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Abstract

We construct a hyperbolic group with a hyperbolic subgroup for which inclusion does not induce
a continuous map of the boundaries.
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1. Introduction

Hyperbolic groups are the finitely generated groups whose Cayley graphs display
characteristics of negative curvature. Their systematic study was initiated by
Gromov in [12] and, mimicking the study of Riemannian manifolds, pays
particular attention to large-scale and asymptotic geometric features such as
boundaries.

One of the many equivalent definitions of the Gromov boundary ∂G of an
infinite hyperbolic group G with word metric d is as the set of equivalence classes
of sequences (an) in G such that

(am · an)e := (d(am, e)+ d(an, e)− d(am, an))/2→∞
as m, n→∞, where two such sequences (an) and (bn) are equivalent when
(am · bn)e→∞ as m, n→∞. It is independent of the choice of finite generating
set defining d and of the choice of basepoint. See [6, 14] for surveys.
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When H is an infinite hyperbolic subgroup of G, one can seek to induce a map
∂H→ ∂G from the inclusion map. In [21, 23] Mitra (or Mj, as he is now known)
asks whether this is always well-defined, the concern being that ∂H is defined
via the word metric on H and ∂G via that on G, and these may differ. He cites
Bonahon [5] for similar questions and Bonahon [4], Floyd [8] and Minsky [19]
for related work on Kleinian groups. The question is also raised by Kapovich and
Benakli [14] and appears in the problem lists [3] and [15]. When the map exists,
it is known as the Cannon–Thurston map.

The Cannon–Thurston map exists for many families of examples. The most
straightforward is when H is quasi-convex (that is, undistorted). Cannon &
Thurston [7] gave the first distorted example: they showed that the map exists
for π1S ↪→ π1M where M is a closed hyperbolic 3-manifold fibering over the
circle with fiber a hyperbolic surface S (and, strikingly, the Cannon–Thurston
map is a group-equivariant space-filling Peano curve S1 � S2). Mitra generalized
this widely. He showed that the Cannon–Thurston map exists when H is an
infinite normal subgroup of a hyperbolic group G [21], and he developed a
theory of ending laminations for this context (inspired by [7]) to describe it
[20]. He also showed that the Cannon–Thurston map exists when H is one
of the infinite vertex-groups or edge-groups of a finite graph of groups G in
which G and all of the vertex-groups and edge-groups are hyperbolic, and all the
defining monomorphisms from edge-groups to vertex-groups are quasi-isometric
embeddings [22].

Recently, Mj established that Cannon–Thurston maps exist for surface
Kleinian groups [25] (answering a question of Cannon & Thurston from [7] and
Question 14 from Thurston’s celebrated 1982 Bulletin AMS paper [28]) and then
for arbitrary Kleinian groups [24] (proving a conjecture of McMullen from [18]).
Mitra’s question can be viewed as asking whether the natural generalization
of these results in the setting of geometric group theory holds. We answer it
negatively.

THEOREM 1. There are positive words C, C1, C2 on c1, c2 and D1, D2, D11, D12,
D21, D22 on d1, d2 such that

G=
〈

a, b, c1, c2, d1, d2

∣∣∣∣∣ a−1b−1ab = C, b−1cib = Ci,

(ab)−1dj(ab) = Dj, c−1
i djci = Dij, 1≤ i, j≤ 2

〉
is hyperbolic, the subgroup

H = 〈b, d1, d2〉
is free of rank three, and there is no Cannon–Thurston map ∂H→ ∂G.
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A positive word is one in which inverses of generators never appear.
At the expense of complicating the construction, G can be made CAT(−1), as

we will outline in Remark 9.
That H is free is not pertinent to the nonexistence of the Cannon–Thurston

map. Theorem 1 is the starting point for a proof by Matsuda and Oguni [17] that
for every nonelementary hyperbolic group there is an embedding in some other
hyperbolic group for which there is no Cannon–Thurston map. Implications of
Theorem 1 have also been explored by Gerasimov and Potyagailo in a recent
paper [9] on convergence actions.

Given that Cannon–Thurston maps do not always exist, the question arises
as to what bearing subgroup distortion has. Heavy distortion appears to be
no obstacle to the map’s existence: we showed in [1] that Cannon–Thurston
maps exist for highly distorted free subgroups of hyperbolic hydra groups; these
examples exhibit the maximum distortion known among hyperbolic subgroups
of hyperbolic groups. As for small distortion, if a subgroup of a hyperbolic
group is subexponentially distorted, then the subgroup is quasi-convex by
[13, Proposition 2.6] and so the Cannon–Thurston map exists. The natural
open question then (which Ilya Kapovich asked us) is whether there is an
exponentially distorted hyperbolic subgroup of a hyperbolic group for which the
Cannon–Thurston map does not exist. (An earlier version of this article claimed
that the subgroup Gbcd ≤ G, defined before Lemma 5, is such an example.
Although ∂Gbcd → ∂G is not well-defined, we realized that the distortion is
at least doubly exponential, so Kapovich’s question remains open.) It will be
apparent from our proof of Theorem 1 that the subgroup H ≤ G is at least doubly
exponentially distorted.

2. Proof of the theorem

Denote the free group on a set S by F(S). If S = {s1, . . . , sn}, write F(S) =
F(s1, . . . , sn). If F is a group and X ⊆ F a subset such that the natural map
F(X)→ F is an isomorphism, then X is called a free basis for F and F is said to
be a free group of rank card(X).

We begin by showing that when C, Ci, Dj and Dij are chosen suitably, the group
G of Theorem 1 is hyperbolic.

A finite presentation for a group satisfies the C′(λ) small-cancellation
condition when, after cyclically reducing all the defining relations, the set S of all
their cyclic permutations and those of their inverses has the property that every
common prefix between two distinct r1, r2 ∈ S has length less than λ times the
lengths of each of r1 and r2 [16, p. 240].
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Following Rips [26], we take

C = c1c2c1c2
2c1c3

2 · · · c1cr
2,

Ci = c1cri+1
2 c1cri+2

2 c1cri+3
2 · · · c1cri+r

2 ,

Dj = d1drj+1
2 d1drj+2

2 d1drj+3
2 · · · d1drj+r

2 ,

Dij = d1dr(il+j)+1
2 d1dr(il+j)+2

2 d1dr(il+j)+3
2 · · · d1dr(il+j)+r

2 ,

where r is sufficiently large that the presentation for G of Theorem 1 satisfies
the C′(1/6) condition, and so G is hyperbolic. (All C′(1/6) groups admit linear
isoperimetric functions and so are hyperbolic [10].)

Next we analyze the construction of G to show (via Lemmas 2 and 5(iv), (v))
that H is free of rank three for such C, Ci, Dj and Dij. Specifically, we will view
G as being built from the free group F(d1, d2) by HNN-extensions.

Suppose that B ≤ A are groups and φ: B→ A is any injective homomorphism
(not necessarily the subgroup inclusion map). The HNN-extension A∗φ of A with
defining homomorphism φ and stable letter t is the group presented by

A∗φ := 〈A, t | t−1bt = φ(b) for all b ∈ B〉,
where t is a new generator. (We may instead present A∗φ by only including the
relations t−1bt = φ(b) for b in some particular generating set for B.) The groups
B and φ(B) are called associated subgroups of the HNN-extension.

LEMMA 2 (Britton’s lemma; see for example [6, 16, 27]). Suppose that a
nonempty word w on the alphabet {A\{e}}t{t, t−1} contains no two consecutive
letters from A \ {e} and no subword tt−1 or t−1t. Then w 6= 1 in A∗φ unless w
contains a subword t−1bt where b ∈ B or tct−1 where c ∈ φ(B).
In particular, the natural map A→ A∗φ is injective, so A can be regarded as a

subgroup of A∗φ (hence ‘extension’), and t generates an infinite cyclic subgroup
of A∗φ trivially intersecting A.

We will need to recognize when a map between free groups is injective in
order to show that it gives rise to an HNN-extension. To this end, we will want
to be able to recognize free bases. Nielsen showed that a set of words represents
a free basis for a subgroup of F(X) when certain small-cancellation conditions
are satisfied.

PROPOSITION 3 (Nielsen; see [16, pp. 6–7]). A set U of words on an alphabet
X represents a free basis for a subgroup of F(X) if for every v1, v2, v3 ∈ U±1:

N0. v1 6= e;

N1. v1v2 6= e⇒ |v1v2| ≥ |v1|, |v2|;
N2. v1v2 6= e and v2v3 6= e⇒ |v1v2v3|> |v1| − |v2| + |v3|.
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COROLLARY 4. C,C1,C2 span a rank-three free subgroup of F(c1, c2) and D1,
D2, D11, D12, D21, D22 span a rank-six free subgroup of F(d1, d2).

(Indeed, N0–N2 are satisfied if U satisfies the C′(1/2) property.)
Define

Gcd := 〈c1, c2, d1, d2 | c−1
i djci = Dij, 1≤ i, j≤ 2〉,

Gbcd := 〈Gcd, b | b−1cib= Ci, 1≤ i≤ 2〉.
LEMMA 5. The groups defined above have the following properties.

(i) F(d1, d2) is a subgroup of Gcd.

(ii) F(c1, c2) is also a subgroup of Gcd and F(c1, c2) ∩ F(d1, d2)= {1}.
(iii) Gbcd is an HNN-extension of Gcd with stable letter b and defining

homomorphism φ: F(c1, c2)→ Gbcd mapping ci 7→ Ci.

(iv) H = 〈b, d1, d2〉 ≤ Gbcd is free of rank three.

(v) G of Theorem 1 is an HNN-extension of Gbcd with stable letter a:

G= 〈Gbcd, a | a−1ba= bC−1, a−1dja= bDjb
−1, 1≤ j≤ 2〉.

Proof. (i) By Corollary 4, the map φ1: F(d1, d2)→ F(d1, d2) given by dj 7→ D1j

is injective. So φ1 defines an HNN-extension of F(d1, d2). Calling the stable letter
c1, this HNN-extension has presentation

Gc1d := 〈c1, d1, d2 | c−1
1 djc1 = D1j, 1≤ j≤ 2〉.

By Britton’s lemma, F(d1, d2) ≤ Gc1d. Similarly, Gcd is an HNN-extension of
Gc1d with stable letter c2 and defining homomorphism φ2: F(d1, d2)→ Gc1d given
by dj 7→ D2j. Note that φ2 has image contained in F(d1, d2) ≤ Gc1d. Again, φ2 is
injective by Corollary 4. So F(d1, d2)≤ Gc1d ≤ Gcd by Britton’s lemma.

(ii) To show that 〈c1, c2〉 is a free subgroup F(c1, c2) of Gcd trivially
intersecting F(d1, d2), we prove the following claim. For any n ≥ 1, any d ∈
F(d1, d2), and any integers r0, . . . , rn+1, s1, . . . , sn,

(dcr0
1 )c

s1
2 cr1

1 cs2
2 · · · crn

1 csn
2 c

rn+1
1 6= 1 in Gcd

whenever ri, si 6= 0 for all 1 ≤ i ≤ n. This, in turn, follows from Britton’s
lemma applied to the extension Gcd (which has stable letter c2) once we show
that the cri

1 are not in the associated subgroups of Gcd. As these associated
subgroups are F(d1, d2) and F(D21,D22) ≤ F(d1, d2), the observation that 〈c1〉
is an infinite cyclic subgroup of Gc1d trivially intersecting F(d1, d2) by Britton’s
lemma completes the proof.

(iii) By Corollary 4, {C1,C2} is a free basis of a subgroup of F(c1, c2)≤ Gbcd.
So the defining homomorphism φ: F(c1, c2)→ Gbcd, ci 7→ Ci is injective.
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(iv) By Britton’s lemma applied to the HNN-extension Gbcd of Gcd, any
freely reduced word w on b, d1, d2 representing the identity would contain a
subword b±1ub∓1 where u is a nonempty reduced word on d1, d2 representing
an element of the associated subgroup F(c1, c2) or of the associated subgroup
φ(F(c1, c2))≤ F(c1, c2). By (ii), this is impossible. So H := 〈b, d1, d2〉 is free of
rank three.

(v) The given presentation for G arises from that in Theorem 1 by rewriting
the defining relations involving a. We must show that 〈bC−1, bD1b−1, bD2b−1〉 ≤
Gbcd is free of rank three. It suffices to show the same of the conjugate
subgroup 〈b−1C,D1,D2〉 ≤ Gbcd. We do this by proving that if i1, . . . ir−1 6= 0
and W1, . . . ,Wr are nontrivial elements of the rank-two free group F(D1,D2) ≤
F(d1, d2)≤ Gbcd, then

w := (b−1C)i0W1(b
−1C)i1 · · ·Wr(b

−1C)ir

does not represent the identity in Gbcd. This is achieved by writing w in such a
way that Britton’s lemma applies.

The relations b−1cib= Ci imply that (b−1C)ik ∈ 〈c1, c2〉b−ik〈c1, c2〉, so

w ∈ 〈c1, c2〉b−i0〈c1, c2〉W1〈c1, c2〉b−i1〈c1, c2〉 · · ·Wr〈c1, c2〉b−ir〈c1, c2〉.
If b±1 does not appear in w, then r = 1, i0 = i1 = 0, and w = W1 does not

represent the identity in Gbcd. So we may assume that b appears. To apply
Britton’s lemma, we must show that w has no subword b±1Yb∓1 where Y is a
word on c1, c2, d1, d2 representing an element of F(c1, c2). This is so because
F(c1, c2) ∩ F(d1, d2) = {1} by (ii) and Wk ∈ F(d1, d2) ≤ Gbcd does not represent
the identity. �

We will use the following lemma of Mitra to show the absence of a
Cannon–Thurston map ∂H→ ∂G. We give our own account of this lemma in [1].

LEMMA 6 (Mitra [21, 22]). Suppose that H is a hyperbolic subgroup of a
hyperbolic group G and XH and XG are their Cayley graphs with respect to
finite generating sets where that for H is a subset of that for G. (So XH is a
subgraph of XG.) Let M(N) be the infimal number such that if λ is a geodesic
in XH outside the ball of radius N about e in XH , then every geodesic in XG

connecting the end-points of λ lies outside the ball of radius M(N) about e in
XH . The Cannon–Thurston map ∂H→ ∂G exists if and only if M(N)→∞ as
N→∞.

We will apply this to G and H of Theorem 1, using the generating sets
a, b, c1, c2, d1, d2 and b, d1, d2, respectively.

The next lemma identifies some geodesics in Cayley graphs of small-
cancellation groups. We learnt it from Ilya Kapovich and Hamish Short. It can
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be extracted from Strebel’s appendix to [11] as we will explain. For a finite
presentation 〈A | R〉, a word w on A is Dehn-reduced if every subword α of
w that is a prefix of a cyclic conjugate of some ρ ∈ R±1 satisfies |α| ≤ |ρ|/2, and
is strongly Dehn-reduced if |α| ≤ |ρ|/6.

LEMMA 7. If 〈A | R〉 is a C′(1/6)-presentation, then every strongly Dehn-
reduced word on A is geodesic. (Indeed, it is the unique geodesic word and also
the unique Dehn-reduced word for the group element that it represents.)

Proof. Suppose that u and v are freely reduced words which represent the
same group element, and u is strongly Dehn-reduced and v is geodesic. In his
proof of Proposition 39(i) in his appendix to [11], Strebel explains that there
is a van Kampen diagram 1 for uv−1 whose two-dimensional portions are
ladder-like disc-diagrams. (See the figure within Theorem 35.)

Suppose that there is a 2-cell in 1 and that ρ is the defining relation that one
reads around its boundary. That 2-cell’s boundary cycle is assembled from four
paths: two run along the boundaries of adjacent 2-cells and have lengths less than
|ρ|/6 (by the C′(1/6) condition); one runs along u and has length at most |ρ|/6
by the strongly Dehn-reduced condition; but then the final path, which runs along
v, has length more than |ρ|/2 contrary to v being a geodesic word. (Indeed, if we
only required v to be Dehn-reduced we would get the same contradiction.) So1
has no 2-cells and u= v as words. �

Proof of Theorem 1. Recall that

G=
〈

a, b, c1, c2, d1, d2

∣∣∣∣∣ a−1b−1ab = C, b−1cib = Ci,

(ab)−1dj(ab) = Dj, c−1
i djci = Dij, 1≤ i, j≤ 2

〉
where

C = c1c2c1c2
2c1c3

2 · · · c1cr
2,

Ci = c1cri+1
2 c1cri+2

2 c1cri+3
2 · · · c1cri+r

2 ,

Dj = d1drj+1
2 d1drj+2

2 d1drj+3
2 · · · d1drj+r

2 ,

Dij = d1dr(il+j)+1
2 d1dr(il+j)+2

2 d1dr(il+j)+3
2 · · · d1dr(il+j)+r

2 .

We must show that for sufficiently large r, G is hyperbolic, H = 〈b, d1, d2〉 is free
of rank three, and there is no Cannon–Thurston map ∂H→ ∂G.

As we observed at the start of this section, G can be made hyperbolic
by choosing r large enough to make G satisfy C′(1/6). Britton’s lemma and
Lemma 5(iv), (v) together show that H is a rank-three free subgroup for the same
r. We may assume that r > 17. It remains to show that the Cannon–Thurston map
does not exist.
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Figure 1. Paths in the Cayley graph of G illustrating our proof of Theorem 1.

The longest subword of b−na−nd1anbn that is a prefix of a cyclic conjugate of a
defining relation or the inverse of a defining relation is a−1d1a. Since r > 17, the
length of a−1d1a is a small fraction (less than 1/6) of the length of the shortest
of the relators. So b−na−nd1anbn is strongly Dehn-reduced. So, by Lemma 7, the
path γn that it labels, passing through the identity e as shown in Figure 1, is
geodesic in the Cayley graph of G.

We now wish to express b−na−nd1anbn as a word in d1, d2. To begin, we prove
by induction on n that

abn = bn−1abφ(C) · · ·φn−2(C)φn−1(C) (2.1)

in G, where φ: F(c1, c2)→ Gbcd, ci 7→ Ci is the defining homomorphism of the
HNN-extension Gbcd with stable letter b—see Lemma 5 (iii). The base case
n = 1 is the equation ab = ab. The induction step follows from the relation
a−1b−1ab= C (which rearranges to ab= baC):

abn+1 = (ab)bn = (baC)bn = b(abn)(b−nCbn)

= b(abn)φn(C)

= b(bn−1abφ(C) · · ·φn−2(C)φn−1(C))φn(C),

where the last equality uses the induction hypothesis. Left-multiplying (2.1) by
an−1 yields

anbn = (an−1bn−1)abφ(C) · · ·φn−2(C)φn−1(C) (2.2)

Another induction then shows that anbn can be written as a positive word u in the
alphabet {ab, c1, c2}. So b−na−nd1anbn = u−1d1u in G, which equals a positive
word on d1, d2 since (ab)−1dj(ab)= Dj and c−1

i djci = Dij in G.
So the end-points of γn are in H, and the geodesic λn joining them in the Cayley

graph of H (which is a tree) is labeled by a word on d1, d2. The distance (along
the path labeled bn) from e to λn in H is n.
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As the distance from γn to e in the Cayley graph of G is zero and the distance
from λn to e in the Cayley graph of H is n, there is no Cannon–Thurston map
∂H→ ∂G by Lemma 6. �

3. Remarks

REMARK 8. The inclusion H ↪→ G factors through Gbcd, which is also
hyperbolic as its presentation is also C′(1/6). So Theorem 1 implies the absence
of at least one Cannon–Thurston map ∂H→ ∂Gbcd or ∂Gbcd→ ∂G. In fact, more
elaborate versions of the argument given above establish that both fail to exist.
As an HNN-extension is an example of a graph of groups, the latter example
also shows that the quasi-isometric embedding hypothesis in Mitra’s theorem
from [22] is necessary.

REMARK 9. With a similar construction, one can obtain a CAT(−1) group G
with a free subgroup H with no Cannon–Thurston map. Wise’s modification
in [29] of the Rips construction [26] is used in [2] to construct CAT(−1)
groups. Each relator is realized on the boundary of the unions of n = 5
congruent right-angled regular hyperbolic pentagons, arranged as row houses
atop a geodesic segment. Each edge of the boundary corresponds to a generator.
The vertices of the boundary are either right angles or straight angles, but the
base geodesic gives n − 1 consecutive straight angles, bounding a segment of
length n − 2. Wise shows that the Gromov link condition is satisfied when this
straight segment is a freely reduced word and when the length-(2n+4) remainder
of the boundary is obtained from the Wise word :

c1(c1c2c1c3 · · · c1cr)c2(c2c3c2c4 · · · c2cr)c3(c3c4 · · · c3cr) · · · cr−1(cr−1cr)cr

by chopping it into consecutive length 2n + 4 segments (one for each defining
relator). The argument works just as well for any n, so we take n = 7 and fit
the (ab)−1dj(ab), a−1b−1ab, b−1cib, and c−1

i djci portions of our relators along the
straight segment. We form one Wise word of c s and one of d s. To get sufficiently
many length-18 subwords of the Wise words, we increase the number of ci and
dj in the generating set for G. Then H = 〈b, d1, d2, . . .〉 is a free subgroup of the
CAT(−1) group G by the same argument as before.

REMARK 10. H has infinite height in G. That is, for all n, there exist
g1, . . . , gn ∈ G such that

⋂n
i=1 gi

−1Hgi is infinite and Hgi 6= Hgj for all i 6= j.
Specifically, take gi = ci

1. Then, if φ1: F(d1, d2)→ F(d1, d2) is the map dj 7→ D1j

for j = 1, 2, then φn
1(F(d1, d2)) is an infinite subgroup inside g−1

i Hgi for 1 ≤
i ≤ n, and Hgi 6= Hgj for all i 6= j since ck

1 ∈ H only for k = 0 by Lemma 5.
Likewise, Gbcd has infinite height in G: instead of taking gi = ci

1, take gi = (ab)i
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and apply the same argument as above. So our examples do not resolve the
question attributed to Swarup in [23]: if H is a finitely presented subgroup of
a hyperbolic group G and H has finite height in G, is H quasiconvex in G?
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