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Abstract

This paper gives a theorem by which it is possible to derive in an easy way a local
approximation theorem and an inverse function theorem. The latter theorems are not
new. The main advantage of our paper is in giving a relatively short route to these
results.

1. Introduction

Suppose we are given two Banach spaces X and Z and a mapping g: X -> Z which is
continuously Frechet differentiable at a given point xo = 0eX. Denote this
derivative by g'(x0) and assume that g'(x0) (X) = Z, and that g'(.) is continuous at x0.
As is well known an inverse function theorem in this situation takes the following
form, see [3]:

There is a neighbourhood Kof the origin in Z such that, for any veV,
g(x) = v has a solution x(v) with |x(t>)—xo| ^ K\ v\, for some K, only
depending on V.

Assume now that, for some heX, one has g'(xo)(h) = 0; then a local approximation
theorem, see [1, 3 or 4] says:

There is a mapping n{X) = o(A) such that g(xo + Xh+n(k)) = 0.

Both results are applied in mathematical programming when deriving Lagrange
multiplier theorems: the inverse function theorem, for instance, in [4] and the local
approximation theorem, for instance, in [1].

Extensions of both results can be found in [7]. There, the inequality system
-g{x)eZ+ is studied, where Z+ is a closed convex cone, with apex at the origin, in
Z. The proofs of these generalizations are, however, rather long.
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The aim of this paper is to provide a clearer understanding of Robinson's proofs in
[7]. In doing so we are less general than Robinson is; the route we take, however, is
considerably shorter.

The main ingredient in our approach, as well as in that of Robinson, is the notion
of convex process, a concept originated by Rockafellar [8] and developed further by
Robinson [5]. We will also use a general contraction theorem due to Robinson [6].

1. Preliminaries

In the sequel, X, 7and Z will be real Banach spaces.

DEFINTION 1. ([5]). A mapping T: X -* 2Z is called convex process from X to Z if
(a) Tx+Tx' c T{x + x')for all x, x'eX such that Tx and Tx' are non empty

subsets of Z,
(b) T(Xx) = XTxfor all xeX such that Tx ^ 0 and for all X > 0,

and
(c) OeTO.

When a convex process T from X to Z assigns to every xeX only one point of Z,
then T can be identified with a linear operator from X to Z. If T is a convex process
from X to Z then T'1 defined by xe T~l z if and only if ze Tx too is a convex
process but now from Z to X. A non-trivial example is the following:

EXAMPLE. Let A be a linear operator from X to Z and Z+ a convex cone in Z with
apex at the origin. Then T: X -* 2Z defined by Tx = Ax+Z+ is a convex process
from X to Z.

It is easy to see that T: ̂  -»• 2Z is a convex process from X to Z if and only if graph
T= {(x,z)| ze Tx} is a convex cone in (A^Z) with apex at the origin.

The next definition extends the notion of the "norm of a linear mapping".

DEFINITION 2. ([5].) IfTis aeon vex process from XtoZ then
\T\ =sup{inf{|z| |ze Tx} | | x | ^ 1, Tx # 0 } .

Following Robinson [5] we speak of a normed convex process T when | T\ is finite.
One can, for instance, show that the sum of two normed convex processes is again
normed, see [5].

In order to clarify the latter definition we make the following remark. Let A be a
linear continuous mapping from X to Z with null-space N. Then A~* can be
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considered a mapping from Z to X/N, the quotient space of A" mod N. Let us denote
an element of X/N by [x], xeX. Then [^] can be considered a translate of N over x
in X. When we define | [x] | = inf {| x' 11 x' e [x]} then, under this norm, X/N is a
Banach space (see [4]). It is now easy to see that the norm of A ~l regarded as a point
to point mapping from Z to X/N equals the norm of A~l considered a convex
process from Z to X.

DEFINITION 3. A convex process T: X -> 2Z is called closed if graph Tis a closed set
in(X,Z).

Obviously, if Tis closed, so is T~l. The next results are devices to prove our
theorem.

LEMMA 1. ([5].) / / T is a closed convex process from X to Z with
X = {xeX| Tx # 0 } then | T\ is finite.

The next result is concerned with the Hausdorff distance.

DEFINITION 4. Let A and B be subsets of Y, and y a point of Y; then
A — B= {yeY\y = a — b for some aeA and some beB},
d{y, A) = inf {| y-a\\ a e A},
d(A,B) = sup {d(a,B)\ aeA},
p(A, B) = max {d{A, B), d(B, A)} and p(A, B) is the Hausdorff distance between A

and B.

LEMMA 2. ([5].) Let P and Q be non-empty subsets ofZ. Let Tbe a convex process
from Z to X such that | T\ is finite and such that T(P) and T(Q) are both non-empty. If,
further, ( 2 - P ) u ( P - 0 c {z\Tz / 0 } then p{T(P), T(Q)) ^ \ T\p(P,Q).

It is easily seen that this lemma generalizes the fact that | Az | ^ | A11 z | where A is
a continuous linear mapping from Z to X.

LEMMA 3. ([6].) Let Tbe a mapping from X to 2Z. Suppose there are non-negative
numbers a. and r with 0 < a < 1 and point 6)oeX such that:

(1) For some e > 0 and all a>l,(o2e B(cb0, r + e), which is the closed ball around d>0

with radius r + e, Tml and Ta>2 are non-empty closed sets with
p(Tco1, T(o2) < txp{(ou co2), and

(2) d(wo,Ta}o)^(l-ct)r.
Then there is a point (o^ e S(a»0, r+s) with d(a>0, co^) ^ (1 — a)" i d(cb0, Ta>0) + e
such that con, e
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This lemma can be considered a contraction result. For completeness, we state
the following generalized mean value theorem.

LEMMA 4. ([4].) Letf: X -* Z be Frechet differentiate on an open set D. Let xeD
and suppose x + aheD, 0 ^ a ^ 1. Then \f{x+h)-f(x)\ < \h\ s u p 0 < a < 1

\f'(x + och)\.

3. Main results

THEOREM. Let X and Z be Banach spaces and X+ and Z+ closed convex cones, with
apex at the origin, in X and Z respectively. Let gbea Frechet differentiate mapping
from U to Z, where U is an open convex neighbourhood of the origin in X. Further let
the Frechet derivative g'{.) be continuous at x0 = 0, —g{xo)eZ+ and
g'(xo)(X+) + Z+ = Z. Then there is a function o(X,h) = o(Xh) and a X* >Osuchthat
heB(0,1), Xe[0, A*], veZand —g(xo)+v — g'(xo)(h)eZ+ imply the existence of an
co0eB(0,a(X,h)) such that — g(x0 + Xh + coa0)+XveZ+ and coxeX+.

PROOF. Defining G'(x0): X -* 2Z (the power set of Z) by

G'(xo)(x) = g'(xo)(x)+Z+ forxeX + ,

= 0 (or

we have that G'(x0) is a closed convex process from X to Z. Together with
G'(xo)(X) = Z, this implies by Lemma 1 that iG'^o)"1! is finite. Now choose
A* e(0,1] and S > 0 such that

(a) xo + M+a>eU for all Ae[0,A*], for all heB(0,1) and for all coe5(0,3),

(b) a(/l,/!) = 2{|G'(xor1||rU,/i)| + / l 2 H 2 } ^<* f o r a11 heB(0,l) and for all
X e [0, X*\ where r{k, h) = g(x0) + g'(x0) {Ah) - g(x0 + Ih),

and
(c) | G'(x0)"

111 g'(x0 + M + O))- g'(x0) | < \ for all X e [0, A*], for all h e B(0,1) and
for all a)eB(0,S).

This is possible because of the continuity of g'(.) at x0. Notice that a(X, h) — o(Xh).
Now take he B(0,1), h jt 0, Xe(0, A*] and veZ such that -g(xo)+ v-g\xo){h)eZ+,
and define

oo)—g'(x0)(wi) — Xv for all <ye B(0,3) and

= G'ixo)-1 ( - qM) for we5(0,5),

= {0} elsewhere.
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Now we will prove that col,co2eB(0,<x(A,h)) imply
(1) T^Wj) and Tx(co2) are non-empty closed sets,
(2) piUcoJ, Tx(co2)) *S i | co, - co21,

and

Taking this for granted for the moment, Lemma 2 applies with T= Tx, co0 = 0,
r = e = %a{l, h) and a = ^ and therefore there isaco^e T^co^) with w^ e B(0, cr(A, /i)).

But a>x 6 T-^co^) is equivalent to

-g(x0 + J.h + coJ + g'(x0)(a)i:io) + l.veg'(x0)(a>J + Z+ for cooo6X + ,

and the proof would be complete, except for the case h = 0 or X = 0.
Let us now return to the implications (1), (2) and (3). As the proof of (1) is trivial, we

omit it. Now we prove (2). Applying Lemma 2 with T = GXXQ)'1, P = {-^(a^)}
and Q = {-^A(co2)}, it follows that

p ^ K ) , Tx{w2)) < | G'(x0)- > 11 <Z;M)-^(">2) |

s: | G'(xoy * 11 co, - tu 2 | sup | # ( « , +(1 - a ) w 2 ) |
0 < a < 1

«S i|cot -co2 |, at least when | G'(x0)"J | # 0.

Here the latter inequality follows from (c). In case | G'{xo)~
1 \ = 0 we even have that

!), 7 > 2 ) ) = 0.
To end, we prove (3). By definition,

Now, by assumption, we have - g(x0) - g'{x0) (h) + veZ+ and - g(x0) e Z + . A s Z + i s
a convex cone it follows that — g(xo) + A.v—g'(xo)(}.h)eZ+. Hence

because of the definition of the norm of a convex process. Applying (b), it
immediately follows that d(0, Tx(0)) «S %o{X, h).

In the case of h = 0 or A = 0 we may take cox = 0 and we are done with the proof.

The proof of the foregoing result is very similar to Robinson's proof of an inverse
function theorem in [6], the main difference being another choice of qx(co) and Tx(co).
Notice further that the main argument in the proof is the choice of these two
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mappings and proving the existence of a fixed point of Tx(.). The rest are
technicalities.

In the case of v = 0 we can considerably strengthen the above result. This will be
done below.

We will study the system —f(y)eZ+,yeC a Y, where C is a closed convex set of a
Banach space yand where/is a Frechet differentiable mapping from Y to Z. It is
assumed that/ '( .) is continuous at y0 = OeC.

We define Lo = {(y, X) | X > 0, X~1 ye C}, L= cl Lo (note that L is a closed convex
cone) and make X = Yx R a Banach space by introducing a norm on it as follows :
\(y,X)\ = max{\y\,\X\}.

COROLLARY 1. Let TieCbe such that -f(y0) -f'(y0) (h~)eZ+.If —f(y0) e Z+ and if
every zeZ can be written as

for some X > 0, a> ̂  0, yeC and z+eZ+,

then there is a mapping n{X) = o(X) such that

-f(y0 + Xh + n(X))eZ+ for Xh~ + n(X)e C.

PROOF. The whole trick is to define g(y, r) = (1 + r)f{y0 + (1 + r)~i y) for (y, r) in a
neighbourhood of (0,0) and then to apply the theorem to this mapping. Now

hence ^'(0,0) = {f'iyo)J(yo)) and <?'(•,.) is continuous at (0,0).
We will show that we are allowed to apply the theorem when defining X = Yx R,

X+=L, v = 0, h = (h,O) and x0 = (yo,O) = (0,0). One trivially has that
— g(y0,0) e Z + and — g(y0,0) — g'(y0,0) (h~, 0) e Z+. By assumption, every z e Z can be
written as follows :

+ z+ for all reR.

But - r / (y o )eZ + and XyeXC 5(u> + r)C for r large enough, and this implies that
£'(0,0)(L) + Z+ = z. Without loss of generality, we may take heB(0,1) and the
theorem applies, leading to the existence of a mapping n(X) = o(X) e L such that
— g(x0 + Xh + n(X)) eZ+. Translated back to Yx R this means for n(X) - (nx(X\ n2{X)),
-g{Xl + nMU2W)*Z+. Hence -f(yo+(l+r,2(X))-l(XJi + t,l(X)))eZ+ for-Asmall
enough. Now it is easy to see that (1 +n2(X))~' (Xh + n^X)) = Xh~ + o(X). Take a fixed
A e (0,1); then there is a sequence (vhdj) ->(0,0) such that nl(X) + vie(r]2(X)
+ dt)C^ (l + n2(X) — X)C. The latter inclusion does hold because C is convex and
OeC, whereas the first inclusion is a consequence of the fact that
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(n \W-,rl2{X))e L= clL0. Hence, for A small enough,

because C is convex; hence, since C is closed, (Xh + »/1(A))(l + ^2(^))~*e C> and we are
done with the proof.

Corollary 1 is part of Corollary 2 to Theorem 1 of [7]. The special case of Theorem
1 where X+ = X is a corollary of the local solvability theorem of [2, page 150];
however, Corollary 1 proves a similar conculsion under a somewhat weaker
hypothesis. The advantage of our proof is that it is much shorter than Robinson's.
We must admit that our approach by using the function g(y, r), in fact the only trick
in Corollary 1, was suggested to us, when reading the proofs of Robinson's results in

in
Now we proceed with proving an inverse function theorem by applying the

Theorem. An advantage is the shortness of proof; a disadvantage is that it is less
general than Theorem 1 of [7].

COROLLARY 2. Under the same assumptions as in the Theorem, there is a
neighbourhood V of the origin in Z such that for every v e V there is a x(v) e Vsuch that
|x0 — x(v)I < K| v |, for some K, depending on Vonly, and that — g{x{v))e — v + Z+.

PROOF. Take an e > 0; define 8 = | G ' ( X O ) - 1 | + E and let V= { 5 e Z | | D | ^ S~1}.
Further, let A > 0 be such that 0 < A ^ A and ] h \ < 1 imply that | <r(A, h) \ ^ A | h |,
where cr(A, h) is as in the Theorem. Take an arbitrary veV; then

= inf{| h| \heG'(x0)-\v)} ^ | G'(x0)-
1111>|,

where the first inequality follows from the fact that -g{xo)eZ+. Hence there is an
h~eX+ with | f i | < < 5 | S | < l such that -g(xo) + v-g'{xo)(h~)eZ+. Take a
A e(0, min {A*, 2}], where A* is as in the Theorem; then, by the same Theorem, there
isaa>0OeB(0,(7(A,7j))suchthat -g(x0 + Xh"+a)ao) + lveZ+. Defining I = min {A,A*}
and V = JV, we have that every v e Fcan be written as v = Iv with v e Vand A e (0, T\.
Putting x(v) = XQ + XH+CO^, we therefore have that —f(x(v))e — v + Z+ and
| x0 - x(v) | = | Xh~ + co„ | ^ 231 Xv | = 25 \ v \ and the proof is complete.

Notice that again we use the finiteness of | G'(xo)~
l \. Notice further that, in the

case when we take Z + = {0} and X + = X, we have Liusternik's results [3].
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Finally, we remark that Tuy derives in [9] local approximation theorems like
Corollary 1. In the case of Z = RK, he derives far more general results because he
allows for so-called "convex derivatives" instead of Frechet derivatives. In proving
his results he relies on fixed point theorems due to Kakutani and Nadler.
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