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Abstract. This paper explores the advantages of using gravity assisted trajectories to perform
flyby and rendezvous missions to accessible near-Earth asteroids (NEAs), in terms of the total
velocity budget required for the mission. Combining the Opik’s formalism of close encounters
with the Monte Carlo sampling technique and Lambert trajectories, we give a general picture
of the accessibility regions for NEAs in phase space of orbital elements, without considering the
phasing requirements between bodies.
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1. Introduction
Given the increased interest for in-situ exploration of near-Earth asteroids (NEAs) in

recent years, several papers explored already the possibility of direct transfer orbits for
flyby and rendezvous missions (Perozzi, Rossi & Valsecchi 2001, Christou 2003). As we
will highlight in this paper, the accessibility region in phase space of orbital elements is
rather limited for such missions due to the high velocity budget involved.

Without considering the phasing requirements (proper alignment of the bodies on
their orbits), which is just a matter of timing, this paper gives a general overview on the
advantages of using gravity assisted trajectories to NEAs. The key parameters used to
describe the accessibility regions are the nodal distances, eccentricity and inclination of
the asteroid’s orbit. Figure 1 shows the distribution of discovered NEAs in terms of these
parameters. A strong observational bias near the Earth’s orbit is evident.

Figure 1. Distribution of discovered NEAs in nodal distance-eccentricity plane (left panel) and
in nodal distance-inclination plane (right panel). Both nodal distances are considered for each
asteroid.
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266 Ş. Berinde

2. Preliminaries
Throughout this paper we adopt the following measuring units for distance and time,

such that the radius of the Earth’s orbit (supposed to be circular) is 1 and its heliocentric
velocity is also 1. It means that the heliocentric gravitational parameter µ� = 1.

We consider the initial state of an interplanetary spacecraft as being its parking LEO
orbit (at about 200 km). From here, we will try to evaluate the velocity budget dv
required to place the spacecraft in a flyby or rendezvous orbit with an asteroid. Let dv0

be the excess velocity applied in LEO orbit. The unperturbed geocentric relative velocity
u0 (that is, velocity at infinity) is given by

u0 =
√

(vleo + dv0)2 − v2
par, (2.1)

where vleo = 0.26 is the circular velocity in LEO orbit and vpar = 0.37 is the correspond-
ing parabolic velocity. For escaping the Earth, we must have dv0 > 0.11. We also note
that u0 > dv0 only for dv0 > 0.13. For practical reasons we can suppose that dv0 < 0.2,
since the total dv budget for NEAs missions is rather limited (6 km/s for the NEAR
mission; see Farquhar et al. 1995).

Also in this section we will reproduce the formulas for the components of the helio-
centric velocity vector of a body in an elliptic orbit, at one of its nodes. This will prove
useful later when computing the excess velocity dvrend required to perform a rendezvous
mission at the nodes. Let be a rectangular reference frame oriented such that the y-axis
points along the radial distance of the body towards the Sun, the z-axis is perpendicular
on the ecliptic plane towards north pole and the x-axis completes the right-handed frame.
Because we are at the nodes the x-axis is located on the ecliptic plane and we must have
vx =

√
v2

x + v2
z cos i and vz = ±

√
v2

x + v2
z sin i. Writing the component vy (the radial

velocity) in terms of the keplerian orbital elements a, e, i, we get the final expressions


vx =
√

a

d

√
1 − e2 cos i

vy = ±
√

a

d

√
e2 −

(
1 − d

a

)2

vz = ±
√

a

d

√
1 − e2 sin i,

(2.2)

where d is the nodal distance. The signs of the right terms depend on the type of the
node, if it is ascending or descending (for the component vz) and if it is placed before or
after the perihelion (for the component vy).

3. Direct orbits
Following the basic optimal guidelines about orbital transfer in space (Marinescu 1982),

a rendezvous mission with an asteroid includes, in general, two steps: a Hohmann transfer
orbit from Earth to the farthest node of the asteroid’s orbit, followed by a velocity impulse
in order to match its orbital velocity.

A nodal distance d can be reached at aphelion on an orbit with the initial geocentric
relative velocity u0, along the Earth’s orbit, given by

u0 =

√
2d

(1 + d)
− 1. (3.1)
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The velocity at aphelion will be

vaph =

√
2

d(1 + d)
. (3.2)

In the previously introduced reference frame, this velocity is oriented along the x-axis.
Using now the set of formulas (2.2), we obtain the required rendezvous velocity impulse
at the node

dv2
rend =

2(2 + d)
d(1 + d)

− 1
a
− 2

d

√
2a(1 − e2)
d(1 + d)

cos i, (3.3)

where a, e, i, ω are the well known orbital elements of the asteroid. Note that we must
have

d =
a(1 − e2)
1 ± e cos ω

, (3.4)

where the sign depends on the node’s type.
From (2.1) and (3.1) we can get dv0 in terms of d. Then dv = dv0 + dvrend is the total

velocity budget to accomplish the mission. Based on this approach, figure 2 gives the
accessibility regions for such missions in the d-e plane. The required rendezvous velocity
is minimal for ω = 0 and ω = π and maximal for ω = π/2 and ω = 3π/2. It depends also
strongly on the orbital inclination i, such that only orbits very close to the ecliptic are
matched within the limit dv < 0.2.

Figure 2. Accessibility regions in d-e plane for a rendezvous mission with an asteroid (see text
for details). Four regions are depicted, depending on the total dv budget and on the perihelion
argument of the orbit (ω = 0 for straight borders and ω = π/2 for curved borders). We set here
i = 0.

As a matter of fact, if the asteroid’s orbit intersect the Earth’s one (d = 1, u0 = 0),
we get the well known formula (Carusi et al. 1990)

dv2
rend = 3 − 1

a
− 2

√
a(1 − e2) cos i = 3 − T, (3.5)

where dvrend has now the meaning of the unperturbed geocentric relative velocity and T
is the Tisserand parameter.

It follows that the accessibility region of NEAs for rendezvous missions on direct orbits
is very limited. If we consider only the flyby missions opportunities at the nodes, all NEAs
are reachable since they have (by definition) at least one of their nodal distances between
1.0 and 1.3 AU.
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4. VEGA and VEEGA gravity assisted orbits
In this section we want to explore the advantages of the gravity assisted orbits to the

NEAs. It is practically impossible to give a general picture about the entire spectrum
of gravity assisted orbits in the inner solar system. But, if we neglect the possibility of
intermediary deep-space maneuvers involving significant velocity impulses (which was
not the case for the NEAR mission; Farquhar et al. 1995), the only ways to increase
orbital energy in a reasonable amount of time are VEGA (Venus-Earth Gravity Assist)
and VEEGA (Venus-Earth-Earth Gravity Assist) transfer orbits (Longuski & Williams
1991).

Next we will work in the frame of Opik’s geometric formalism (Carusi et al. 1990).
This gives us the opportunity to develop simple algebraic formulas for various orbital
quantities from the beginning of the mission (LEO orbit) till the end (asteroid flyby or
rendezvous). We recall some of the principles of this approximation: planetary orbits are
considered circular and coplanar, the spacecraft has a planetocentric hyperbolic orbit
near a planet and a keplerian heliocentric orbit in interplanetary space and a planetary
encounter is considered an instantaneous event when compared with the interplanetary
travel time.

To perform an interplanetary journey Earth-Venus-Earth, the alignment of these two
planets and the initial conditions are very sensitive to each other. Since we do not take
into consideration here the phasing requirements, we focus on the initial conditions for
VEGA orbital transfers.

Figure 3. All possible starting conditions from Earth (θ0, u0) for VEGA transfer orbits.

Let θ0 denote the angle between the Earth’s velocity vector and the initial geocentric
relative velocity vector of the spacecraft (with magnitude u0). We consider this angle to
be negative if the relative velocity vector points inside the Earth’s orbit. The heliocentric
starting conditions for a coplanar transfer are fully described by the pair (θ0,u0). Figure 3
shows all the pairs for which a VEGA orbit exists. These solutions were computed by
Monte Carlo sampling technique, solving the Lambert problem twice and patching the
conic sections at Venus encounter Battin (1987). This encounter has the effect of deflect-
ing the spacecraft relative velocity vector u by the amount

sin
γ

2
=

(
1 +

ρ

mp
u2

)−1

, (4.1)

where ρ is the minimum encounter distance and mp the planetary mass. The angular
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deflection γ must not exceed γmax, obtained from (4.1) when ρ equals the Venus planetary
radius.

If we are interested in maximizing the relative velocity of the spacecraft u when it
encounters the Earth again, for each value of u0 we can find the right value of θ0 for
which the maximum occurs. Figure 4 presents the relation between u and u0. An empirical
linear dependence among these parameters is also determined. In these conditions, the
spacecraft will encounter Earth at an angle θ ∈ (94◦, 99◦), defined analogously to θ0.

Figure 4. Maximum relative velocity u at Earth encounter for VEGA transfer orbits. An
empirical linear dependence can be inferred between the initial and final relative velocities:
u ≈ 1.5u0 + 0.17, valid for u0 > 0.1.

If we define γmax as the maximum angular deflection at Earth encounter (when the
geocentric minimum distance ρ equals the radius of the LEO orbits), we get an approx-
imate expression for it, sin(γmax/2) ≈ (1 + 14.5u2)−1. This value imposes a threshold
limit for the final orbital energy acquired in VEGA transfer orbits. But, since the relative
velocity u and angle θ are rather large after this encounter, an additional Earth encounter
allows a further variation of the semimajor axis of the spacecraft’s orbit. In other words,
the spacecraft must enter in a mean motion resonance with the Earth, on a VEEGA
transfer orbit. If we set up a resonance ratio p/q and a corresponding semimajor axis of
the post-encounter orbit a = (q/p)2/3, there is a precise deflection angle γres for which
the resonance is matched. Its value is given by γres = θ − θ′, where θ′ is computed from

a =
1

1 − 2u cos θ′ − u2
, (4.2)

a well known expression for the semimajor axis in the Opik’s formalism. We found that
the optimum low-order mean motion resonances are 1/2 and 2/5. The corresponding
deflection angles γ1/2 and γ2/5 are computed in figure 5, for each value of the initial
relative velocity u0.

Besides the post-encounter semimajor axis a of the spacecraft’s orbit, its eccentricity
e can be also computed from

e =

√
1 − 1

4a

(
3 − 1

a
− u2

)2

, (4.3)

and so we can get the aphelion distance d for the final VEGA and VEEGA transfer orbits.
Figure 6 gives these values computed with the condition θ′ = θ−γmax (for VEGA orbits)
and with the condition θ′ = θ − γ1/2 − γmax/2 for VEEGA orbits. For the last type of
orbits, the second angular deflection was limited at γmax/2, since a higher value will send
the spacecraft beyond Jupiter.
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Figure 5. Angular deflection of the velocity vector at Earth encounter for a given initial relative
velocity u0. γmax - maximum deflection, γ2/5 - required deflection to set up an orbit in 2/5 mean
motion resonance with the Earth, γ1/2 - required deflection to set up an orbit in 1/2 mean motion
resonance with the Earth.

Figure 6. Maximum aphelion distance d, function of the initial relative velocity u0, for differ-
ent transfer orbits: direct orbits, VEGA orbits (computed for γ = γmax) and VEEGA orbits
(computed for γ = γ1/2 + γmax/2).

As we can see from Figures 1 and 6, with a low initial velocity u0 a spacecraft can reach
both orbital nodes of the majority of the NEAs. The existence of such an orbit depends
only on the phasing requirements. This permits a flyby at the farthest orbital node of an
asteroid’s orbit, where a rendezvous maneuver requires less additional velocity.
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