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Abstract. We show that the existence of a finitely summable unbounded Fredholm
module (h, D) on a C* algebra A implies the existence of a trace state on A and
that no such module exists on the C* algebra C*d(F) of a non amenable discrete
group. Both for the needs of non commutative differential geometry and of analysis
in infinite dimension we are led to the better notion of the 0- summable Fredholm
module.

1. Introduction
In [13] Henry Dye proved that any two hyperfinite measure-preserving actions of
countable groups are orbit equivalent, and moreover that groups of polynomial
growth only act in a hyperfinite manner.

By a spectacular result of M. Gromov [15] groups of polynomial growth are
almost nilpotent. Moreover by [4,23,5] any action of a solvable group or of an
arbitrary amenable group is hyperfinite. This settled the problem of determining
which groups act in a hyperfinite manner: the amenable ones, but it also showed
that as far as measure theory or von Neumann algebras are concerned no distinction
occurs between the nilpotent (polynomial growth) case and the solvable (exponential
growth) case.

In this paper we shall work at the C* algebra level, i.e. we are dealing with non
commutative analogues of compact spaces, such as the duals of discrete groups.
We shall develop for such spaces the analogue of the notion of metric on a compact
space, examples include ordinary compact Riemannian manifolds as well as the
duals of discrete groups F on which a word length is specified. We then show that
the existence of a metric of polynomial growth implies strong results on the C*
algebra, such as the existence of a non trivial positive trace and the hyperfiniteness
of the von Neumann algebra generated by certain representations. Since the
definition of a metric is closely related to the unbounded Fredholm modules of [1,7]
we shall apply the above results to rule out the existence of finitely summable
unbounded Fredholm modules on the group C* algebras C*(F) for non amenable
discrete groups. We also show by an example that groups with property T may
have non trivial ordinary (bounded) finitely summable Fredholm modules, but we
do not know what happens for lattices in semi-simple Lie groups of rank > 2. For
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208 A. Connes

commutative C* algebras C{X), where X is a compact space, the polynomial
growth condition is related to the finiteness of the dimension of X. We check using
[17] that in the rigorous Wess Zumino model of A. Jaffe and his collaborators [17],
the super charge operator yields an unbounded Fredholm module for the commuta-
tive C* algebras of functions of time 0 boson fields. This module is not finitely
summable due to the infinite dimension of X.

Thus we see that both because of the highly non commutative algebras which
occur say in group theory, and because of the needs of infinite dimensional analysis,
it is necessary to weaken the condition of finite summability used in [7]. This is
what we do at the end of this paper, we show that the unbounded operator D in
all the above cases satisfies the weaker assumption of 6-summability: exp - tD2 is
of trace class for any t > 0. The next step is to extend the construction of the character
of [7] to this new class but we shall not deal with this in the present paper.

2. The non commutative analogue of a metric on a compact space
Let A be a unital C* algebra. Let us recall (cf. [1,7]) that an unbounded Fredholm
module ($f, D) over A is given by:

(1) A Hilbert space "X which is a left A-module (i.e. a * representation IT of A
in $f is given).

(2) An unbounded self adjoint operator D in $T such that:
(a) {a e A; [D, a] is bounded} is norm dense in A.
(j8) (1 + D2)"1 is a compact operator.

Condition (2)(/3) means that D has compact resolvent. The set of a e A satisfying
(2)(a) is always a * subalgebra M of A.

The prototype of such an unbounded Fredholm module is the following: A is
the C* algebra of continuous complex valued functions on a compact manifold M,
which we assume for convenience to be spin, $f is the Hilbert space of L2 spinors
on M with A acting by multiplication operators. The operator D is the Dirac
operator.

The key observation from which the notion of metric will be extended to the non
commutative situation is the following:

PROPOSITION 1. Let M be a compact, spin, Riemannian manifold, A=C(M),
9€= L2(M, S) and D be as above. Then the geodesic distance d(P,Q) between two
points P and Q of M is given by:

If we think of P and Q as characters p, q of A then the above formula reads:

d(p, q) = Sup {\p(a) - q(a)\; a e A, \\[D, a]\\ < 1}.

Proof. A continuous function a e C(M) has a bounded commutator with the Dirac
operator iff it is a Lipchitz function on M, and moreover [D,a] is given by the
equality:

([D, aW(P) = y((Va)p )i(P) VP€ M, Vf e L2(M, S),

where Va is the gradient of a and y(X), X e TPM is the Clifford multiplication by
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X, y(X)e End (5P). Here the section Va belongs to V°(M, TM) and:

= EssSup||(Va)p|

Thus \\[D, a]| | is equal to the Lipchitz norm of a for the geodesic distance:

\\a\\L = Sup\(a(P)-a(Q))\/d(P,Q).

Thus

and the converse inequality is immediate since the function a

a(R) = d(R,Q) satisfies | | a | | t = l , \a(P)-a(Q)\ = d(P,Q). •

Remark 2. If we use the signature operator instead of the Dirac operator, Proposition
1 still works and applies now to arbitrary L°° Riemannian metrics on Lipchitz
manifolds, using the results of [27].

The next proposition shows that an unbounded Fredholm module (9€, D) over
a commutative C* algebra A = C{X) defines an ordinary metric on the spectrum
X of A. Note that its proof does not use condition 2/3 above.

PROPOSITION 3. Let A = C{X) be a commutative C* algebra and (3€, D) an
unbounded Fredholm module over A. For any P, QeX = Sp(A) let

d(P, Q) = Sup {|a(P)-a(Q)|; a e A, ||[D,a]||sl}.

(1) One has d(P, R)<d(P, Q) + d(Q, R), d(P, Q) = d(Q, P) for any P,Q,Re X,
(2) d(P,Q)=0=>P=Q,
(3) If{a;\\[D, a]||<l}/Cl is bounded, then d(P,Q)«x> for any P, QeX.

Proof. (1) is obvious. (2) follows from the density in A of the subspace {a e A; [D, a]

bounded}. (3) is obvious. •

The above proposition has an immediate generalisation to the non commutative
case:

PROPOSITION 4. Let A be a C* algebra and (dK, D) an unbounded Fredholm module
over A such that: (*){a e A; ||[D, a] | | < 1}/C1 is bounded. Then the following defines
a metric on the state space of A:

d{<p, 4>) = Sup {\<p(a) - <Ka)|; a e A, \\[D, a]\\ < 1}.

The proof is the same as for Proposition 3.
We shall now pass to the case of group C* algebras A = C%d(T) where F is a

discrete group. Here A is the C* algebra generated by the left regular representation
A of T in the Hilbert space X = 12(T). We let L be a length function on T ([15]),
i.e. a map L: F->R+ such that:
(1) L(gh)<L(g) + L(h) Vg,heT,
(2) Lig-^^Lig) VgeT,
(3) L(l) = 0.

The word length with respect to a system of generators is the prototype of such
a length function.
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LEMMA 5. Let T be a discrete group, and L a length function on F. Let D be the
operator of multiplication by L on 12(T) = 3€
(1) (3€, D) satisfies conditions (1) and (2)(a).
(2) IfL( g)-» oo wheng-* oo in T then (2)(/3) is satisfied so that ($f, D) is anunbounded

Fredholm module over A = C*d(F).
(3) For any geF one has \\[D, A(g)]|| = L(g).

Proof. (1) Condition (1) is obvious; we just need to show that Cr, the group ring
of T is contained in {aeA; \\[D, a]\\ <oo}. Thus it is enough to prove (3). The
conjugate \(g)D\(g)~l is given by the multiplication by L8, Lg(fc) = L(g-1fc) and
the conclusion follows from the equality:

Sup\L(g~1k)-L(k)\ =

Finally (2) is obvious. •

An unbounded Fredholm module (5if, D) over A is finitely summable (cf. [7]
p. 68) iff for some p < oo one has:

Trace ((l + D2)~p/2)< oo.

For instance the Dirac (or signature) operator on a Riemannian spin (resp.
oriented) manifold yields as in Proposition 1 a Fredholm module over A- C(M)
which is finitely summable (any p> Dim (M) works).

PROPOSITION 6. Let T be a finitely generated discrete group, L, #f and D = DL as in
Lemma 5.
(1) ifT has polynomial growth then taking for L the word length the module (%, DL)

is finitely summable.
(2) If (3€, DL) is finitely summable for some L then F has polynomial growth.

Proof.
(1) Let Lo be the word length and Bk = {g e F, L0(g)s k}. There exists by hypothesis

constants c, r such that the cardinality \Bk | =£ c(l + fc)r. It follows that

Trace ((l + D 2 r p / 2 ) = X(l + L2(g)rp / 2<oo for any p > r+1.

(2) There exists a constant A such that L<AL0, thus the finiteness of
1(1 + L2(g))-p/2 implies that of

Thus there exists c<oo with \Bk \ < c(l + k)p+l. D

The conclusion 6(2) is rather weak since it only takes care of Fredholm modules
of the form (3€,DL), thus it does not exclude the existence of finitely summable
unbounded Fredholm modules on A = C«d(F), when F does not have polynomial
growth. We shall reach this conclusion (Theorem 19 below) for certain groups, only
later in section V.

Remark 7.
(1) Let (5if, D) be an unbounded Fredholm module over a C* algebra A and let

°U = {u unitary in A; [D, u] is bounded}. Then % is a norm dense subgroup of
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the unitary group of A and the following defines a length function on °U:

(2) Let X be a finite simplicial complex. Using an embedding of X inUN and a
Lipschitz retraction of a neighborhood V (of X in RN) on X, together with the
construction of Proposition 1 for the double of V one gets an unbounded finitely
summable Fredholm module (3€, D) on A = C(X) verifying condition (3) of
Proposition 3.

3. Existence of a trace on C* algebras with a finitely summable unbounded
Fredholm module
Our aim in this section is to obtain the following important necessary condition on
a C* algebra A for the existence of a finitely summable unbounded Fredholm
module (%, D) on A:

THEOREM 8. Let A be a unital C* algebra and (S€, D) an unbounded Fredholm
module over A such that for some p <oo (1 + D2)~p/2 is of trace class. Then there exists
a positive trace T on A such that T(1) = 1.

Proof. We shall construct a family T(e) of elements of ^(9€) such that T(e)>0,
Trace T(e) = 1 and that for any a e A one has \\[a, T(e)]||i -* 0 when e -* 0. Let then
(pe be the state on i?(Sff) given by <pe(x) = Trace (T(e)x) Vxe &(%). For any weak
limit <p of the <pe's, the C* algebra A is in the centralizer of the (non normal) state
(p so that <fl A is a tracial state. Thus we just need to prove the following lemma:

LEMMA 9. Let k>p/2 be an integer and T(e) = A(e)/TTace(A(e)),A(e) =
(1 + E D 2 ) - \ Then T(e)e2\%),T(e)>0,TTiux(T(e)) = l,\\[a,T(e)1\\1-*0 when
e •* 0, for any aeA.

Proof. The first assertions are clear, so we have to estimate ||[a, r(e)] | | , . We may
assume that a e si = {a e A, [D, a] bounded}. One has

[a, A(e)] = l ' (1 + eD2y'[a, (1 + eD2)-' ](1 + eD2yk+l+\ (1)
/=o

[a, (1 + eD2)"1 ] = (1 + eD2yleD[D, a](l + eD2)"1

1[D,a]Ne, (2)

where Ne = (1 + eD2y1el/2D is bounded uniformly: \\Ne || < \. Thus, since [D, a]
is bounded, we see that [a, T(e)] is a finite sum of terms of the form:

where Sup \\PC \\ < C, and r+s = k, r > 0, s > 0. We just have to check that

||(1 + eD2yrPe(l + eD2ys ||, < C Trace ((l + eD2)"").

For r = 0 or s = 0 this is clear. Otherwise one has:

||(1 + eD2r |U/ r = (Trace (l + eD2yk)r/k,

Thus the result follows from the Holder inequality. •
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212 A. Connes

Remark 10.
(a) With the above notations, if the C* algebra A has a unique tracial state r

(cf. [3] for examples), then the restrictions i(fe = (pe/A of <pe (<pe(x) =
Trace (T(e)x) Vx e if(S€)) converge weakly to T when e -» 0.

(b) Lemma 9 shows that under the hypothesis of Theorem 8 there exists a (non
normal) state <p on i?(2if) whose centralizer contains A.

As a corollary of Theorem 8, we see that on a C* algebra without traces, such
as the Cuntz algebra €„, one cannot have finitely summable unbounded Fredholm
modules. The theorem is however inefficient for group C* algebras A = C%d(T)
since all such C* algebras have a (faithful) trace. We shall improve it in the next
sections.

4. Hyperfiniteness of the weak closure of a C* algebra in a finitely
summable unbounded Fredholm module

Let A be a unital C* algebra and (X, D) a finitely summable unbounded Fredholm
module. Let k be such that

(\ + D2yk<z%1 and T(e) = (l + eD2)"VTrace {{\ + eD2)'k)

as in § 3.

THEOREM 11. Assume that there exists a faithful normal state T on A", the weak
closure of A in £(9€), such that:

(*) Trace (T(e)a)^ r(a) VaeA".

Then A" is a hyperfinite, finite von Neumann algebra.

Proof. By Lemma 9 the centralizer of r contains A and hence A". Let <p be any
weak limit of the states <pe =Tr (T(e).) on i?(2if). In general <p is not normal, but
our hypothesis implies that (p(a) = r(a)Vae A". It follows that the centraliser of <p
contains A". Indeed, let z e A", then for any e > 0 there exists ye A such that
T((y-z)*(y-z))<e2 (and ||y||=£ ||z||) ([12]) thus in the GNS construction of the
pair (£(9€),<p) one has:

||0>-z)U<e,||(/'-z*)U<e.
It follows that for any xe^(SX) one has:

Thus A"a <£(%€)v and the state q> is a hypertrace ([8]) on the finite von Neumann
algebra A" so that by [8], A" is hyperfinite. •

Before we proceed and use this theorem to rule out the existence of finitely
summable unbounded Fredholm modules on certain group C* algebras we shall
show that the assumption of Theorem 11 is verified for Riemannian manifolds.

PROPOSITION 12. Let M be a compact, spin, Riemannian manifold, A = C(M) and
3€, D as in Proposition 1. Then for any aeA" = L°°(M), and k>\ dim M, one has:

Lim Trace (7(e)a) = ( | adv J /Vol (M),
e-0 \JM II
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where T(s) = (\ + eD2)~k/Trace ((l + eD2)~k) and dv is the Riemannian volume
element.

Proof. Let n =dim M. Replacing e by e2 we see that sD and hence (l + e2D2)~k

are asymptotic differential operators with symbols respectively y(g) and (1 + | |£ | | 2)-\
It follows that Trace ((1 + e2D2)'k) is of the order of e~" when e -» 0 and that the
diagonal values of the kernel ke(x, y) defined by (1 + e2D2)~k are measures Ne =/£ dv
where

(l + | |f | |-kdf), (cf. [14]).

As another example we shall check:

PROPOSITION 13. Let 0e[0,1] and Ae the irrational rotation C* algebra 5,52 the
natural derivations o/Ae([6,9]) and d = 8i + i52, D the operator [a°» o] acting in the
Hilbert space 3€= L2(Ae, T)@L2{A6, T) where T is the canonical trace. Then for any
k>\ one has:

Trace (T(e)a) = T(a) VaeA2,Ve>0.

Proof. The trace r on Ae is the unique state invariant under the action of the 2-torus
T2 generated by 5, and S2. Since this action lifts to Iff and commutes with D each
state of the form:

<p(a) = Trace (T(e)a)

is invariant under the action of T2 and hence equal to T. •

5. Group C* algebras with no absolutely continuous, finitely summable,
unbounded Fredholm module
We let T be a tracial state on a unital C* algebra A and L2(A, T) the comple-
tion of A for the inner product (x, y) = r(xy*). It is in a natural manner a bimodule
over A

LEMMA 14. The following two conditions on A, T are equivalent:
(1) For any e > 0, there exists elements ait... ,an of A with:

£6 L2, U\\ = l H a j f - ^ || =£ 1 Y/= 1 , . . . , n=>||£-<£ 1>1|| < e.

(2) For any a > 0, there exists elements a , , . . . ,aneA such that for any state <p on
A absolutely continuous with respect to T one has:

lite,, <p]|| < 1 Vj = 1 , . . . , n=>||? — 1-H < a.

/Voo/ (1)=>(2) Any state on A which is absolutely continuous with respect to T is
represented uniquely in the form <p(a) = (a£ £) for a unit vector £ = <p1/2 e L2(A, T) +

(cf. [12]), moreover by the Powers Stormer inequality ([24]) one has

Let the a, of (1) be of the form ku} where the w/s are unitaries, then for any j ,

||[A2«,,<P]||<

and we get the conclusion.
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Follows by a similar argument. •
Example 15. Let F be the free group on 2 generators, then on the reduced C* algebra
A = C*ed(F), the canonical trace T satisfies the equivalent conditions of Lemma 14
(cf. [26]).

We refer to [3] for other examples of groups F for which (C*d(F), T) satisfies
the equivalent conditions of Lemma 14, as well as for a number of equivalent
conditions on the group F.

THEOREM 16. Let A, r satisfy the equivalent conditions of Lemma 14, with
dim L2(A, T) = +oo. Let X be the left module L2(A, r) or any quasi-equivalent left
module. Then there exists no unbounded self adjoint operator D in $? such that (1)
(1 + D2)'1 e 5BP{K) for some finite p, (2) {a e A, [D, a] bounded} is dense in A.

Proof. Assuming the existence of D, let T(e) e &x{fK) be as in Lemma 9. Let ifie be
the restriction to A of <pe = Trace (T(e)). Given a , , . . . , an e A there exists (Lemma
9) 8 > 0 such that

Thus by 14(2), we get ||e/»e - T | | - » 0 when e->0. Since both t//E and T are continuous
for the ultraweak topology in 3€ ([12]) it follows that \\<pJA"- TA\\ -> 0 when e -> 0,
where TA» is the continuous extension of T to A". Thus one has:

Trace (T(e)a)-> TA.(a) VaeA"

and Theorem 11 shows tht A" is hyperfinite (and finite). Now since L2(A,r) is
infinite dimensional, there exists nontrivial central sequences

( f . U , €n 6 L\A, r), ||£,|| = 1, ||a£,-£,a||-»0

when n ^ oo, (£„, 1) = 0 Vn € IU Thus we contradict 14(1). •

THEOREM 17. Lef F be a discrete group which contains the free group on 2 generators.
Let 'Mbe any representation o/C*(F), absolutely continuous with respect to the canonical
trace on C*(F). Then there exists no selfadjoint operator D in S^ such that (3€, D) is
a finitely summable unbounded Fredholm module over A = C*d(F).

Proof. Let F2 c F be a copy of the free group on 2 generators, by hypothesis the
representation of F in $f is subequivalent to the infinite direct sum of copies of the
left regular representation of F in /2(F). Thus its restriction to F2 is sub-
equivalent to an infinite direct sum of copies of the regular representation of F2.
Thus, as a module over C*ed(F2), S€ is quasi equivalent to the regular representation.
Now let D in "M be such that (1) (1 + D2)"P is of trace class for some finite p, (2)
{a e A = C*d(F): [D, a] bounded} is dense in A. We cannot replace A by C*.d(F2)
since (2) does not necessarily hold for the latter. Let T(e), <pe, \iie be as in Theorem
16, with T the canonical trace on A. By Example 15 and Lemma 9, we get:

| | ^ , / B " - T / B " | | - » 0 whene^-0

where B = Cfed(F2)<=- A and B" is its weak closure in %(. Thus again any weak limit
<p of <pe on J£(9€) defines a hypertrace on B" which is a contradiction since B" is
not hyperfinite [26]. D
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Remark 18. The above theorem does not exclude the existence of finitely summable
bounded Fredholm modules, (S€, F) over A = C*d(F) with F as above. In fact an
example is given in [7] p. 55 of such a module, absolutely continuous with respect
to the canonical trace, and defining a non trivial K homology class.

6. Group C* algebras with no finitely summable unbounded Fredholm module
Let T be a discrete group. Let us recall that F has property T of Kazhdan [20] iff
the following holds:

For any e > 0, there exists S > 0 and elements gt,..., gn of F such that for any
representation v of F in a Hilbert space H:

{eH, U|| = 1, | |ir(g,)f-f || s S Vi = 1 , . . . , n=*M-P(€)\\ s «.
where P is the projection on H0 = {^eH; ir(g)g = f Vg 6 F}.

THEOREM 19. Let F be an infinite discrete group with property T, and A= C*d(F)
be the reduced group C* algebra of F. Then there exists no finitely summable unbounded
Fredholm module over A.

Proof. Let ($?, D) be a finitely summable unbounded Fredholm module over A, and
T(e)ei?1(^') be as in Lemma 9. Let H = X1{'X) be the Hilbert space of Hilbert
Schmidt operators in Sif and let £(e)= T(e)I/2ei?2(?O = H. Let Fact in H as follows:

ir(g)£ = g&-' VgeF, V|eif2(5if).

The Power-Stormer inequality [24] combined with Lemma 9, shows that when e -> 0
one has:

Since ||£(e)|| = 1, property T shows that the representation n of F in H contains
the trivial representation. Now one has H = W®% and TT is equivalent to p®p
where p is the original representation of F in "3C. But since p defines a representation
of the reduced C* algebra C*d(F), it is weakly contained in the left regular
representation A of F in /2(F). Thus, so is p®p and it follows from the above
discussion, that the trivial representation of F is weakly contained in the regular
one, which contradicts the non amenability of F.t •

The next proposition shows however the existence of finitely summable bounded
Fredholm modules with non trivial K homology class on the group C* algebra
C*d(F) of certain groups with property T. We let G be a real semi simple Lie group
of rank one, and F a discrete subgroup of G. We let S be the spinor bundle on the
symmetric space H = G/K,K maximal compact subgroup of G, and %= 12(C, S)
be the Hilbert space of I2 sections of S on a fixed orbit of F. The group F acts
unitarily in #f and this action endows 2!f with a left module structure on A = C*d(F).
Finally (cf. [22,18,7]) we let Fe&(9€) be the operator:

VxeC,

t As pointed out by G. Skandalis this proof applies to non amenable groups.
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where y(X) is Clifford multiplication by X and where (x,0)/||(x,0)|| is the unit
tangent vector at x s H whose geodesic contains 0.

PROPOSITION 20.

(1) The pair (%?, F) is a finitely summable Fredholm module over A = C*d(O-
(2) If G = Sp(n, 1) and F has finite covolume then F has property T.
(3) If F is cocompact, the class of (%C, F) in K*(A) is not trivial

Proof.
(1) For any g e F the operator gFg~* is given by:

thus T = gFg~l - F is a diagonal operator in 12(C, S), and the norm of Tx (with
(T£)(x) = T^(x) V£e I2) is of the order of exp-<i(0, x) (cf. [7]). As F is discrete
the number N(p) of elements y e € with d(0, y)^p is bounded by a constant
multiple of the volume of the ball of radius p in H, which in turn is of the order
of exp (kp) for some finite k. Thus:

X||Tx||"<oo V/>>fc,

and (X, F) is finitely summable.
(2) cf. [21].
(3) Let zeK*(C*d(F)) be the K theory class constructed from the fundamental

class of V = T\H in K homology by the map p. of [18,2]. The results of [18]
show that the index pairing: K%(A) x K*(A) -» Z evaluated on zx(SV, F) gives
the same result as the pairing: K^i V) x K*( V) -» Z evaluated on [ V] x /3 where
[V] is the fundamental class of V in K homology and )3eK*(V) the Bott
element. Thus the class of ($?, F) is non zero. •

Finally we shall relate finitely summable Fredholm modules on the group ring
A = CF of a discrete group with group cohomology with coefficients in representa-
tions, and exploit results of [28] and [11] to exclude the existence of non trivial
2-summable Fredholm modules on CF when F has property T. (Thus in Proposition
20 the degree of summability if >2.)

PROPOSITION 21. Let F be a discrete group and (9€, F) a p-summable Fredholm
module over A = CF.t
(1) The map c: Y^> <£"{%), c(g) = gFg'1 -Fisa l-cocyclefor the action of F on g"

by conjugation.
(2) Let neN have the parity of (#f, F) and satisfy n>p. Let T be the n-dimensional

character of {X, F), then:

T(g0
>g\...,gn) = Tr£(cn(g\...,gn)) y g ' s r . ^ . g 1 , . . . , * " ^ ,

where c" is the cup product ofn copies of c; c" e H"(F, i?1) while Tre is the trace
if n is odd and the super trace if n is even.

(3) If F has property T and p = 2 then there exists a Hilbert Schmidt operator A such
that F + A commutes with F, i.e. (W, F) is trivial.

tl.e. [F, a]€if(5if)VaEA.
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Proof.
(1) One checks that c{gxg2) = c(gl) + gic(g2)g;

l\/gl,g2er.
(2) The composition of operators defines a multilinear F-equivariant map i f ($f)®

• • •®<ep(9e)^g1(2e), so that the cup product c" is well defined. One has

c"(gi,g2,-.-,gn) = c(g1)g,c(g2)g2c(g3)- • • gn-lc(gn)g~L1 • • gi\

Since c(g)g = (gF — Fg) equality (2) follows easily.
(3) By [28,11] the cocycle c is a coboundary, c(g) = gAg"1 - A. •

Remark 22. We do not know any example of non trivial finitely summable Fredholm
module on C*ed(F) or CF for F a lattice in a Lie group of rank >1 .

7. 6-summable unbounded Fredholm modules
The results of §§ 4 and 5 show that certain C* algebras do not possess any finitely
summable unbounded Fredholm module, and so in the sense of § 1, have no metric
of polynomial growth. We shall now give a weaker condition on an unbounded
Fredholm module and examples of such Fredholm modules both on the group C*
algebra of any finitely generated group, and on the infinite dimensional space
occurring in constructive quantum field theory.

DEFINITION 23. We shall say that an unbounded Fredholm module ($f, D) over a
C* algebra A is 6-summable iff

Trace (e"'°2)<oo W > 0 .

This condition implies that (1 + D2)"1 is a compact operator, so that by [1] the
pair (3€, F) where F = D(1 + D2)~1/2 defines an element of the Kasparov group
KK(A,C).

Obviously every finitely summable (S€, D) is also 0-summable and as in [10] one
gets a bound: Trace (e~'D2) = 0(t~p) when /-»0. We shall now give general existence
results for such modules.

PROPOSITION 24. Let T be a finitely generated discrete group, and I the word length
function, relative to some generating subset. Let #f = 12(T) as a left module over
A = C%d(T) and D be the multiplication by 1. Then {X, D) is a d-summable unbounded
Fredholm module over A.

Proof. We just have to check that Zg e rexp-f/2(g)<oo, Vf >0 , which is
immediate since with the notations of Proposition 6, \Bk\ grows at most as qk

for some finite q. •

Next we shall check that the natural Fredholm modules on the group C* algebras
C*(F) where F is a discrete subgroup of a semi simple Lie group G, are d-summable.
Let us recall their construction [19]. Let H = G\K be the quotient of G by a
maximal compact subgroup, and endow H with its G-invariant Riemannian metric
of negative curvature. Let V be the (not necessarily compact) manifold V = T\H
and on V consider the bundle of Hilbert space (H a ) a e V , obtained by:

Ha = l\TT-\a),Sa) VaeV,
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where v: H-*T\H is the projection and Sa is the restriction to Tr~x{a) of the spinor
bundle on H. We assume for simplicity that H is even dimensional and that the
isotropy representation of K lifts to spin, so that both S and its Z/2 grading
S = S+®S~ are well denned. Now, once an origin 0 = 1/ Ke H has been chosen,
the bundle H has a natural superconnexion in the sense of [25], given by the
combination V + 8 of the Levi Civita connexion V of the spinor bundle S on H
(viewed on T\H = V as a connexion on H) and of the dual Dirac operator S which
for each a e V defines the following odd endomorphism of Ha :

Here $(x)eSx and y((x, 0)) is the Clifford multiplication in Sx by the element
(x, 0) of TX(H) whose exponential is equal to OeH. Thus we get a natural Dirac
operator on T\H with coefficients in H given as an operator D in L2(V, SV®H),
where Sv is the spinor bundle on V.

If we identify L2( V, SV®H) with the Hilbert space $f of L2 differential forms
on H = G/ K, using the natural isomorphism between the tensor product Sx ® Sx

and the exterior algebra AT*, for xeH, both the operator D and the action of
C*ed(r) become explicit and simple:
(1) One has (Dw)(x) = ((d + d*)w)(x) + X(x)Aw(x)~ix(x)w(x) where X(x) =

(x, 0) is the tangent vector at x whose image under expx is 0 e H.
(2) The group T acts in $f by left translations.

PROPOSITION 25. The pair {96, D) is a 0-summable unbounded Fredholm module
over C*d(D.

Proof. Classical results [4] show that D is essentially selfadjoint on the domain
C?(H, AT*) of smooth forms with compact support. A simple calculation shows
that the square of D is the same as the Laplacian used in [16] and [29] for the
Morse function W(x) = (d(0, x))2 on H. Thus up to lower order terms D2 is equal
to AH + W and it follows from the Golden-Thomson inequality that exp (—tD2) is
of trace class for any finite f>0. Finally for any geT the left translation A(g) by
g in X commutes with d + d* and the inequality ||(x, 0) - (x, g~'(0))|| < d(0, g'\0))
(which follows from the comparison theorem applied to the triangles
(0,(x,0),(x,g-\0))) in Tx(H) and (x,0,g-\0)) in H) shows that [A(g),D] is a
bounded operator for any g e F. •

The results of Kasparov [19] show that, if in the above construction one allows
to take coefficients in a (finite dimensional) vector bundle E over V, one obtains
enough Fredholm modules on C*d(r) to show that the map fi: K^i V) -» Ko( C*d(F))
is injective. The proof of proposition 23 easily adapts to show that all these modules
are 0-summable.

We shall end this section with another example of a 0-summable Fredholm module
in which the lack of finite summability is no longer due as above to the non
commutativity of the algebra A but to the infinite dimensionality of the space X
for which A = C(X). We shall also use the occasion to clarify, on an example, the
link between the formalism of K homology and that of supersymmetry. The example
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is known as the N = 2 Wess-Zumino quantum fields and we refer to [17] for its
discussion. We just give the dictionary which allows to read the results of [17] in
our language. Let X = D'(T') be the space of complex distributions on T\ the one
dimensional torus. Any smooth fe C°°(Ti) = D{TX) defines a function <p(f). We
let A be the (commutative) C* algebra of functions on X generated by those of
the form <p(/)(l + |<p(/)f )~1/2 for/e C°°(Sl), with norm given by the sup norm and
involution given by complex conjugation.t The spectrum of A is a suitable compac-
tification of X. The Hilbert space #f of the model is of the form 3€b®S€f where the
Bosonic Hilbert space 3?b is identical with L\X, d/x) for the Gaussian measure dfi
with covariance G = (-(d/dx)2+ m2)~l/2(m ¥• 0) while the Fermionic Hilbert space
'Mf is the Hilbert space of a suitable irreducible representation of the Clifford algebra
on the (infinite dimensional) tangent space to X. Thus 2C,b ® 3€f = %t can be thought
of as the space of L2 spinors on X. The algebra A acts by multiplication operators
in 3€. Let Q be the supercharge operator in 5if:

-BMx)-iaV(<p(x))*) + h.c.

with the notations of [17,11.5]. Finally let T = (-1)N / be the natural Z/2 grading
of the Fermionic Hilbert space, where Nf is the Fermion number operator. The
results of [17, Proposition II.7] yield:

PROPOSITION 26. Let 'Mbe the Hilbert space of the model, A act in S€by multiplication,
D be the supercharge operator Q in 3€ and e = F the Z/2 grading given by parity of
the Fermion number. Then the triple (S€, D,e) is an even, 6-summable, unbounded
Fredholm module over A.

Proof. Cf. [17]. •

Thus in conclusion to this paper we see that both for the needs of non commutative
geometry, whose aim is to understand non commutative spaces such as the dual of
a discrete group, and for those of infinite dimensional analysis, in the set up of
supersymmetric rigorous models of Quantum field theory, it is important to extend
the construction of [7] of the Chern character, so that the character still makes
sense for 0-summable Fredholm modules. It turns out that the cohomology of
cochains in the (b, B) bicomplex of [7] which are no longer of finite support but
satisfy a suitable growth condition is the natural candidate for infinite dimensional
cohomology. It will be the subject of another paper.
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