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The Moments of the Sum-Of-Digits Function
in Number Fields
Bernhard Gittenberger and Jörg M. Thuswaldner

Abstract. We consider the asymptotic behavior of the moments of the sum-of-digits function of canonical
number systems in number fields. Using Delange’s method we obtain the main term and smaller order terms
which contain periodic fluctuations.

1 Introduction

Let νq(n) denote the sum-of-digits function of n in its q-ary representation for some inte-
gers q ≥ 2 and n ≥ 0. In 1975 Delange [2] considered the average of νq(n). He obtained

EN =
1

N

∑
n<N

νq(n) =
q− 1

2
logq N + γ1(logq N)(1.1)

with a continuous, periodic fluctuation γ1 of period 1. In [15] Kirschenhofer computed
the variance of νq(n). His result was

VN =
1

N

∑
n<N

ν2
q (n)−

1

N2

(∑
n<N

νq(n)
)2
=
(q− 1

2

)2
logq N + γ(logq N)

with a continuous fluctuation γ of period 1. The same result was obtained independently
by Kennedy and Cooper [14]. Finally, Grabner, Kirschenhofer, Prodinger and Tichy [8]
established an exact formula for the d-th moment of the binary sum-of-digits function:

1

N

∑
n<N

ν2(n)d =
1

2d
(log2 N)d +

d−1∑
i=0

(log2 N)iγi(log2 N),

where the γi are again continuous fluctuations of period 1. All these results can be extended
to so-called canonical number systems. We recall the definition of these number systems:

Definition 1.1 Let K be a number field and ZK its ring of integers. A pair (b,N) with
b ∈ ZK and N = {0, 1, . . . , |N(b)|− 1} is called canonical number system if any γ ∈ ZK has
a representation of the form

γ = c0 + c1b + · · · + chbh, ch 6= 0 if h 6= 0,
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Moments of Sum-Of-Digits Function 69

where h ∈ N0 and ci ∈ N for i = 0, 1, . . . , h. b is called base and N is called set of digits of
(b,N).

The sum of digits of γ with respect to the base b is defined by

νb(γ) = c0 + c1 + · · · + ch.

Remark 1.1 Of course, the set of digits is uniquely determined by the base of a canonical
number system. The bases for canonical number systems in arbitrary number fields were
characterized by Kovács and Pethő [17]. Kovács [16] proved that a number field K contains
bases of canonical number systems if and only if its ring of integers has a power basis. In
this case K is called canonical number field. The shape of the bases of K is intimately related
to the integral basis of its ring of integers ZK. So they can be determined explicitly only for
number fields with known power integral bases. This has been done in [13], [11], [12] for
bases of canonical number systems in quadratic fields.

Kátai and Szabó [13] showed that the only bases in the ring of Gaussian integers Z[i] are
given by b = −n ± i, where n ∈ N. Recently, Grabner, Kirschenhofer and Prodinger [7]
generalized Delange’s result (1.1) to Gaussian integers. They showed that (b = −n± i)

1

Nπ + O(
√

N)

∑
|z|2<N

νb(z) = 2 logn2+1 N + δ1(logn2+1 N) + O(N−
1
2 log N),(1.2)

where the sum is extended over all Gaussian integers z with |z|2 < N and δ1 is a periodic
fluctuation of period 1. The denominator πN + O(

√
N) denotes the number of Gaussian

integers with this property. In Thuswaldner [19] this result was generalized to canonical
number systems. We want to study the higher moments in the general case. To be able to
state the general results we need some preliminaries (cf. [19]).

We use the natural embedding of a number field K of degree n and signature (s, t),
n = s + 2t , given by

v(γ) =
(
σ1(γ), . . . , σs(γ), σs+1(γ), . . . , σs+t (γ)

)
,

where σ1, . . . , σs are the real and σs+1, . . . , σs+t are the complex isomorphisms that map
K onto its equivalent fields. The elements of the ring of integers ZK form a lattice in this
vector space (cf. for instance [1]). By the above remark we can confine ourselves to num-
ber fields whose rings of integers have power bases {1, α, . . . , αn−1}. Hence, the vectors
v(1), v(α), . . . , v(αn−1) generate the lattice formed by the elements of ZK. The volume of
the fundamental domain of this lattice is now given by

I(α) =
√

det
(
〈v(αi), v(α j)〉; i, j = 0, . . . , n− 1

)
.

In order to generalize the region of summation |z|2 < N in the above mentioned result of
Grabner, Kirschenhofer and Prodinger [7] we consider regions of the shape (cf. [19])

|z1| ≤ l1, . . . , |zs| ≤ ls,

zs+1z̄s+1 ≤ ls+1, . . . zs+t z̄s+t ≤ ls+t ,
(1.3)
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where z1, . . . , zs, zs+1, z̄s+1, . . . , zs+t , z̄s+t are the conjugates of z ∈ K and l1, . . . , ls+t are cer-
tain numbers. We denote the set of all z ∈ K that fulfill (1.3) by

D(l1, . . . , ls; ls+1, . . . , ls+t ).

Remark 1.2 Note, that the closure of the set v
(
D(l1, . . . , ls; ls+1, . . . , ls+t )

)
is given by the

set of all vectors (z1, . . . , zs, zs+1, . . . , zs+t )T with z1, . . . , zs ∈ R and zs+1, . . . , zs+t ∈ C that
fulfill (1.3) (cf. [1]). This set can be interpreted geometrically as a product of circles and
lines.

2 Statement of Results

We are now in the position to state the main result of this paper.

Theorem 2.1 Let K be a number field of degree n and signature (s, t) and ZK its ring of
integers with integral basis {1, α, . . . , αn−1}. Furthermore, let b be the base of a canonical
number system and denote by b1, . . . , bs; bs+1, b̄s+1, . . . , bs+t , b̄s+t the conjugates of b and set
M = |N(b)|. Moreover, choose x such that 1 < x < |b1| (1 < x < |b1|2 if s = 0, respectively)
and

x1(x) = x, xi(x) = aix + ci ; ai =
|bi| − 1

|b1| − 1
, ci =

|b1| − |bi |

|b1| − 1
(i = 2, . . . , s);

xi(x) = aix + ci ; ai =
|bi|2 − 1

|b1| − 1
, ci =

|b1| − |bi |2

|b1| − 1
(i = s + 1, . . . , s + t).

(2.1)

If s = 0, set x1 = x and xi = aix + ci with

ai =
|bi |2 − 1

|b1|2 − 1
and ci =

|b1|2 − |bi |2

|b1|2 − 1
for i = 2, . . . , t.

Furthermore, put

D(b, k, x) = D
(
|b1|

kx1(x), . . . , |bs|
kxs(x); |bs+1|

2kxs+1(x), . . . , |bs+t |
2kxs+t (x)

)
,(2.2)

and N = Mkx1 · · · xs+t . Then we have

Sd(N) = Sd(b, k, x) =
∑

z∈D(b,k,x)

(
νb(z)

)d

=
2sπt

I(α)

(M − 1

2

)d
N logd

M N + N
d−1∑
j=0

log j
M NΦ j(logM N) + O(N

n−1
n logd

M N),

where the sum runs over all algebraic integers in D(b, k, x) and Φ0, . . . ,Φd−1 are continuous
periodic fluctuations of period 1.
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Remark 2.1 Theorem 2.1 has been proved for d = 1 (cf. [19], we used the notation of
this paper in the formulation of Theorem 2.1). The only result on arbitrary moments of the
sum-of-digits function known to us was established by Grabner, Kirschenhofer, Prodinger,
and Tichy [8] for the binary sum-of-digits function. The main difficulty in our proof are
the error terms that occur only in the general case of canonical number systems.

Since the formulation of Theorem 2.1 is rather long and complicated, we list some spe-
cial cases as corollaries. First we treat the imaginary quadratic case, then the case of number
systems in Z with negative integers as bases.

Corollary 2.1 Let D ≥ 1 be squarefree and K = Q(
√
−D) an imaginary quadratic number

field with ring of integers ZK.
If D 6≡ −1(4) and A ∈ N, then we have b = −A ± i

√
D, b̄ = −A ∓ i

√
D, M = N(b),

N = Mkx with 1 ≤ x < M. For the moments of the sum-of-digits function we get

Sd(N) = Sd(b, k, x) =
∑
|z|2<N
z∈ZK

(
νb(z)

)d

=
π
√

D

(M − 1

2

)d
N logd

M N + N
d−1∑
j=0

log j
M NΦ j(logM N) + O(N

1
2 log N).

If D ≡ −1(4) and B ∈ N, B ≡ 1(2), then we have b = −B+i
√

D
2 , b̄ = −B−i

√
D

2 , M =

N(b) = B2+D
4 , N = Mkx with 1 ≤ x < M. For the sum of digits function we get

Sd(N) = Sd(b, k, x) =
∑
|z|2<N
z∈ZK

(
νb(z)

)d

=
2π
√

D

(M − 1

2

)d
N logd

M N + N
d−1∑
j=0

log j
M NΦ j(logM N) + O(N

1
2 log N).

Proof The result follows immediately from Theorem 2.1 by observing, that the indicated
bases b are exactly the admissible bases of imaginary quadratic number fields (cf. [12]). We
note, that the integral basis has the shape {1, i

√
D} in the first case and in the second case

{1, 1+i
√

D
2 }, respectively.

Remark 2.2 Note that this corollary also covers the case of number systems in Gaussian
integers. Hence, it is a generalization of (1.2) to higher moments.

Corollary 2.2 Let b ∈ Z and b ≤ −2. then we get for

Sd(N) =
∑
|n|<N

(
νb(n)

)d
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the exact formula

S(N) = 2
(b− 1

2

)d
+

d−1∑
j=0

N log j
|b|NΦ j

(1

2
log|b| N

)
.

Proof This formula is exact, because the fundamental region coincides with the line of
integration in this case. Hence, the substitution of the sum by an integral in (3.3) in the
proof of the theorem causes an additional fluctuation instead of the error term.

3 Proof of the Theorem

In order to prove the theorem we will use Delange’s method (see [2]) in a form as used in
[7] and [19].

The preparations at the beginning of the proof are exactly the same as in [19]. We
therefore refer to this paper for details. Let

F =
{

z | z =
∞∑
`=1

ε`(z)b−`
}

where εi(z) is the i-th digit of z in its fractional part. As in Kátai [9, Theorem 2] one can
prove that F is a compact set and the embedding of F to Rn is also compact (cf. [10]). The
fractal geometry of F for complex bases has been extensively studied by Gilbert (see [3],
[4], [5], [6]). Since the length of a b-adic representation is uniformly bounded (see [18]),
we set µ = maxz

(
Lb(z)

)
, where the maximum is taken over all z ∈ ZK with (z + F) ∩

D(|b1|, . . . , |bs|; |bs+1|2, . . . , |bs+t |2) 6= ∅ and Lb(z) the length of the digit expansion of z
with respect to b. Then we define the sets Fk by

Fk =
{

z | z =
k∑

`=−µ

ε`(z)b−`
}
.(3.1)

One can easily see, that all elements of D(|b1|, . . . , |bs|; |bs+1|2, . . . , |bs+t |2) with at most k
digits in their fractional part are contained in Fk by the definition of µ. Now Sd(b, k, x) can
be written as

Sd(b, k, x) =
k∑

`1,...,`d=−µ

∑
z∈D(b,0,x)

z∈Fk

εl1 (z) · · · εld (z).(3.2)

For brevity let us write z = (z1, . . . zs, zs+1, z̄s+1, . . . , zs+t , z̄s+t )T throughout the proof.
Then by applying Delange’s approach the last sum may be represented by an integral and
we get

Sd(b, k, x)(N) =
Mk

I(α)

k∑
`1,...,`d=−µ

∫
v(D(b,0,x))

ε`1
(
v−1(z)

)
· · · ε`d

(
v−1(z)

)
dλd(z)

+ O(kdM
k(n−1)

n ),

(3.3)
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where λd denotes the d-dimensional Lebesgue measure. Observe that the functions
ε`
(
v−1(z)

)
(` ≤ k) are constant on each piece of the tiling of Rn induced by the trans-

lates of v
(
(−n ± i)−kF

)
which follows immediately from the definition of F. Hence the

only difference between sum and integral is caused by the pieces which intersect the bound-

ary of v
(
D(b, 0, x)

)
. Since the product in the integrand is bounded by (M − 1)d and we

have kd summands, the order of the error is kdM
k(n−1)

n . The factor Mk

I(α) is due to the volume
of the fundamental domain of the lattice induced by the elements of Fk.

In order to prove the theorem, we have to split the integral in a way that will enable us
to separate the terms contributing to the periodic fluctuations from the nonperiodic ones.
As the mean value of ε` within the integration domain (with the exception of those pieces
which intersect the boundary) is M−1

2 we set L`(z) = ε`
(
v−1(z)

)
− M−1

2 and write the above
integral as

Sd(b, k, x) =
Mk

I(α)

k∑
`1,...,`d=−µ

∫
v(D(b,0,x))

d∏
i=1

(
L`i (z) +

M − 1

2

)
dλd(z) + O(kdM

k(n−1)
n )

=
Mk

I(α)

k∑
`1,...,`d=−µ

∫
v(D(b,0,x))

d∑
i=0

(M − 1

2

)d−i
τi
(
L`1 (z), . . . , L`d (z)

)
dλd(z)

+ O(kdM
k(n−1)

n ),

where τi denotes the i-th elementary symmetric function. Interchanging summations and
integrals and keeping in mind that the integrals over L j1 · · · L ji only depend on the number
of factors and how many of the numbers `1, . . . , `d are pairwise equal yields

Sd(b, k, x)

=
Mk

I(α)

(M − 1

2

)d
(k + µ + 1)d

∫
v(D(b,0,x))

1 dλd(z)

+
Mk

I(α)

d∑
i=1

(M − 1

2

)d−i
(

d

i

) k∑
`1,...,`d=−µ

∫
v(D(b,0,x))

L`1 · · · L`i dλd(z)

+ O(kdM
k(n−1)

n )

=
Mk

I(α)
2sπt x1 · · · xs+t

(M − 1

2

)d
(k + µ + 1)d

+
Mk

I(α)

d∑
i=1

(M − 1

2

)d−i
(

d

i

)
(k + µ + 1)d−i

k∑
`1,...,`i=−µ

∫
v(D(b,0,x))

L`1 · · · L`i dλd(z)

+ O(kdM
k(n−1)

n )

(3.4)

Now let us examine the integrals. Note that the integrand in (3.4) has the shape Lm1
`1
· · · L

m j

` j
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with suitably chosen j,m1, . . . ,m j ∈ N and thus the inner sum can be rewritten as

i∑
j=1

∑
m1+···+m j=i

k∑
`1,...,` j=−µ

∫
v(D(b,0,x))

Lm1
`1
· · · L

m j

` j
dλd(z),(3.5)

where the inner sum runs only over all j-tuples of pairwise non-equal numbers `1, . . . , ` j .
Let Q(m) be the expectation of Lm

` (note that Q(m) does not depend on ` and is zero for
m ≡ 1(2)). Then the integral∫

v(ζ+b−ηF)

(
Lm1
`1
− Q(m1)

)
· · ·
(
L

m j

` j
− Q(m j)

)
dλd(z) = 0(3.6)

for η = maxr `r − 1 and for all ζ ∈ Fη , since the mean of the term with index η + 1 is zero
while all factors are constant. Hence,∫

v(D(b,0,x))

(
Lm1
`1
− Q(m1)

)
· · ·
(
L

m j

` j
− Q(m j)

)
dλd(z) = O(M−

maxr `r
n ),(3.7)

because due to (3.6) the only contribution to the value of the integral comes from the

fundamental regions which intersect the boundary of v
(
D(b, 0, x)

)
.

Now we split the integrals in (3.5) in order to get a representation in terms of the
form (3.7). One step of this splitting procedure is

k∑
`1,...,` j=−µ

∫
v(D(b,0,x))

Lm1
`1
· · · L

m j

` j
dλd(z)

=
k∑

`1,...,` j=−µ

∫
v(D(b,0,x))

(
Lm1
`1
− Q(m1)

)
· · · L

m j

` j
dλd(z)

+
k∑

`1,...,` j=−µ

Q(m1)

∫
v(D(b,0,x))

Lm2
`2
· · · L

m j

` j
dλd(z).

Continuing in this way yields expressions of the form

k∑
`1,...,` j=−µ

Q(m1) · · ·Q(ma)

∫
v(D(b,0,x))

(
Lma+1
`a+1
− Q(ma+1)

)
· · ·
(
L

m j

` j
− Q(m j)

)
dλd(z),

with 1 ≤ a ≤ j ≤ i (Note that for reasons of the symmetry inherent in the summation also
the first summand splits into terms of the above form). These expressions are zero if any of
the numbers m1, . . . ,ma is odd. So we have only to consider those terms where m1, . . . ,ma

are all even and, in particular, not less than 2. Since m1 + · · · + ma ≤ i we conclude that
a ≤ i

2 . Note that the summands only depend on `a+1, . . . , ` j and therefore we obtain

(µ + k + 1)aQ(m1) · · ·Q(ma)

×
k∑

`a+1,...,` j=−µ

∫
v(D(b,0,x))

(
Lma+1
`a+1
− Q(ma+1)

)
· · ·
(
L

m j

` j
− Q(m j)

)
dλd(z).

(3.8)
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If we insert now (3.8) into (3.4), the corresponding term in (3.4) turns into

(3.9)

CMk(µ + k + 1)a+d−i
k∑

`a+1,...,` j=−µ

∫
v(D(b,0,x))

(
Lma+1
`a+1
− Q(ma+1)

)
· · ·
(

L
m j

` j
− Q(m j)

)
dλd(z),

where a + d − i ≤ d − ([ i
2 ] + 1) < d ([ζ] denotes the largest integer not greater than ζ)

and C is a constant that is explicitly computable. Now we show that the integral in this
expression is essentially a periodic fluctuation. By (3.7), replacing the sum in (3.9) by

Ψ(x) =
∞∑

`a+1,...,` j=−µ

∫
v(D(b,0,x))

(
Lma+1
`a+1
− Q(ma+1)

)
· · ·
(
L

m j

` j
− Q(m j)

)
dλd(z).

causes an error of order O(kdM−
k
n ). Following [19] set y = x1(x) · · · xs+t (x) = M{logM N}

({w} denotes the fractional part of w, i.e., {w} = w− [w]). Then y = P(x) is a polynomial
consisting of positive and strictly monotonic factors. Hence P(x) is positive and strictly
monotonic in [1, b1]. So the inverse function x = P−1(y) exists. By the definition of y we
have

P−1(M{logM N}) = x.

Note that logM N = [logM N] + {logM N}, and k = [logM N], and define a new function

δ(w) = M{−w}Ψ
(
P−1(M{w})

)
which is obviously a continuous periodic function with period 1. Applying

(µ + k + 1)a+d−i = (logM N − {logM N} + µ + 1)a+d+1

=

a+d−i∑
r=0

(
a + d− i

r

)
logr

M N(µ + 1− {logM N})a+d−i−r
(3.10)

on (3.9) yields

CN
a+d−i∑

r=0

(
a + d− i

r

)
logr

M N(µ + 1− {logM N})a+d−i−rδ(logM N) + O(N−
n−1

n logd
M N)

= N
a+d−i∑

r=0

logr
M Nδr(logM N) + O(N−

n−1
n logd

M),

where δr(x) = C
(a+d−i

r

)
(µ+1−{x})a+d−i−rδ(x) (r = 0, . . . , a+d−i). Noting that there are

only finitely many summands of this kind we conclude that the contribution to Sd(b, k, x),
coming from the terms in the second line of (3.4) has the form

N
d−1∑
j=0

log j
M NΦ̃ j(logM N),
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where the Φ̃ j are finite sums of periodic fluctuations of period 1 and hence periodic fluc-
tuations of period 1, too. It remains the investigation of the term corresponding to i = 0
in (3.4). Applying again (3.10) we get

Mk

I(α)
2sπt x1 · · · xx+t

(M − 1

2

)d
(k + µ + 1)d

=
N

I(α)
2sπt
(M − 1

2

)d
logd

M N + N
d−1∑
j=0

log j
M NΦ̄ j(logM N)

where Φ̄ j are periodic fluctuations of period 1. Setting Φ j(x) = Φ̃ j(x) + Φ̄ j(x) for j =
0, . . . , d− 1 we derive

Sd(N) = Sd(b, k, x) =
∑
|z|2<N
z∈ZK

(
νb(z)

)d

=
2sπt

I(α)

(
M − 1

2

)d

N logd
M N +

d−1∑
j=0

N log j
M NΦ j(logM N) + O(N

n−1
n logd

M N)

and the theorem is proved.
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[11] I. Kátai and B. Kovács, Kanonische Zahlensysteme in der Theorie der Quadratischen Zahlen. Acta Sci. Math.

(Szeged) 42(1980), 99–107.
[12] , Canonical number systems in imaginary quadratic fields. Acta Math. Hungar. 37(1981), 159–164.
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