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Abstract

Existing macro systems force programmers to make a choice between clarity of specification

and robustness. If they choose clarity, they must forgo validating significant parts of the

specification and thus produce low-quality language extensions. If they choose robustness,

they must write in a style that mingles the implementation with the specification and therefore

obscures the latter. This paper introduces a new language for writing macros. With the

new macro system, programmers naturally write robust language extensions using easy-to-

understand specifications. The system translates these specifications into validators that detect

misuses—including violations of context-sensitive constraints—and automatically synthesize

appropriate feedback, eliminating the need for ad hoc validation code.

1 What is a macro?

Every functional programmer knows that a let expression can be expressed as

the immediate application of a λ abstraction (Landin, 1965). The let expression’s

variables become the formal parameters of the λ expression, the initialization

expressions become the application’s arguments, and the body becomes the body of

the λ expression. Here is a quasi-formal expression of the idea:

(let ([var rhs] . . . ) body) = ((λ (var . . . ) body) rhs . . . )

It is understood that each var is an identifier and each rhs and body is an expression;

the variables also must be distinct. These constraints might be stated as an aside

to the above equation, and some might even be a consequence of metavariable

conventions.

New language elements such as let can be implemented via macros, which automate

the translation of new language forms into simpler ones. Essentially, macros are an

API for extending the front end of the compiler. Unlike many language extension

tools, however, a macro is part of the program whose syntax it extends; no separate

pre-processor is used.

A macro definition associates a name with a compile-time function, i.e., a syntax

transformer. When the compiler encounters a use of the macro name, it calls

the associated macro transformer to rewrite the expression. Because macros are

� Part of this research was conducted while the author was a PhD student at Northeastern University.
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defined by translation, they are often called derived syntactic forms. In the example

above, the derived form let is expanded into the primitive forms λ and function

application.

Due to the restricted syntax of macro uses—macros only extend the definition and

expression forms of the language, and a macro name must occur in operator position

or alone, like a variable reference—extensions to the language easily compose. Since

extensions are anchored to names, extensions can be managed by controlling the

scope of their names. Language extensions can be organized into modular libraries.

These syntax libraries can contribute to the target language of new macros; for

example, the match pattern-matching form expands into a use of the cond conditional

form, which itself expands into a nested sequence of if forms. Syntactic extensions

can also be used to enrich the implementation language of new macros, allowing

programmers to express syntax transformations in novel ways. These two forms

of extension allow programmers to construct towers of languages one layer at a

time (Queinnec, 1996; Flatt, 2002).

Introducing new language elements via macros has long been a standard element

of every Lisper’s and Schemer’s repertoire. Racket (Flatt & PLT, 2010), formerly

PLT Scheme, is a descendant of Lisp and Scheme that uses macros pervasively in its

standard libraries. Due in part to its pedagogical uses, Racket has high standards

for error behavior. Syntax errors should directly reflect the programmer’s mistakes.

In particular, a syntax error should refer to terms that the programmer wrote, not

the product of several rounds of rewriting; and furthermore, the mistake should be

reported in terms and concepts documented by the language. Languages built with

macros are held to the same standards as Racket itself.

Sadly, existing systems make it surprisingly hard to produce easy-to-understand

macros that properly validate their syntax. They force the programmer to mingle the

declarative specification of syntax and semantics with highly detailed validation code.

Without validation, however, macros are not true abstractions. Instead, erroneous

terms flow through the parsing process until they eventually trip over constraint

checks at the lower levels of the language tower. Low-level checking, in turn, yields

incoherent error messages referring to terms the programmer did not write and

concepts that do not apply to the programmer’s code. In short, such macros are

sources of confusion and distraction, not seamless linguistic abstractions.

In this paper, we present a novel macro system for Racket that enables the creation

of true syntactic abstractions. Programmers define modular, reusable specifications

of syntax and use them to validate uses of macros. The specifications consist

of grammars extended with context-sensitive constraints. When a macro is used

improperly, the macro system uses the specifications to synthesize an error message

at the proper level of abstraction.

The remainder of this paper is organized as follows. Section 2 introduces Racket

syntax. Section 3 discusses how macros are expressed and shows that current methods

of error checking are cumbersome and verbose. Section 4 introduces our new macro

system by showing how it solves the problems raised in Section 3. Section 5 explains

the model our system uses to identify and report syntax errors. Section 6 defines the

expressive pattern language our macro system is built on. Section 7 briefly discusses
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Term z ::= datum | id | (z1 . z2)

Datum datum ::= () | number | string | boolean | keyword

Identifier id

Definition def ::= (define id expr)

| (define (id . formals) def ∗ expr+)

| (define-syntax id expr)

| (define-syntax (id . formals) def ∗ expr+)

| . . .

Expression expr ::= number | string | boolean | (quote term) | #’term

| id | (λ formals def ∗ expr+) | (expr expr∗) | . . .

Formals formals ::= () | id | (id . formals) | ([id expr] . formals)

| (keyword id . formals) | (keyword [id expr] . formals)

Fig. 1. Racket syntax.

our implementation, and Section 8 discusses our experiences using it. Section 9

discusses related work.

2 Preliminaries

Racket programs are written with terms consisting primarily from atoms and pairs.1

Figure 1 presents the simple subset of Racket’s syntax we use in this paper. A

Racket program’s concrete syntax is read into tree-structured representations of

terms called syntax objects; macro expansion and compilation manipulate syntax

objects, not raw program text or token streams. We use the term parsing to refer

to a macro’s process of validating and destructuring its input syntax; this paper is

primarily concerned with that process.

Atoms include identifiers such as define, λ, xyz , +, and string→number (writ-

ten define, λ, xyz, +, and string->number, respectively). Atoms also include

numbers like 5, −7.2, and 3+4i; strings like "hello", "goodbye" and "I am the

walrus"; the booleans #t (true) and #f (false); and keywords such as #:super

and #:property. Note that keywords are distinct from identifiers; we refer to

significant identifiers such as define and λ not as “keywords” but instead as “special

forms.”

Compound terms are formed using “dotted pairs,” although the dots seldom

appear explicitly. Racket treats the term (x y z ) as equivalent to (x . (y . (z . ())));

the latter notation makes the structure of the term explicit. Although the dotted

notation occurs rarely in programs, it is frequently useful in syntax specifications.

For example, consider the syntax of function definitions (the second define case) and

the specification of formals . If the formals “list” ends in an identifier rather than (),

the identifier is a “rest” parameter that gets bound to a list of all leftover arguments.

Some examples of function definitions are

1 The same is also true of other Lisp dialects. For the rest of the paper, we do not comment on whether
a property of Racket is shared with other dialects unless the point is particularly relevant.
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(define (greet) (display "hello"))

(define (twice x ) (+ x x ))

(define (max #:compare [compare >=] x0 . xs)

(define (max2 a b) (if (compare a b) a b))

(foldr max2 x0 xs))

Square brackets are treated as equivalent to parentheses; their use is purely a matter

of convention and readability.

The specifications of def and expr are both open-ended, because they can be

extended using macros. A macro does not declare that it specifically extends def or

expr; macro expansion is performed in both contexts, and if a macro produces a

definition in an expression context, Racket signals an error. Macros are defined using

define-syntax, and the #’term expression form interprets term as a syntax template

and uses it to construct a syntax object. Macro definitions and syntax templates are

discussed in greater detail in Section 3. In contrast to def and expr , formals is not

extensible; macro expansion occurs only in def and expr contexts.

3 Expressing macros

To illustrate the problems with existing macro systems, let us examine them in the

context of the ubiquitous let example:

(let ([var rhs] . . . ) body) = ((λ (var . . . ) body) rhs . . . )

the vars are distinct identifiers

body and the rhss are expressions

A macro’s syntax transformer is essentially a function from syntax to syntax. Many

Lisp dialects take that as the entirety of the interface: macros are just distinguished

functions, introduced with define-macro instead of define, that consume and produce

S-expressions representing terms. Macros in such systems typically use standard

S-expression functions to “parse” syntax, and they use quasiquotation to build up

the desugared expression:

(define-macro (let bindings body)

‘((λ ,(map first bindings) ,body)

,@(map second bindings)))

The backquote character (quasiquote) introduces an S-expression template; the

comma (unquote) is an escape that inserts the value of the following expression

into the template, and the comma and at-sign combination (unquote-splicing) is an

escape that includes the contents of the list computed by the following expression.

A well-organized implementation would extract and name the sub-terms before

assembling the result, separating parsing from code generation:

(define-macro (let bindings body)

(define vars (map first bindings))

(define rhss (map second bindings))

‘((λ ,vars ,body) ,@rhss))
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These definitions do not resemble the specification, however, and they do not even

properly implement it. The parsing code does not validate the basic syntax of let.

For example, the macro simply ignores extra terms in a binding pair:

(let ([x 1] [y 3 "what about me?"]) (+ x y))

Macro writers, eager to move on as soon as “it works,” will write sloppy macros

like these unless their tools make it easy to write robust ones.

One such tool is the Macro-By-Example (MBE) notation by Kohlbecker &

Wand (1987). In MBE, macros are specified in a notation close to the initial informal

equation, and the parsing and transformation code is produced automatically. The

generated parsing code enforces the declared syntax, rejecting malformed uses such

as the one above. MBE replaces the procedural code with a sequence of clauses,

each consisting of a pattern and a template. The patterns describe the macro’s

syntax. When a pattern matches, its syntax pattern variables are bound to the

corresponding sub-terms of the macro occurrence. These sub-terms are substituted

in for occurrences of pattern variables in the corresponding template, and the

substituted template is the macro’s result.

Here is let expressed with syntax-rules (Sperber et al., 2009), one of many

implementations of MBE:

(define-syntax let

(syntax-rules ()

[(let ([var rhs] . . . ) body)

((λ (var . . . ) body) rhs . . . )]))

This macro has one clause. The pattern variables are var , rhs , and body .

The crucial innovation of MBE is the use of ellipses (. . . ) to describe sequences

of sub-terms with homogeneous structure—ellipses can be considered as an S-

expression version of the familiar “Kleene star” operator. Homogeneous sequences

occur frequently in S-expression syntax. Often the elements of sequences have non-

trivial structure, such as the binding pairs associating let-bound variables with their

values in the code above.

Ellipses are also used in syntax templates to generate sequences of similar terms

based on a single template fragment. The repetition must be “driven” by pattern

variables occurring under ellipses in the pattern. For example, given the pattern for

let above, the template (var . . . ) is legal, because var occurs before an ellipsis in

the pattern, but (body . . . ) would be illegal. The repeated fragment need not be a

single pattern variable; the template ((12 var body) . . . ) is also legal; it produces a

term for each var match, and the value of body is included in each result. A pattern

variable that occurs under ellipses in the pattern must occur under ellipses in the

template; for example, the simple template rhs would be illegal.

Ellipses may be nested. The ellipsis depth of a pattern variable is the nesting level

of ellipses around it. In the let macro above, var and rhs have a depth of 1 and

body has a depth of 0. In the pattern ((x . . . ) . . . ), which would match a sequence

of sequences of terms, x has depth 2. Syntax templates are statically checked to

make sure that pattern variables are used at ellipsis depths consistent with the

https://doi.org/10.1017/S0956796812000275 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796812000275


444 R. Culpepper

corresponding patterns. See Kohlbecker & Wand (1987) for details on template

checking and transcription.

Ellipses do not add expressive power to the macro system but do add expressive-

ness to patterns. Without ellipses, the let macro can still be expressed via explicit

recursion, but in a way that obscures the nature of valid let expressions; instead

of residing in a single pattern, it would be distributed across multiple clauses of

a recursive macro. In short, ellipses help close the gap between specification and

implementation.

Yet MBE lacks the power to express all of the information in the informal

description of let above. The example macros presented so far neglect to validate

two critical aspects of the let syntax: the first term of each binding pair must be an

identifier, and those identifiers must be distinct. Consider these two misuses of let:

(let ([x 1] [x 2]) (+ x x ))

(let ([(x y) (f 7)]) (g x y))

In neither case does the let macro report that it has been used incorrectly. In both

cases let inspects the syntax, successfully matches it against its pattern, and produces

an invalid λ expression. Then λ, implemented as a primitive syntactic form by a

careful compiler writer, signals an error. For example, Racket reports “λ: duplicate

identifier in: x” for the first term. Chez Scheme (Dybvig, 2010) reports “invalid

parameter list in (λ ((x y)) (g x y))” for the second. Source location tracking (Dybvig

et al., 1993) improves the situation somewhat in macro systems that offer it. For

example, the DrRacket (Findler et al., 2002) programming environment highlights

the duplicate identifier. But this is not a full solution. Macros should report errors

on their own terms, not in terms of their expansions.

Worse, a macro might pass through syntax that has an unintended meaning. In

Racket, the second example above produces the surprising error “unbound variable

in: y .” The pair (x y) is accepted as an optional parameter with a default expression,

a feature of Racket’s λ syntax, and the error refers to the free variable y in the

latter portion. If y were bound in this context, the second example would be silently

accepted. A slight variation demonstrates another pitfall:

(let ([(x ) (f 7)]) (g x x ))

This time, Racket reports the following error: “λ: not an identifier, identifier with

default, or keyword at: (x ).” The error message not only leaks the implementation

of let, it implicitly mischaracterizes the legal syntax of let.

The traditional solution to this problem is to include a guard expression, sometimes

called a fender, that is run after the pattern matches but before the result expression

is evaluated. The guard expression produces true or false to indicate whether its

constraints are satisfied. If the guard expression fails, the pattern is rejected and the

next pattern is tried. If all of the patterns fail, the macro raises a generic syntax

error, such as “bad syntax.”

Figure 2 shows the implementation of let in syntax-case (Dybvig et al., 1993;

Sperber et al., 2009), an implementation of MBE that provides guard expressions. A

syntax-case clause consists of a pattern, an optional guard expression, and a result
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(define-syntax (let stx )

(syntax-case stx ()

[(let ([var rhs] . . . ) body)

;; Guard expression

(and (andmap identifier? (syntax→list #’(var . . . )))

(not (check-duplicate #’(var . . . ))))

;; Result expression

#’((λ (var . . . ) body) rhs . . . )]))

Fig. 2. let with guards.

(define-syntax (let stx )

(syntax-case stx ()

[(let ([var rhs] . . . ) body)

(begin

;; Error-checking code

(for-each (λ (var)

(unless (identifier? var)

(syntax-error "expected identifier" stx var)))

(syntax→list #’(var . . . )))

(let ([dup (check-duplicate #’(var . . . ))])

(when dup

(syntax-error "duplicate variable name" stx dup)))

;; Result term

#’((λ (var . . . ) body) rhs . . . ))]))

Fig. 3. let with hand-coded error checking.

expression. Pattern variables are used via syntax templates, which are terms marked

with a #’ prefix; templates are instantiated by substituting in the pattern variables’

values. A macro’s result expression is typically a syntax template or a computation

that ultimately returns a template’s value.

The macro in Figure 2 has a guard expression that uses auxiliary syntax

templates to refer to just the let form’s variables: (andmap identifier? (syntax→list

#’(var . . . ))) checks that each “variable” is truly an identifier, and (not (check-

duplicate #’(var . . . ))) ensures that no identifier occurs more than once. The names

andmap, identifier?, syntax→list , and check-duplicate all refer to functions in Racket’s

standard library.

Guard expressions suffice to prevent macros from accepting invalid syntax, but

they suffer from two flaws. First, since guard expressions are separated from result

expressions, work needed both for validation and transformation must be performed

twice and code is often duplicated. Second and more important, guards do not

explain why the syntax was invalid. That is, they only control matching; they do

not track causes of failure.

To provide precise error explanations, explicit error checking is necessary, as shown

in Figure 3. Of the 10 non-comment lines of the macro’s clause, one is the pattern,

one is the template, and eight are dedicated to validation. Furthermore, this macro

only reports errors that match the shape of the pattern. If it is given a malformed

binding pair with extra terms after the right-hand side expression, the clause fails
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(define-struct struct (field . . . ) option . . . )

where struct , field are identifiers

option ::= #:mutable

| #:super super-struct-expr

| #:inspector inspector-expr

| #:property property-expr value-expr

| #:transparent

Fig. 4. Syntax of define-struct.

to match, and syntax-case produces a generic error. Detecting and reporting those

sorts of errors would require even more code. Only the most conscientious macro

writers are likely to take the time to enumerate all the ways the syntax could be

invalid and to issue appropriate error reports.

Certainly, the code for let could be simplified. Macro writers could build libraries

of common error-checking routines. Such an approach, however, would still obscure

the natural two-line specification of let by mixing the error-checking code with the

transformation code. Furthermore, abstractions that focus on raising syntax errors

would not address the other purpose of guards, the selection among multiple valid

alternatives.

Even leaving the nuances of error reporting aside, some syntax is simply difficult to

parse with MBE patterns. Macro writers cope in two ways: either they compromise

on the user’s convenience with simplified syntax or they hand-code the parser.

Keyword arguments are one kind of syntax difficult to parse using MBE patterns.

An example of a keyword-enhanced macro is Racket’s define-struct form, whose

grammar is specified in Figure 4. It has several keyword options, which can occur

in any order. The #:transparent and #:inspector keywords control how structure

values can be inspected via reflection. The #:mutable option makes the fields

mutable. The #:property option allows structure types to set behavior such as how

they are printed, compared for equality, and so on. Different keywords come with

different numbers of arguments, e.g., #:mutable takes none and #:property takes

two.

Parsing a define-struct form gracefully is simply beyond the capabilities of MBE’s

pattern language, which only supports homogeneous sequences. A single optional

keyword argument can be supported by simply writing two clauses—one with the

argument and one without. At two arguments, calculating out the patterns becomes

onerous, and the macro writer is likely to make odd, expedient compromises—

arguments must appear in some order, or if one argument is given, both must be.

Beyond two arguments, the approach is unworkable. The alternative is, again, to

move part of the parsing into the transformer code. The macro writer sketches the

rough structure of the syntax in broad strokes with a pattern, then fills in the details

with procedural parsing code (“——” represents elided code):

(define-syntax (define-struct stx )

(syntax-case stx ()

[(define-struct name (field . . . ) kw-options . . . )

—— #’(kw-options . . . ) ——]))
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(syntax-parse stx-expr [pattern side-clause . . . expr] . . . )

where side-clause ::= #:fail-when cond-expr msg-expr

| #:with pattern stx-expr

Fig. 5. Syntax of syntax-parse.

In the actual implementation of define-struct, the parsing of keyword options alone

takes over 100 lines of code. In comparison, the specification of the same syntax in

our new system is an order of magnitude shorter.

In summary, MBE offers weak syntax patterns, forcing the programmer to

move the work of validation and error-reporting into guards and transformers.

Furthermore, guard expressions accept or reject entire clauses, and rejection comes

without information as to why the guard failed. Finally, MBE lacks the vocabulary

to describe a broad range of important syntaxes. Our new domain-specific language

for macros eliminates these problems.

4 The design of syntax-parse

Our system, dubbed syntax-parse, features three significant improvements over MBE:

• an expressive language of syntax patterns, including pattern variables anno-

tated with the syntax classes they can match;

• a facility for defining new syntax classes as abstractions over syntax patterns

and explicit side conditions; and

• a matching algorithm that tracks progress to rank and report failures and a

notion of failure that carries error information.

Using syntax-parse, a programmer writes declarative specifications of a macro’s

syntax; these specifications are used to validate a macro’s input syntax. If validation

succeeds, the syntax has also been parsed and the components bound to pattern

variables to use for code generation. If validation fails, syntax-parse automatically

synthesizes a syntax error, using annotations from the syntax specifications to craft

a comprehensible error message.

The declarative framework also accommodates explicit side-condition checks.

Side-condition failures are handled just the same as pattern matching failures; a

single notion of progress determines which failures are mentioned in the final error

report. The syntax classes of our system are similar to non-terminals in traditional

grammars, but the addition of side conditions enables the disciplined interleaving

of pattern-based specifications and hand-coded checks, resulting in more flexibility

than a pure grammar-based system.

This section illustrates the design of syntax-parse with a series of examples based

on the let example. The subsequent sections elaborate on the error-reporting model

and the specification pattern language.

4.1 Validating syntax

The syntax of syntax-parse—specified in Figure 5—is similar to that of syntax-case.

It matches a syntax object—a representation of a term—against a sequence of
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clauses. Each clause consists of a pattern, a sequence of auxiliary side clauses, and a

result expression. A #:fail-when clause represents a side condition. A #:with clause

matches a pattern against a computed term, binding additional pattern variables;

an example of a #:with clause appears in Section 4.2.

As a starting point, here is the let macro transliterated from the syntax-rules

version:

(define-syntax (let stx )

(syntax-parse stx

[(let ([var rhs] . . . ) body)

#’((λ (var . . . ) body) rhs . . . )]))

It enforces only the basic shape of the original specification, not the side conditions.

To this skeleton we add the constraint that every term labeled var must be an

identifier. Likewise, rhs and body are annotated to indicate that they are expressions.

For our purposes, an expression is any term other than a keyword. The final

constraint, that the identifiers are unique, is expressed as a side condition using a

#:fail-when clause. Here is the revised macro:

(define-syntax (let stx )

(syntax-parse stx

[(let ([var:identifier rhs:expr] . . . ) body:expr)

#:fail-when (check-duplicate #’(var . . . ))

"duplicate variable name"

#’((λ (var . . . ) body) rhs . . . )]))

Note that a syntax class annotation such as expr is not part of the pattern variable

name, so it does not appear in the template.

If the #:fail-when clause’s condition expression evaluates to a true value,2 parsing

fails with the given message: “duplicate variable name”; otherwise, the side-condition

check passes. Furthermore, if the value produced by the condition expression is a

syntax object, that syntax is included as the specific site of the failure. The check-

duplicate function returns either an identifier—the first duplicate, if one is found—or

false, so it is well-suited for use in a #:fail-when check.

In short, side conditions differ from guard expressions in that the failures they

generate carry information describing the reasons for the failure. Section 5 explains

in greater detail how #:fail-when is superior to explicitly raising an error.

At this point, our let macro properly validates its syntax. It catches the misuses

earlier and reports the following errors:

> (let ([x 1] [ x 2]) (h x ))

let: duplicate variable name in: x

> (let ([ (x y) (f 7)]) (g x y))

let: expected identifier in: (x y)

2 In Racket, any value other than #f (false) is considered a true value.
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The boxes indicate the specific location of the problem; the DrRacket programming

environment highlights these terms in red in addition to printing the error message.

For some misuses, let still does not provide good error messages. Here is an

example that is missing a pair of parentheses:

> (let (x 5) (add1 x ))

let: bad syntax

Our let macro rejects this misuse with a generic error message. To get better error

messages, the macro writer must supply syntax-parse with additional information.

4.2 Defining syntax classes

Syntax classes—in particular, their descriptions—form the basis of syntax-parse’s

error-reporting mechanism. Defining a syntax class for binding pairs gives syntax-

parse the vocabulary to explain a new class of errors. The syntax of binding pairs is

defined as a syntax class thus:

(define-syntax-class binding

#:description "binding pair"

(pattern [var:identifier rhs:expr]))

The syntax class is named binding , but for the purposes of error reporting it is

known as “binding pair.” It has a single variant pattern. The pattern variables var

and rhs have moved out of the main pattern into the syntax class, and they are

exported as attributes of the syntax class so that their bindings are available to the

main pattern. The name of the binding-annotated pattern variable, b, is combined

with the names of the attributes to form the nested attributes b.var and b.rhs:

(define-syntax (let stx )

(syntax-parse stx

[(let (b:binding . . . ) body:expr)

#:fail-when (check-duplicate #’(b.var . . . ))

"duplicate variable name"

#’((λ (b.var . . . ) body) b.rhs . . . )]))

Macros tend to share common syntactic structures. For example, the binding pair

syntax, consisting of an identifier for the variable name and an expression for its

value, occurs in other variants of let, such as let∗ and letrec.

In addition to patterns, syntax classes may contain side conditions. For example,

both the let and letrec forms require that their variable bindings be distinct. Here is

an appropriate syntax class:

(define-syntax-class distinct-bindings

#:description "sequence of binding pairs"

(pattern (b:binding . . . )

#:fail-when (check-duplicate #’(var . . . ))

"duplicate variable name"

#:with (var . . . ) #’(b.var . . . )

#:with (rhs . . . ) #’(b.rhs . . . )))
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The attributes of distinct-bindings are b, var , and rhs—nested attributes such as

b.var are not exported by a syntax class. The latter two are bound by the #:with

clauses, each of which consists of a pattern followed by an expression, which may

refer to previously bound attributes such as b.var . The expression’s result is matched

against the pattern, and the pattern’s attributes are available for export or for use

by subsequent side clauses.

The macro can now be written as follows:

(define-syntax (let stx )

(syntax-parse stx

[(let bs:distinct-bindings body:expr)

#’((λ (bs.var . . . ) body) bs.rhs . . . )]))

The var and rhs attributes of distinct-bindings have an ellipsis depth of 1, so bs.var

and bs.rhs can be used within ellipses in the macro’s template, even though bs itself

does not occur within ellipses in the macro’s pattern.

Now that we have specified the syntax of binding and distinct-bindings—and given

them descriptions—syntax-parse can use them to generate good error message for

additional misuses of let:

> (let ( x 5) (add1 x ))

let: expected binding pair in: x

> (let 17 )

let: expected sequence of binding pairs in: 17

The next section explains how syntax-parse selects errors to report and how

descriptions are incorporated into error messages.

5 Reporting errors

The syntax-parse system uses the declarative specification of a macro’s syntax to

report errors in macro uses. The task of reporting errors is factored into two

steps. First, the matching algorithm selects the most appropriate pattern-matching

failures (including side-condition failures) to report as the error or errors. Second,

it pinpoints the faulty term and uses text from the syntax specifications to explain

the fault or describe the expected class of syntax. This section explains the error

selection and explanation processes first via examples, then with a semantic model

of backtracking that forms the basis for the pattern semantics of Section 6.

5.1 Error selection

Pattern variable annotations and side conditions serve a dual role in our system. As

seen, they allow syntax-parse to validate syntax. When validation fails, syntax-parse

reports the specific site and cause of the failure. But annotations and side conditions

do not simply behave like the error-checking code of Figure 3. A macro can have

multiple clauses, and a syntax class can have multiple variants. When there are

multiple alternatives, all of them must be attempted before an error is raised.
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To illustrate this process, we must introduce choice into our running example. As

it happens, Racket inherits Scheme’s let syntax, which has another variant called

“named let” that specifies a name for the implicit procedure. This notation provides

a handy loop-like syntax. For example, the following program determines whether

the majority of numbers in a list are positive:

(define (mostly-positive? nums)

(let loop ([nums nums] [pos 0] [non 0])

(cond [(empty? nums) (> pos non)]

[(positive? (first nums))

(loop (rest nums) (+ 1 pos) non)]

[else (loop (rest nums) pos (+ 1 non))])))

Implementing the new variant of let is as simple as adding another clause to the

macro:

(define-syntax (let stx )

(syntax-parse stx

[(let loop:identifier bs:distinct-bindings body:expr)

#’(letrec ([loop (λ (bs.var . . . ) body)]) (loop bs.rhs . . . ))]

[(let bs:distinct-bindings body:expr)

#’((λ (bs.var . . . ) body) bs.rhs . . . )]))

The macro uses the annotations to pick the applicable pattern: it chooses named-let

if the first argument is an identifier and normal-let if it is a binding list. These two

patterns happen to be mutually exclusive, so the order of the clauses is irrelevant,

but in general the clauses are tried in order.

The use of annotations to select the matching clause must be reconciled with

the role of annotations in error reporting. An annotation rejection during pattern

matching clearly cannot immediately signal an error. But the annotations must retain

their error-reporting capacity; if the whole parsing process fails, the annotations must

be used to generate a useful error message.

The dual role of failure is supported using the following approach. When there are

multiple alternatives, such as multiple syntax-parse clauses or multiple variants of a

syntax class definition, they are tried in order. When an alternative fails, syntax-parse

records the failure and backtracks to the next alternative. As alternatives are tried,

syntax-parse accumulates a set of failures, and each failure contains a measure of

the matching progress made. If the whole matching process fails, the attempts that

made the most progress are chosen to explain the syntax error. Frequently there

is a unique maximum, resulting in a single error explanation. Otherwise, multiple

explanations are presented.

Figure 6 defines our notion of progress. The structure of terms influences the

structure of progress: a progress string is a sequence of progress steps, and the

progress steps First and Rest indicate the first and rest of a compound term,

respectively. Parsing is performed left to right; if the parser is looking at the rest

of a compound term, the first part must have been parsed successfully. Progress is

ordered lexicographically. Steps are written left to right, so for example the second
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Progress π ::= ps∗

Progress Step ps ::= First | Rest | Late

First < Rest < Late

ε < ps · π
π1 < π2

ps · π1 < ps · π2

ps1 < ps2

ps1 · π1 < ps2 · π2

Fig. 6. Progress.

term in a sequence is written Rest · First; that is, take the rest of the full term and

then the first part of that.

Consider the following erroneous let term:

(let ([a 1] [2 b]) (∗ a b))

The named-let clause fails at the second sub-term with the progress string Rest ·
First:

(let ([a 1] [2 b]) (∗ a b))

The normal-let clause, however, fails deeper within the second argument, at Rest ·
First · Rest · First · First:

(let ([a 1] [ 2 b]) (∗ a b))

This second sequence denotes strictly more progress than Rest · First. Thus, the

second failure is selected, and the macro reports that it expected an identifier in

place of 2.

Matching progress is not only a measure of position in a term. Consider the

following example:

(let ([x 1] [x 2]) (+ x x ))

Both clauses agree on the faulty sub-term. But this example is clearly closer to a

use of normal-let rather than named-let. The faulty term matches the structure of

distinct-bindings , just not the side condition.

Pragmatically, we consider a side-condition check—in contrast to a pattern-

matching check—to occur after traversal of the term. We encode this relative

ordering by adding a Late progress step. Thus, while the named-let case fails with

the progress string Rest · First in the example above, the normal-let case fails with

Rest · First · Late, which is greater progress, and so we report only the duplicate

variable name error.

Sometimes multiple alternatives fail at the same place, e.g.,

> (let 5 )

let: expected identifier or sequence of binding pairs in: 5

Both clauses make the same amount of progress with this term: Rest · First. As a

result, both failures are selected, and the error message includes both descriptions.
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5.2 Error messages

In addition to progress, a failure contains a message that indicates the nature of the

error and the term where the failure occurred. A typical error message is

let: expected binding pair in: x

This message consists of the macro’s expectations and the specific term where parsing

failed.

A syntax error should identify the faulty term and concisely explain what was

expected. It should not recapitulate the macro’s documentation; rather, the error

message should make locating the appropriate documentation easy, e.g., via links

and references. Consequently, syntax-parse produces messages from a limited set of

ingredients. It automatically synthesizes messages for literal and datum patterns; for

example, the pattern 5 yields the message “expected the literal 5.” As a special case,

it also knows how to report when a compound term has too many sub-terms. The

only other ingredients it uses are provided by the macro developer: descriptions and

side-condition messages.

In particular, syntax-parse does not synthesize messages to describe compound

patterns. We call such patterns and the failures they cause “ineffable”; our system

cannot generate explanations for them. In general, a pattern is ineffable unless it

is a datum or literal or has an explicit description or message attached to it. An

example of an ineffable pattern is the following:

(var:identifier rhs:expr)

If a term such as x is matched against this pattern, it fails to match the compound

structure of the pattern. The matching process does not reach the identifier or

expression check. One possible error message is “expected a compound term

consisting of an identifier and an expression.” Another is “expected (identifier

expr).” In practice, macro writers occasionally write error messages like each of

these. We have chosen not to generate such messages automatically for two reasons:

first, they do not scale well to complicated patterns; and second, we consider such

messages misguided.

Generating messages from patterns is feasible when the patterns are simple, such

as the example above. For patterns with deeper nesting and patterns using advanced

features, however, generating an accurate message is tantamount to simply displaying

the pattern itself. While showing patterns in failures is a useful debugging aid for

macro developers, it is a bad way to construct robust linguistic abstractions. Error

reporting should be based on documented concepts, not implementation details.

When a compound pattern such as the one above fails, the pattern’s context is

searched and the nearest enclosing description is used to report the error. Consider

the following misuse of let:

(let (x 1) (add1 x ))

The error selection algorithm from Section 5.1 determines that the most specific

failure arose trying to match x against the pattern (var:identifier rhs:expr). Here is

the full context of the failure:

https://doi.org/10.1017/S0956796812000275 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796812000275


454 R. Culpepper

Term Pattern

1 x (var:identifier rhs:expr)

2 x b:binding

3 (x 1) (b:binding . . . ) with side constraint

4 (x 1) bs:distinct-bindings

5 (let (x 1) (add1 x )) (let bs:distinct-bindings body:expr)

The first, third, and fifth frames contain ineffable patterns, shown in grey above. We

discard the ineffable patterns and extract the descriptions from the syntax classes in

the patterns that remain. The result is the following expectation stack :

expected binding pair, given x

expected sequence of binding pairs, given (x 1)

The message and term of the first frame are used to formulate the error message

“let: expected binding pair in: x” because it is the closest one. A programming

environment might permit interactive exploration of the full expectation stack.

When error selection returns a single failure with maximum progress, the expec-

tation stack of that failure is used directly to generate the error message. When

multiple maximal failures exist, however, the expectation stacks must be combined.

In the simple case, the failures are unrelated, as in the following example:

(let 5 )

This use of let has two maximal failures, both with progress Rest · First. The first

failure corresponds to the named-let pattern; it has the following expectation stack:

expected identifier, given 5

The second failure corresponds to the normal-let pattern, and it has the following

expectation stack:

expected sequence of binding pairs, given 5

The two failures are distinct; neither expectation stack is an extension of the other.

Consequently, we form the error message by concatenating the error messages

corresponding to the separate failures separated by “or,” yielding

expected identifier or expected sequence of binding pairs

Failures are considered distinct even if their expectation stacks share a common

tail; in fact, this is common. Consider the following syntax class:

(define-syntax-class mutable-option

#:description "mutability option"

(pattern #:mutable)

(pattern #:immutable))

The two patterns consist of literal data, so descriptions are automatically generated

for them. Thus attempting to parse x as a mutable-option produces the following

two failures:

expected the literal #:mutable, given x

expected mutability option, given x

https://doi.org/10.1017/S0956796812000275 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796812000275


Fortifying macros 455

and

expected the literal #:immutable, given x

expected mutability option, given x

Despite the shared context, the specific cause of the failure can be summarized by

these two possibilities:

expected the literal #:mutable or the literal #:immutable

Of course, a detailed view of the error would likely merge the two failures, making

the shared context explicit.

When one of the failures is an extension of the other, the more specific failure is

discarded, since it is subsumed by the more general error. For example, consider the

following syntax class:

(define-syntax-class id-maybe-default

#:description "identifier with optional default"

(pattern var:identifier)

(pattern (var:identifier default:expr)))

Attempting to parse the term 5 as a id-maybe-default yields two failures with the

same progress, ε. The first pattern fails with the expectation stack

expected identifier, got 5

expected identifier with optional default, got 5

There are two frames: one for the id-maybe-default syntax class and one for the

identifier-annotated pattern variable. In contrast, the second pattern is ineffable, so

its expectation stack is simply

expected identifier with optional default, got 5

If we naively combined the two failures as though they were unrelated, we would

produce the error message

expected identifier or identifier with optional default, got 5

But that is redundant; “identifier” is included in “identifier with optional default.”

There is no benefit in mentioning both a syntax class and one of its specific variants,

so we trim the expectation stack to its common tail and report

expected identifier with optional default, got 5

Such pairs of failures, one extending the other, occur often with ellipsis patterns

where the base case is a literal () pattern. Handling them naively would result in

spurious “... or expected the literal ()” error message fragments.

5.3 Errors and backtracking

We model the error selection algorithm using a monad based on well-known

backtracking monads (Hughes, 1995) but specialized to carry failure information.

We refer to this monad as the RF (“remember failures”) monad.
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One representation of the traditional backtracking monad is a list (or stream)

of successes; failure is represented as the empty list. In contrast, the corresponding

representation of the RF monad is a list of successes together with a set of maximal

failures. In the context of pattern matching, a success contains a substitution mapping

attributes to their values, and a failure contains a progress string and an expectation

stack. Failures are ordered by progress string; only the maximal failures are

retained.

This monad differs from the familiar list monad in the way it handles failures.

It differs from the exception monad in that we remember our failures even when we

succeed. We defer explaining our choice of backtracking model to Section 6.5, since

it is influenced by the patterns we support.

6 Syntax patterns

The power of syntax-parse comes from its expressive pattern language, an extension

of the syntax patterns of MBE. Sections 4 and 5 introduced some features of

our pattern language. This section describes the pattern language in more detail,

including additional pattern forms that enable syntax-parse to handle the variety of

syntax found in real Racket macros.

The full pattern language is large, partly because it is designed to handle the

complexity of Racket syntax. One example is the syntax of define-struct’s keyword

arguments (Figure 4). The keyword arguments can occur in any order; some of

them comprise multiple terms; many of them can occur at most once; and some

pairs of keyword arguments are mutually exclusive. Keyword arguments and other

uses of constrained repetitions are common enough in Racket that syntax-parse is

obligated to support them.

There are also redundancies in syntax-parse. Some are essentially syntactic sugar;

for example, there are pattern equivalents to the #:fail-when and #:with side clauses,

and there is a pattern that has the same effect as a syntax class’s #:description

declaration. There are also partial overlaps between features. For example, some

syntaxes can be specified equally well as explicitly recursive syntax classes or

as an ellipsis pattern. But neither feature subsumes the other: ellipses patterns

cannot handle arbitrary recursive structure, whereas recursive syntax classes can, but

ellipsis patterns do allow declarative specification of repetition constraints, which

would have to be added to a recursive syntax class using parameters and explicit

checks.

There are four categories of patterns: single-term (S ), action (A), head (H ),

and ellipsis-head (EH ). We present the pattern language in seven groups, however,

organized by common purposes. For each group, we present the syntax of the new

pattern forms and explain how they are used. Some examples in early sections rely

on ellipsis patterns, which are not explained in detail until Section 6.6; however, the

high-level explanation of ellipses from Section 3 should be sufficient to understand

the examples.
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Single-term patterns S ::= x

| x :stxclass

| datum

| (S . S )

| (˜var x (stxclass expr∗))

| (˜literal x )

Expressions expr ::= · · ·
| (syntax-parse expr [S sclause∗ expr]∗)

Side-clause sclause ::= #:fail-when expr expr

| #:with S expr

Definitions def ::= · · ·
| (define-syntax-class stxclass desc? variant∗)

| (define-syntax-class (stxclass x ∗) desc? variant∗)

Description desc ::= #:description expr

Variant variant ::= (pattern S side-clause∗)

Fig. 7. Basic single-term patterns.

6.1 Basic patterns and syntax classes

The most fundamental kind of pattern is the single-term pattern, which specifies a set

of individual terms. The clauses of a syntax-parse form contain single-term patterns,

and the variants of a syntax class are single-term patterns.

Figure 7 presents the basic single-term patterns. The first three variants—pattern

variables, annotated pattern variables, pair patterns—are familiar from Section 4.

So are datum patterns, in the form of (), which ends compound patterns.3 Numbers,

booleans, strings, and keywords can also be used as datum patterns that match

themselves.

A pattern consisting of a single pattern variable binds that pattern variable at

ellipsis depth 0. A pattern variable annotated with a syntax class additionally binds

nested attributes: the attributes of the syntax class prefixed with the pattern variable

name. The attributes of a pattern are its pattern variables together with their nested

attributes.

The attributes of a syntax class are the pattern variables (not including nested

attributes) that its patterns have in common. Taking only the non-nested attributes

means that a syntax class’s attributes can be computed independent of any other

syntax class definition, which simplifies the handling of forward references and

mutual recursion. Syntax class definitions have both a compile-time part (the

attributes bound) and a run-time part (the parser). The compilation of a syntax

class’s run-time part is delayed until the compile-time parts of all syntax classes in

the enclosing module have been gathered.

A pair pattern propagates the attributes from its first sub-pattern to its second

sub-pattern. This propagation allows expressions (such as ˜var4 pattern arguments)

3 Recall that the notation (x y z ) is shorthand for (x . (y . (z . ()))).
4 All pattern forms start with a tilde (˜). This convention makes it easy to distinguish pattern form

names from pattern variables.
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to refer to attributes bound by previous patterns. Pair patterns, as well as most other

composite patterns, require the attributes of their components to be disjoint.

The ˜literal pattern form recognizes identifiers that refer to the same binding

as the given literal identifier, as determined by the standard free-identifier=?

function (Dybvig et al., 1993). A ˜literal pattern binds no attributes. Here is a

simplified version of Racket’s cond form, which uses a literal pattern to recognize a

terminal else clause, together with an example use.

(define-syntax (cond stx )

(syntax-parse stx

[(cond [test result] . more) #’(if test result (cond . more))]

[(cond [(˜literal else) result]) #’result]

[(cond) #’(void )]))

(cond [(< the-number 10) ’little]

[else ’big])

A ˜var pattern constrains a pattern variable to a syntax class. The colon notation

is a shorthand for parameterless syntax classes; e.g., x:identifier is short for (˜var

x (identifier)). When the syntax class takes parameters, the explicit ˜var notation is

required. A syntax class’s parameters may be used in its sub-expressions, including

its description and any of its side conditions. For example, here is a syntax class

that recognizes literal natural numbers less than some upper bound:

;; the pattern (˜var n (nat< 10)) matches any natural number less than 10

(define-syntax-class (nat< bound )

(pattern n:nat

#:fail-when (not (< (syntax→datum #’n) bound ))

(format "got a number ˜s or greater" bound )))

The upper bound is inserted into the check message using the format procedure.

Note that a “syntax class application” in a ˜var pattern is not an expression, and

a syntax class is not a value, since the attributes bound by a pattern must be known

statically.

We can give an alternative definition of distinct-bindings via a syntax class

parameterized over the identifiers that have already been seen. Figure 8 shows

the alternative definition and the auxiliaries bindings-excluding and identifier-except .

The pattern bindings-excluding syntax class accepts sequences of distinct bindings but

also requires that the bound names not occur in seen . Consider bindings-excluding ’s

second pattern; var0 must be an identifier not in seen , and the identifier bound

to var0 is added to the blacklisted identifiers for the rest of the binding sequence.

Note that var0 is in scope in the argument to bindings-excluding . Since patterns are

matched left to right, pattern variable binding also runs left to right, following the

principle of scope being determined by control dominance (Shivers, 2005). Finally,

the identifier-except syntax class is a trivial combination of identifier and a side

condition on the seen parameter. The bound-identifier=? function (Dybvig et al.,

1993) tests whether two identifiers would be equivalent as binding occurrences—it

is the same notion of equivalence used by check-duplicate.
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(define-syntax-class distinct-bindings

#:description "sequence of binding pairs"

(pattern (˜var bs (bindings-excluding ’()))

#:with (var . . . ) (bs.var . . . )

#:with (rhs . . . ) (bs.rhs . . . )))

;; seen is a list of identifiers

(define-syntax-class (bindings-excluding seen)

(pattern ()

#:with (var . . . ) ’()

#:with (rhs . . . ) ’())

(pattern ([(˜var var0 (identifier-except seen)) rhs0 ]

. (˜var rest (bindings-excluding (cons #’var0 seen))))

#:with (var . . . ) #’(var0 rest.var . . . )

#:with (rhs . . . ) #’(rhs0 rest.rhs . . . )))

;; seen is a list of identifiers

(define-syntax-class (identifier-except seen)

(pattern x:identifier

#:fail-when (for/or ([id seen]) (bound-identifier=? #’x id ))

"duplicate variable name"))

Fig. 8. Parameterized syntax classes.

The alternative definition of distinct-bindings accepts the same terms as the

definition from Section 4.2, but it reports errors differently. The first definition

verifies the structure of the binding pairs first, then checks for a duplicate name.

The second checks the structure and checks duplicates in the same pass. Thus they

report different errors for the following term:

(let ([a 1] [a 2] [x y z ]) a)

The first version reports “expected binding pair: [x y z ]” while the alternative

in Figure 8 reports “duplicate variable name: a .” In general, we prefer to report

structural errors before context-sensitive errors, and so we prefer the original version.

It is also simpler.

6.2 Combining patterns

The ˜and and ˜or pattern forms (Figure 9) add the ability to logically combine

patterns.

The ˜and form provides a way of analyzing a term multiple ways. Matching and

binding are done left to right within an ˜and pattern, so later sub-patterns can rely

on earlier ones, including using their pattern variables. One use of an ˜and pattern

is to parse a term while also giving a name to the whole term, typically to extract

its source location or use the whole term in a debugging message.

Another use of ˜and patterns is to specify constraints on the parts based on

information from the whole; the components of the ˜and form act as separate parsing

passes, where information is passed from the first, shallow pass to subsequent, deeper

passes. In the parlance of attribute grammars, this use corresponds to an inherited

attribute that depends on a synthesized attribute.
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Single-term patterns S ::= . . .

| (˜and S +)

| (˜or S +)

Fig. 9. Combining patterns.

For example, consider a digraph macro that constructs a directed graph based on

node declarations consisting of a node name and the names of its outgoing neighbor

nodes. Each neighbor name must be “bound” by some node declaration; so (digraph

[a (b)] [b (a b)]) is legal but (digraph [a (b)]) is not. That can be expressed as follows:

(define-syntax (digraph stx )

(syntax-parse stx

[(˜and ( [left:identifier ( :identifier . . . )] . . . )

( [ ((˜var right (identifier-in (syntax→list #’(left . . . )))) . . . )] . . . ))

#’——]))

The identifier-in syntax class is like identifier-except (Figure 8) but with the side

condition negated.

The ˜or form represents choice; matches if any of its sub-patterns match. Unlike in

many pattern matching systems, where disjunction, if it is supported at all, requires

that the disjuncts bind the same pattern variables, ˜or patterns are more flexible. An

˜or pattern binds the union of its disjuncts’ attributes, and those attributes that do

not occur in the matching disjunct are marked absent.

It is illegal to use an absent attribute in a syntax template, so syntax-parse provides

the attribute form, which accesses the value of the attribute, returning #f (false) for

absent attributes. Using attribute, a programmer can check if it is safe to use an

attribute in a template. Here is a function for parsing field declarations for a class

macro, where a field declaration contains either a single name or distinct internal

and external names:

(define (parse-field-declaration stx )

(syntax-parse stx

[(˜or field:identifier [internal:identifier field:identifier])

(make-field (if (attribute internal ) #’internal #’field )

#’field )]))

Pragmatically, it is usually preferable to specify such syntax using syntax classes with

multiple variants. Missing attributes can be bound using #:with clauses, eliminating

the need for a condition expression where the attribute is used:

(define-syntax-class field-declaration

(pattern field:identifier

#:with internal #’field )

(pattern [internal:identifier field:identifier]))

Conversely, a multi-variant syntax class can be desugared into a single-variant

syntax classes by combining the variants with an ˜or pattern.
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Single-term patterns S ::= . . .

| (˜describe expr S )

Fig. 10. Controlling error messages.

Action patterns A ::= (˜fail condition message)

| (˜parse S expr)

| (˜late A)

Single-term patterns S ::= · · ·
| (˜and S {S |A}∗)

Fig. 11. Action patterns.

6.3 Attaching descriptions to patterns

A ˜describe pattern (Figure 10) attaches a description to its sub-pattern by adding a

frame onto the expectation stack of any failure that occurs in its sub-pattern. The

frame consists of the given description and the term that is currently being parsed.

Thus if a failure occurs and there is no other description closer to the source of the

error, the description is used to explain the failure.

A syntax class’s description can be desugared into a ˜describe pattern wrapped

around its variant patterns. Recall the binding and distinct-bindings syntax class

definitions from Section 4.2; the binding syntax class could be inlined into distinct-

bindings as follows:

(define-syntax-class distinct-bindings

#:description "sequence of distinct binding pairs"

(pattern ((˜describe "binding pair"

[var:identifier rhs:expr]) . . . )

#:fail-when ——))

In turn, distinct-bindings could be inlined into the let macro itself if only we could

desugar the #:with clause away.

6.4 Action patterns

The action patterns of Figure 11 do not describe syntax per se; instead, they affect

the parsing process without consuming input. The ˜fail form provides a way of

explicitly causing a match failure; ˜parse allows the programmer to divert matching

from the current input to a computed term; and ˜late affects the ordering of failures.

They constitute the pattern equivalents of the #:fail-when and #:with side-clauses.

A ˜fail pattern performs an explicitly-coded check. As with #:fail-when, if the

condition evaluates to a syntax value, it is added to the failure as the specific term

that caused the error. Recall from Section 5.1 that #:fail-when side-conditions are

performed as “late” checks; that is, their failures get an additional Late progress

step. In contrast, ˜fail performs “early” checks—no automatic Late step. Early and

late checks might alternatively be called “pre-order” and “post-order” checks. The

identifier syntax class performs its test as an early check:
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(define-syntax-class identifier

#:description "identifier"

(pattern (˜and x (˜fail (not (identifier? #’x )) #f))))

If the message is #f instead of a string, the fail pattern is ineffable, so the ˜fail check

in identifier always uses the syntax class’s description instead.

The ˜late form turns enclosed checks into late checks. In fact, the #:fail-when

keyword option used in distinct-bindings (Section 4.2) is just shorthand for a

combination of ˜late and ˜fail joined to the pattern via ˜and, which is extended

to accept action patterns:

(define-syntax-class distinct-bindings

#:description "sequence of distinct bindings"

(pattern (˜and (b:binding . . . )

(˜late (˜fail (check-duplicate #’(b.var . . . ))

"duplicate variable name")))))

Note that since ˜and propagates attributes bound in each of its sub-patterns to

subsequent sub-patterns, ˜and can be used to parse a term and then perform actions

depending on the contents of the term.

The ˜parse form evaluates its sub-expression and matches it against the given

pattern. It corresponds to a #:with clause. For example, the field-declaration syntax

class from Section 6.1) is equivalent to the following:

(define-syntax-class field-declaration

(pattern (˜and field:identifier

(˜late (˜parse internal #’field ))))

(pattern [internal:identifier field:identifier]))

The ˜parse form requires an update to our notion of progress from Section 5.1.

Now the matching process is no longer limited to sub-terms of the original term;

it may involve arbitrary computed terms. We consider progress into one computed

term to be unrelated to progress into another. Consequently, we change progress

from a total order to a partial order by adding a new kind of progress step, Base(stx ):

Progress Step ps ::= First | Rest | Late | Base(stx )

A Base progress step is equal to another Base progress step containing the same

term; it is incomparable with any other progress step. The rules for error reporting

stay the same: select the set of failures with maximal progress.

6.5 Head patterns

The patterns we have introduced so far cannot directly represent syntactic elements

that do not consist of a single term, such as optional terms and keyword arguments.

Consider a test-case macro, specified as it might be in the macro’s documentation:

(test-case maybe-around-clause body-expr)

where maybe-around-clause ::= #:around proc-expr

| ε
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Head patterns H ::= (˜seq . L)

| (˜and H {H |A}∗)

| (˜or H +)

| (˜describe expr H )

List patterns L ::= ()

| (S . L)

| (H . L)

Single-term patterns S ::= · · ·
| (H . S )

Definitions def ::= · · ·
| (define-splicing-syntax-class stxclass desc? variant∗

H )

| (define-splicing-syntax-class (stxclass x ∗) desc? variant∗
H )

Head variant variantH ::= (pattern H side-clause∗)

Fig. 12. Head patterns.

The maybe-around-clause non-terminal does not represent a single term; it represents

either zero or two terms appearing in sequence before the test case’s body expressions.

Here are some example uses of test-case:

(test-case (check (= (+ 2 2) 4)))

(test-case #:around call-with-setup (check ——))

We cannot represent maybe-around-clause as a syntax class using single-term pat-

terns. In particular, the following definition is wrong:

(define-syntax-class maybe-around-clause

(pattern (#:around proc:expr))

(pattern ()))

It accepts terms such as (#:around call-with-setup) and (), but we need a kind of

pattern that when given a term like

(#:around call-with-setup (check ——))

matches the prefix consisting of the two-term sequence #:around call-with-setup and

tells its context to continue matching the remainder: ((check ——)).

In other words, we need a mechanism for dealing with the contents of a term as

a sequence and matching sub-sequences instead of sub-terms.

We introduce head patterns, described in Figure 12, as a new category of patterns

that describe sequences of terms. The primary head pattern form is ˜seq, which is

followed by a proper list pattern (L)—a syntactic restriction of single-term patterns

that match only proper lists. The ˜seq form matches sequences of terms that, if

parenthesized as a single compound term, would match L. For example, (˜seq

x:identifier y:expr) matches a sequence of two terms: an identifier followed by an

expression. Contrast that pattern with (x:identifier y:expr), which matches a single

compound term containing an identifier followed by an expression.

Since syntax-parse matches single terms, head patterns are ultimately used by

combining them with a single-term tail pattern: (H . S ). The result is a single-term

pattern. The combined pattern matches a term by attempting to split it into a prefix
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sequence of terms that matches the head pattern and a suffix term that matches the

tail pattern. The prefix sequence may be empty; in fact, specifying optional syntactic

elements is one of the primary uses of head patterns.

For example, the pattern ((˜seq x y) z:identifier) matches the term (1 2 c) because

the term can be split into the two-term prefix sequence 1 2 matching (˜seq x y) and

the suffix (c) matching (z:identifier).

By itself, ˜seq adds nothing to the expressiveness of syntax patterns. After all,

((˜seq x y) z:identifier) is just equivalent to (x y z:identifier). The utility of ˜seq

patterns is that they can be combined via ˜or to express multiple alternative prefixes.

Several other pattern forms, including ˜and and ˜describe, are also extended with

head-pattern versions. The overloading is resolved as follows: if an ˜and, ˜or, or

˜describe form has any head patterns as components, it is a head pattern; otherwise,

it is a single-term pattern.

Here is one way to specify the syntax of test-case using head patterns:

(define-syntax (test-case stx )

(syntax-parse stx

[(test-case (˜or (˜seq #:around proc) (˜seq)) e:expr)

—— (attribute proc) ——]))

As with single-term patterns, a syntax class is usually preferable to an explicit ˜or

head pattern. Head patterns are encapsulated as splicing syntax classes. The optional

#:around keyword argument could be extracted thus:

(define-splicing-syntax-class maybe-around-clause

(pattern (˜seq #:around proc))

(pattern (˜seq)

#:with proc #’(λ (p) (p))))

Compare that with the original informal specification:

maybe-around-clause ::= #:around proc-expr

| ε

The goal of syntax-parse is to enable programmers to specify syntax in a form

consistent with the syntax’s informal documentation.5

Head patterns are not intrinsically tied to keywords. We could describe the syntax

of let, accommodating both the named-let and normal-let variants, with the following

pattern:

(let (˜or (˜seq loop:identifier) (˜seq)) bs:distinct-bindings body:expr)

The decision whether to have separate syntax-parse clauses or collapse them into a

single clause using head patterns depends on how many optional elements there are

and how similar the code generation templates are. In the case of let, we prefer to

keep the two cases separate.

5 Racket’s documentation system (Flatt et al., 2009) favors non-terminals with explicit ε productions
over the ? operator; our implementation of syntax-parse does support an analogue of ?, but we find
that splicing syntax classes are usually preferable.

https://doi.org/10.1017/S0956796812000275 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796812000275


Fortifying macros 465

Head patterns motivate our choice of model for backtracking with failure. Recall

from Section 5.3 that the RF monad can be represented as a list of successes together

with a set of failures. Why not use the simpler model where a result is either a list of

successes or a failure set, rather than containing both? After all, it would seem that

if a pattern succeeds, backtracking typically occurs only when triggered by a failure

of greater progress, which would make any failure in the prior pattern irrelevant.

This is not always the case, however. Consider the following example, a version of

test-case that supports optional names:

(define-splicing-syntax-class maybe-name

(pattern (˜seq #:name name:identifier))

(pattern (˜seq)

#:with name #’anonymous))

(define-syntax (test-case stx )

(syntax-case stx

[(test-case n:maybe-name body:expr) ——]))

(test-case #:name "bob" (check ——))

In the use of the test macro, the programmer has mistakenly provided a string

instead of an identifier. Nevertheless, maybe-name succeeds—by matching zero

terms and leaving #:name and what follows for the macro’s main pattern to

fail on. In the “either-or” model, that success means that the failures maybe-name

encountered before vacuously succeeding are lost, and the system would report

“expected expression, got #:name”—a misleading message. In the our backtracking

model, however, maybe-name’s success is accompanied by its previous failure, which

overrules the macro pattern’s failure, and the system reports the correct error:

“expected identifier, got "bob".”

6.6 Ellipsis-head patterns

The head patterns of Section 6.5 support the specification of syntactic elements like

keyword arguments and optional fragments—but only one at a time. Recall the

syntax of define-struct from Figure 4. It has multiple keyword arguments that can

occur in any order. Some of the keyword arguments can occur at most once; others

can occur multiple times. Some pairs of keyword arguments are mutually exclusive.

Head patterns alone are insufficient for specifying define-struct’s syntax.

Ellipsis-head patterns, shown in Figure 13, are the final ingredient necessary

to specify syntax like define-struct. An ellipsis-head pattern may have multiple

alternatives combined with ˜or, where each alternative is a head pattern. It accepts

sequences consisting of some number of instances of the alternatives joined together.

Each alternative may be annotated with a repetition constraint (˜optional or ˜once)

that restricts the number of times that alternative may appear in the sequence. If

a repetition constraint is violated, an error message is synthesized using its name

argument.

The alternatives of an ellipsis pattern are handled differently from other uses of

˜or. Instead of absent values accruing for every alternative that is not chosen, only
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Ellipsis patterns EH ::= (˜or EH +)

| (˜once H #:name expr)

| (˜optional H #:name expr)

| H

Single-term patterns S ::= · · ·
| (EH ... . S )

List patterns L ::= · · ·
| (EH ... . L)

Fig. 13. Ellipsis-head patterns.

Single-term patterns S ::= · · ·
| (˜commit S )

| (˜delimit-cut S )

Head patterns H ::= · · ·
| (˜commit H )

| (˜delimit-cut H )

Action patterns A ::= · · ·
| ˜!

Fig. 14. Control patterns.

the chosen alternative accrues attribute values. For example, when the term (1 a 2

b c) is matched against the pattern ((˜or x:identifier y:number) . . . ), x is bound to

(a b c) and y to (1 2).

The following pattern specifies the syntax of define-struct:

(define-struct name:identifier (field:identifier . . . )

(˜or (˜optional (˜seq #:mutable) #:name "mutable clause")

(˜optional (˜seq #:super super-expr) #:name "super clause")

(˜optional (˜or (˜seq #:inspector inspector-expr)

(˜seq #:transparent))

#:name "inspector or transparent clause")

(˜seq #:property pkey:expr pval:expr))

. . . )

After the fields come the keyword options in any order. Keywords and their

arguments are grouped together with ˜seq. The options that can occur at most once

are wrapped with ˜optional repetition constraints. The exception is the #:property

option, which can occur any number of times. The #:inspector and #:transparent

options are mutually exclusive, so they are grouped together within a single ˜optional

constraint.

6.7 Backtracking control patterns

Our final group of patterns, shown in Figure 14, controls syntax-parse’s pattern

matching, which is fully backtracking by default. To demonstrate, the following

macro partitions a list of natural numbers into two lists with equal sums:
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(define-syntax (balance nats)

(syntax-parse nats

[((˜or a:nat b:nat) . . . )

#:fail-when (not (= (apply + (syntax→datum #’(a . . . )))

(apply + (syntax→datum #’(b . . . )))))

"sums differ"

#’(quote ((a . . . ) (b . . . )))]))

The ˜or pattern can succeed in two ways for each number in the sequence; it can

match it as a or as b. That is, it represents a choice point. Since alternatives are tried

in order, it always assigns the number to a initially. But after the complete list has

been scanned, the side condition check triggers a failure if a and b are unbalanced.

The failure causes the matching process to backtrack and reconsider the last choice

it made; now it assigns the last number to b instead and tries the side condition

check again. The pattern matcher will continue to backtrack until it finds a balanced

partitioning or until it exhausts every possible assignment.

> (balance 1 2 3 4 5 6 7)

’((1 2 4 7) (3 5 6))

In practice, no macro would ever use backtracking this way, but this example

demonstrates the power—and hints at the cost—of unrestricted backtracking.

The final class of patterns, backtracking control patterns, modifies the way back-

tracking works. The ˜commit form discards choice points created for its sub-

pattern; and the ˜! (“cut”) form discards choice points created within the enclosing

˜delimit-cut form.

The canonical example for ˜! (cut) is to drop alternatives once an identifying

marker or tag has been found. Consider the following task: write a function that

classifies forms as either core definitions or expressions and validates the syntax of

the definitions. Any form starting with define or define-syntax is a definition; anything

else is an expression. A core definition contains an identifier and an expression; the

function abbreviation is not allowed. Here is a first attempt using syntax-parse:

(define (kind-of-form stx )

(syntax-parse stx

[((˜literal define) var:identifier rhs:expr)

’definition]

[((˜literal define-syntax) var:identifier rhs:expr)

’definition]

[e ’expression]))

The problem with this function is that it confuses ill-formed definitions with

expressions. Given a bad term such as (define x ), the first pattern fails, but the

final pattern succeeds. One solution is to make the final pattern disjoint from the

others by adding in their negations; however, this can cause the size of the final

pattern to explode. It also makes the final pattern fragile: it must be updated if

other cases are added or removed. Instead, once a pattern’s distinguishing feature is

seen, we drop the choice points for all of the other patterns:
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(define (kind-of-form stx )

(syntax-parse stx

[((˜and (˜literal define) ˜!) var:identifier rhs:expr)

’definition]

[((˜and (˜literal define-syntax) ˜!) var:identifier rhs:expr)

’definition]

[e ’expression]))

The task of simultaneously classifying and validating forms is common in Racket

macros that partially expand their sub-forms. Racket’s class macro (Flatt et al.,

2006), for example, performs partial expansion to distinguish method definitions,

field definitions, construction-time expressions, and other declarations.

A ˜delimit-cut form limits the effect of ˜!; only choice points creating within the

enclosing ˜delimit-cut form are discarded. The clauses of a syntax-parse expression

and the patterns of a syntax class body are implicitly wrapped in ˜delimit-cut.

A ˜commit form is a restricted form of cut that allows a pattern to match in only

one way; a subsequent failure cannot backtrack to within the ˜commit form (but

may backtrack to before it). The behavior of ˜commit is described by the following

equation:

(˜commit S ) = (˜delimit-cut (˜and S ˜!))

One use of ˜commit is as an optimization hint; the programmer uses ˜commit to

declare that the pattern should match in at most one way, so there is no need to

keep around choice points that will never be used. Another use of ˜commit is in

multi-pass parsing. For example, in the following pattern:

(˜and S 1 S 2)

any failures accumulated by S 1 before it succeeds are retained during the parsing

of S 2, and if they have high enough progress, they can drown out failures from S 2.

The solution is to commit to the successful parse of S 1 before proceeding to S 2:

(˜and (˜commit S 1) S 2)

An alternative solution is to use a #:with clause or to use ˜late and ˜parse directly.

In that case, failures from the first pattern are not discarded, but they have less

progress than failures from the second pattern.

7 Implementation

The implementation of syntax-parse uses a variant of the two-continuation repre-

sentation of the backtracking monad (Wand & Vaillancourt, 2004), adapted to carry

failure information. Substitutions are usually represented implicitly using Racket’s

lexical environment rather than as an explicit data structure.

We have not yet added traditional pattern-matching optimizations to syntax-

parse, but we plan to do so. Traditional optimizations must be adapted, however,

to accommodate progress tracking. For example, exit optimization (Le Fessant &

Maranget, 2001) may not skip a clause that cannot succeed if the clause may fail
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with greater progress than the exiting clause. For example, consider the following

pattern:

(˜or (˜and (a b) C )

d:identifier)

If the pattern indicated by C is reached, the pattern (a b) has already matched, so the

term cannot possibly match d:identifier . Thus if error information were discounted,

the failure continuation passed to C could skip the second alternative entirely. But

syntax-parse cannot perform that optimization without proving that C fails with

strictly greater progress than d:identifier does. If C is a ˜fail pattern, for example,

the optimization would be unjustified.

Our performance goals to date have been to make syntax-parse fast enough

to be usable, and we have succeeded: Racket programmers have enthusiastically

embraced syntax-parse. For macro programmers, achieving acceptable performance

with syntax-parse consists mainly of avoiding pathological backtracking such as the

balance macro represents (Section 6.7) and occasionally restructuring patterns or

using backtracking control patterns to prune choice points.

Programmers must be aware of the backtracking nature of pattern matching and

the performance characteristics of the syntax classes they use. It is not a goal of

syntax-parse to limit the complexity of pattern matching (to linear or quadratic, for

example). Rather, our goal is to help programmers to write clean specifications that

perform well.

8 Case studies

Racket has included syntax-parse since August 2009. Users of syntax-parse confirm

that syntax-parse makes it easy to write macros for complex syntax. Reformulating

existing macros with syntax-parse can cut parsing code by several factors without

loss in quality in error reporting. The primary benefit, however, is increased clarity

and robustness.

This section presents two case studies illustrating applications of syntax-parse. The

case studies are chosen from a large series to span the spectrum of robustness; the

first case study initially performed almost no error checking, whereas the second case

study checked errors aggressively. Each case study starts with a purpose statement,

followed by an analysis of the difference in behavior and a comparison of the two

pieces of code.

8.1 A notation for loops

The loop macro (Shivers, 2005) allows programmers to express a wide range of

iteration constructs via loop clauses. The loop macro is an ideal case study because

the existing implementation performs almost no error-checking, and its author makes

the following claim:

It is frequently the case with robust, industrial-strength software systems for

error-handling code to dominate the line counts; the loop package is no different.
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Expression expr ::= · · ·
| (loop lclause · · ·)

Loop clause lclause ::= (initial (vars init step? test?) · · ·)
| (for x in lst)

| (for x in-vector vec)

| (incr i from init to final by step)

| bclause

| · · ·
Body clause bclause ::= (when expr)

| (do expr1 · · ·)
| · · ·

Variable(s) vars ::= id | (id · · ·)

Fig. 15. Subset of loop syntax.

Adding the code to provide careful syntax checking and clear error messages is

tedious but straightforward implementation work.

Olin Shivers, 2005

In other words, adding error-checking to the loop macro is expected to double the

size of the code. Using syntax-parse we can do better.

Figure 15 shows a small subset of the loop grammar. The full package provides

over 20 loop clause forms in addition to the ones listed above. Programmers can

also define new loop forms via macros using the package’s toolkit of binding and

control forms.

The original loop macro performs little error checking; in 31 exported macros

there are only 3 syntax validation checks plus a handful of internal sanity checks.

The exported macros consist of the loop macro itself plus 31 macros in continuation-

passing style (Hilsdale & Friedman, 2000) implementing the loop clause forms such

as for and do.

A loop-clause form such as for is implemented by a macro named loop-clause/for;

the name is chosen to reduce contention for short names. The loop macro rewrites

the abbreviated loop-clause names to the long form, except that programmers can

write the long form in parentheses, e.g., ((loop-clause/for) x in xs), to avoid the

rewriting. The code to recognize and rewrite both cases is duplicated, since for

enforces the same protocol for its auxiliaries: in-vector becomes for-clause/in-vector.

In the syntax-parse version, we define a loopkw syntax class that does the rewriting

automatically. The syntax class is parameterized so it can handle both loop and for

clause forms:

(define-syntax-class (loopkw prefix )

#:description "loop clause name or parenthesized long-form loop clause name"

#:attributes (kw kw.macro)

(pattern x:id

#:with kw:cps-macro (format-id #’x "˜a/˜a" prefix #’x ))

(pattern (kw:cps-macro)))
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The #:attributes option explicitly lists the syntax class’s attributes; it is necessary

when re-exporting nested attributes. There are two patterns, one for the abbreviated

identifier and one for the parenthesized long form. The format-id function creates

an identifier using a format string.

Macros written in portable Scheme often use continuation-passing style to support

modular and extensible sub-forms, such as the loop clause syntax, since standard

Scheme—unlike Racket—has no mechanism for eagerly expanding sub-forms. Each

type of loop clause is implemented by a CPS macro that transforms the loop clause

into the loop package’s internal representation, then applies the “continuation”

macro to the result.

Macros in continuation-passing style pose challenges for generating good error

messages because the macro’s syntax differs from the syntax apparent to the user

due to the CPS protocol. When the programmer writes (for x in xs), the loop

macro rewrites it as (loop-clause/for (x in xs) k kargs) to accommodate the loop

macro’s continuation. Errors in the programmer’s use of for should be reported in

terms of the original syntax, not the rewritten syntax. Consequently, we parse the

CPS-level syntax and reconstruct the original term, and then we parse that term.

Twenty of the CPS macros are expressed using define-simple-syntax, a simplified

version of define-syntax. We changed define-simple-syntax to automatically rewrite

these macros’ patterns to perform two-stage parsing; we also changed them to use

syntax-parse internally so that the simple macros could use annotations and the

other features of our system. We transformed the other 11 CPS macros by hand.

Another hazard of CPS macros is inadvertent transfer of control to a macro

that does not use the CPS protocol, resulting in incoherent errors or unexpected

behavior. In Racket, this problem can be prevented by registering CPS macros and

checking their applications. The registration part is easily accomplished by creating

new macro-definition forms; syntax-parse is not necessary for that step. Performing

the checks normally involves calling the syntax-local-value function to examine the

value statically bound to the macro name. This check is nicely encapsulated in a

syntax class; even better, we were able to use the built-in static syntax class to

handle the syntax-local-value lookup and perform the predicate check.

Once the concrete syntax is separated from the CPS-introduced syntax, validating

it is fairly simple. Many of the loop forms take only expressions, so validation

is trivial. Some of the loop forms require identifier annotations or simple side

conditions. A few forms, such as initial, have more structured syntax, so we define

syntax classes for their sub-terms, including a shared syntax class var/vars that

accepts a single variable or a parenthesized group of variables.

The original version of the loop macro consists of 1840 lines of code, not counting

comments and empty lines. The implementation of the loop clause macros takes 387

lines; the rest includes the implementation of its various intermediate languages and

scope inference for loop-bound variables. The syntax-parse version is 1887 lines, an

increase of 47 lines. The increase is due to the new version of define-simple-syntax.

Overall, the increase is 12% of the size of the main body of the macros and merely

2.6% of the entire code, which falls far short of the 100% increase predicted by the

package’s highly experienced author. Aside from the new helper macro, the parsing
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(define-tokens value-tokens (NUM ))

(define-empty-tokens op-tokens (+ − ∗ / LPAREN RPAREN EOF ))

(define calc-lexer ——)

(define calc

(parser

(start exp)

(end EOF )

(tokens value-tokens op-tokens)

(error (λ (tok? name val ) (error ’calc "bad token: ˜s" name)))

(precs (left − +) (left ∗ / ))

(grammar

(exp [(NUM ) $1 ]

[(exp + exp) (+ $1 $3 )]

[(exp − exp) (− $1 $3 )]

[(exp ∗ exp) (∗ $1 $3 )]

[(exp / exp) (/ $1 $3 )]

[(LPAREN exp RPAREN ) $2 ]))))

(calc (calc-lexer "1+3∗5+1")) ;; ⇒ 17

Fig. 16. Example of parser macro.

code shrank, despite much improved error handling, due to simplifications enabled by

syntax-parse.

8.2 An LALR(1) parser generator

The parser macro (Owens et al., 2004) implements a parser generator for LALR(1)

grammars. The macro takes a grammar description and a few configuration options,

and it generates a table-driven parser or a list of parsers if multiple start symbols are

given. Figure 16 shows an example parser, a minimal arithmetic expression parser

that calculates instead of producing an abstract syntax tree.

The parser case study represents macros with aggressive, hand-coded error

reporting. The macro checks both shallow properties as well as context-dependent

constraints.

The parser macro takes a sequence of clauses specifying different aspects of the

parser. Some clauses are mandatory, such as the grammar clause, which contains

the list of productions, the tokens clause, which imports terminal descriptions, and

the start clause, which specifies the start symbol or symbols. Others are optional,

such as the debug clause, which specifies a file name where the table descriptions

should be printed. In all, there are ten clauses, five mandatory and five optional,

and they can occur in any order. Some clauses depend on others. For example, the

productions in the grammar clause depend on the terminals imported by the tokens

clause, and the start symbols clause depends on the non-terminals defined in the

grammar clause.

The original version used a loop and mutable state to recognize clauses; different

clauses were validated and parsed at various points later in the macro’s processing.
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The new version consists of two well-defined passes. The first pass checks for

missing and duplicate clauses using our improved ellipsis patterns and examines

each mandatory clause just enough to extract the information needed to validate

the other clauses in the second pass. For example, the grammar clause is inspected

just enough to determine what non-terminal names are defined, but the productions

are not checked. The second pass uses syntax classes parameterized over the results

gathered from the first pass to perform full validation.

The original version of parser explicitly detects 39 different syntax errors beyond

those caught by MBE-style patterns. Repetition constraints (˜once and ˜optional) on

the different clause variants cover 13 of the original errors plus a few that the original

macro failed to check. Pattern variable annotations cover 11 of the original errors,

including simple checks such as “Debugging filename must be a string” as well

as context-dependent errors such as “Start symbol not defined as a non-terminal.”

The latter kind of error is handled by a syntax class that is parameterized over the

declared non-terminals. Side-condition checks cover eight errors—such as “duplicate

non-terminal definition”— with the use of #:fail-when.

The remaining seven checks performed by the original macro belong to catch-all

clauses that explain what valid syntax looks like for the given clause or sub-form.

Five of the catch-all checks cover specific kinds of sub-forms, such as “Grammar

must be of the form (grammar (non-terminal productions . . . ) . . . ).” In a few cases

the message is outdated; programmers who revised the parser macro failed to update

the error message. In the syntax-parse version each of these sub-forms is represented

as a syntax class, which automatically acts as a local catch-all according to our error

message generation algorithm (Section 5.2); syntax-parse reports the syntax class’s

description rather than reciting the macro’s documentation. (A macro writer could

put the same information in the syntax class description, if they wanted to.) The

final two checks are catch-alls for parser clauses and the parser form itself. These

are implemented using ˜fail and patterns crafted to catch clauses that do not match

other clause forms.

In most cases the error messages are rephrased according to syntax-parse con-

ventions. For example, where the original macro reported “Multiple grammar

declarations,” the new macro uses “too many occurrences of grammar clause”;

and where the original macro reported “End token must be a symbol,” the new

macro produces the terser message “expected declared terminal name.”

The original version devoted 570 lines to parsing and processing, counting the

macro and its auxiliary functions. The line count leaves out separate modules such

as the one that implements the LALR(1) algorithm. In the original code, parsing

and processing are tightly intertwined, and it is impossible to directly count the lines

of code dedicated to each. In the new version, parsing and processing took a total of

378 lines of code, consisting of 124 lines for parsing (25 for the main macro pattern

and 99 for syntax class definitions) and 254 lines for processing.

By reasoning that the lines dedicated to processing should be roughly equivalent

in both versions, we estimate 300 lines for processing in the original version,

leaving 270 for parsing. Thus, the syntax-parse version requires less than half

the number of lines of code for parsing, and the new parsing code consists of
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modular, declarative specifications. The error reporting remains of comparable

quality.

9 Related work

Other backtracking parsers, such as packrat parsers (Ford, 2002), also employ the

technique of tracking and ordering failures. Unlike shift/reduce parsers, which enjoy

the viable-prefix property, packrat parsers cannot immediately recognize when an

input stream becomes nonviable—that is, where the error occurs. Instead, they

maintain a high-water mark, the failure that occurs furthest into the input along all

branches explored so far. While these string parsers can represent progress as the

number of characters or tokens consumed, syntax-parse uses a notion of progress

based on syntax tree traversal.

Our system’s head patterns can be used to define grammars similar to those

supported by traditional token-stream parsers. As it stands, syntax-parse is not a

viable substitute for a traditional parser generator, but the addition of look-ahead

and memoization, particularly to splicing syntax classes, would give it the power

and efficiency of packrat parsers for comparable grammars. Look-ahead is trivial to

add; memoization would be more difficult.

Our side conditions seem distantly related to disambiguation filters (van den Brand

et al., 2002), but the differences are significant. Side conditions can decide whether to

reject productions based on arbitrary Racket computations, whereas disambiguation

filters are specified like grammar productions with an attached filter action. On the

other hand, disambiguation filters support actions other than production rejection:

such as prioritizing one parse tree ahead of another. Side conditions, in contrast,

cannot change syntax-parse’s strict left-to-right exploration of alternatives.

The ordering of parse failures is similar to the work of Despeyroux (1995) on

partial proofs in logic programming. In that work, a set of inference rules is extended

with “recovery” rules that prove any proposition. The partial proofs are ordered so

that use of a recovery rule has less progress than any real rule and uses of different

original rules are incomparable; only the maximal proofs are returned. In contrast to

the order of that system, which is indifferent to the system’s rules and propositions,

our system uses the pragmatics of parsing syntax to define the order.

Another line of research in macro specifications began with static checking of

syntactic structure (Culpepper & Felleisen, 2004) and evolved to encompass binding

information and hygienic expansion (Herman & Wand, 2008). These systems,

however, are incapable of fortifying a broad range of widely used macro idioms, and

they do not address the issues of error feedback or of modular syntax specification

addressed by our system.

10 Conclusion

Our case studies, our other experiences, and reports from other programmers

confirm that syntax-parse makes it easy to write easy-to-understand, robust macros.

Overall syntax-parse macros take less effort to formulate than comparable macros
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in MBE-based systems such as syntax-case and syntax-rules or even plain Lisp-

style macros. Also in contrast to other macro systems, the syntax-parse style

is distinctively declarative, closely resembling grammatical specification with side

conditions. Best of all, these language extensions are translated into implementations

that comprehensively validate all the constraints and that report errors at the proper

level of abstraction. Through our experience with syntax-parse, it has become clear

that it improves on MBE-style macros to the same degree—or perhaps a larger

one—that MBE improved over Lisp-style macros.
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