkappa} being the sheaf of Theorem 5.3,

$$
\begin{array}{ll}
H_{c}^{k}\left(\left(\stackrel{\circ}{C}_{1}\right)_{\bar{K}}, \mathcal{L}_{\varkappa}\right)=0 & \text { for all } k, \text { and } \\
H_{c}^{k}\left(\left(\stackrel{\circ}{E}_{J}\right)_{\bar{K}}, \mathcal{L}_{\varkappa}\right)=0 & \text { for all } k . \tag{8}
\end{array}
$$

Indeed (7) is true because of Proposition 5.8 and the fact that $\chi\left(\stackrel{\circ}{C}_{1}\right)=0$. We indicate a proof of (8), which gives the reader an idea of the arguments underlying

Proposition 5.8. First the exact sequence of cohomology with compact support for the inclusions $\stackrel{\circ}{E}_{J} \hookrightarrow \stackrel{\circ}{E}_{J} \cup \stackrel{\circ}{C}_{1} \hookleftarrow \stackrel{\circ}{C}_{1}$, together with (7), yields

$$
H_{c}^{k}\left(\left(\stackrel{\circ}{E}_{J}\right)_{\bar{K}}, \mathcal{L}_{\varkappa}\right) \cong H_{c}^{k}\left(\left(\stackrel{\circ}{E}_{J} \cup \stackrel{\circ}{C}_{1}\right)_{\bar{K}}, \mathcal{L}_{\varkappa}\right) \quad \text { for all } k .
$$

Now since $\stackrel{\circ}{E}_{J}$ is affine these cohomology groups are zero for $k=0,1$. Using [SGA $4 \frac{1}{2}$, Sommes Trig. 1.19.1] and Poincaré duality we have

$$
\begin{aligned}
H_{c}^{k}\left(\left(\stackrel{\circ}{E}_{J} \cup \stackrel{\circ}{C}_{1}\right)_{\bar{K}}, \mathcal{L}_{\varkappa}\right) & \cong H^{k}\left(\left(\stackrel{\circ}{E}_{J} \cup \stackrel{\circ}{C}_{1}\right)_{\bar{K}}, \mathcal{L}_{\varkappa}\right) \\
& \cong \check{H}_{c}^{4-k}\left(\left(\stackrel{\circ}{E}_{J} \cup \stackrel{\circ}{C}_{1}\right)_{\bar{K}}, \check{\mathcal{L}}_{\varkappa}\right)
\end{aligned}
$$

for all k, where ${ }^{〔}$ denotes the dual. So $H_{c}^{k}\left(\left(\stackrel{\circ}{E}_{J}\right)_{\bar{K}}, \mathcal{L}_{\varkappa}\right)=0$ also for $k=3,4$ and consequently for $k=2$ since $\chi\left(\stackrel{\circ}{E}_{J}\right)=0$.

PROPOSITION 5.8. Let \mathcal{L}_{χ} be the sheaf occurring in the formula of Theorem 5.3. Let E_{J} be a nonempty intersection of exceptional varieties with $d \mid N_{j}$ for all $j \in J$, and such that $E_{J} \backslash \cup_{d \dashv E_{\ell}} E_{\ell}$ is affine.
(i) For $\mathrm{I} \supset J$ such that $d \mid N_{i}$ for all $i \in \mathrm{I}$ we have that

$$
H_{c}^{k}\left(\left(\stackrel{\circ}{E}_{\mathrm{I}}\right)_{\bar{K}}, \mathcal{L}_{\chi}\right)=0 \quad \text { for } \quad k \neq n-|\mathrm{I}|=\operatorname{dim} E_{\mathrm{I}}
$$

(ii) If $\chi\left(\stackrel{\circ}{E}_{J}\right)=0$ then for all I in (i) we have that $\chi\left(\stackrel{\circ}{E}_{\mathrm{I}}\right)=0$.

Proof. See [V4] when $|J|=1$. The general case is analogous.
(5.9) Finally we introduce the related topological zeta function. Taking heuristically the limit for $q \rightarrow 1$ in the formula in 5.3 yields

$$
\begin{equation*}
\sum_{\substack{\mathrm{I} \subset S \\ \forall i \in \mathrm{I}: d \mid N_{i}}} \chi\left(\stackrel{\circ}{\mathrm{I}}_{\mathrm{I}}\right) \prod_{i \in \mathrm{I}} \frac{1}{\nu_{i}+s N_{i}} \tag{**}
\end{equation*}
$$

Denef and Loeser [DL] define the topological zeta function $Z_{\text {top }}^{(d)}(s, f)$ associated to $f \in \mathbb{C}\left[x_{1}, \ldots, x_{n}\right]$ and $d \in \mathbb{N} \backslash\{0\}$ as the rational function ($* *$) in the variable s. They prove that this defining formula does not depend on the chosen resolution (X, h) by expressing it in an exact way as a limit of Igusa's local zeta functions.

One can also state the Monodromy Conjecture for $Z_{\text {top }}^{(d)}(s, f)$, and our vanishing results about poles of Igusa's local zeta function are also valid for the topological zeta function, the latter results being easier then the first.

References

[A] A'Campo, N.: La fonction zêta d'une monodromie, Comment. Math. Helv. 50 (1975) 233-248.
[D1] Denef, J.: On the degree of Igusa's local zeta function, Amer. J. Math. 109 (1987) 9911008.
[D2] Denef, J.: Local zeta functions and Euler characteristics, Duke Math. J. 63 (1991) 713721.
[D3] Denef, J.: Report on Igusa's local zeta function, Sém. Bourbaki 741, Astérisque 201/202/203 (1991) 359-386.
[DL] Denef, J. and Loeser, F.: Caractéristiques d'Euler-Poincaré, fonctions zêta locales, et modifications analytiques, J. Amer. Math. Soc. 5(4) (1992) 705-720.
[F] Fulton, W.: Intersection Theory, Springer Verlag, 1984.
[GH] Griffiths, P. and Harris, J.: Principles of Algebraic Geometry, John Wiley and Sons, 1978.
[H] Hironaka, H.: Resolution of singularities of an algebraic variety over a field of characteristic zero, Ann. Math. 79 (1964) 109-326.
[I1] Igusa, J.: Complex powers and asymptotic expansions I, J. Reine Angew. Math. 268/269 (1974) 110-130; II, ibid. 278/279 (1975) 307-321.
[I2] Igusa, J.: Complex powers of irreducible algebroid curves, in 'Geometry today, Roma 1984', Progress in Mathematics 60 (1985), Birkhaüser, 207-230.
[L] Loeser, L.: Fonctions d'Igusa p-adiques et polynômes de Bernstein, Amer. J. Math. 110 (1988) 1-22.
[M] Meuser, D.: On the poles of a local zeta function for curves, Invent. Math. 73 (1983) 445-465.
[S] Strauss, L.: Poles of a two variable p-adic complex power, Trans. Amer. Math. Soc. 278(2) (1983) 481-493.
[SGA4 $\frac{1}{2}$] Deligne, P.: Cohomologie étale, Lecture Notes in Math. 569, Springer, 1977.
[V1] Veys, W.: Relations between numerical data of an embedded resolution, Amer. J. Math. 113 (1991) 573-592.
[V2] Veys, W.: Congruences for numerical data of an embedded resolution, Compositio Math. 80 (1991) 151-169.
[V3] Veys, W.: Poles of Igusa's local zeta function and monodromy, Bull. Soc. Math. France 121 (1993) 545-598.
[V4] Veys, W.: On Euler characteristics associated to exceptional divisors, Trans. Amer. Math. Soc. 347(9) (1995) 3287-3300.

[^0]: * Postdoctoral Fellow of the Belgian National Fund for Scientific Research (N.F.W.O.)

