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Abstract
Even the shortest flight through unknown, cluttered environments requires reliable local path planning algorithms
to avoid unforeseen obstacles. The algorithm must evaluate alternative flight paths and identify the best path if
an obstacle blocks its way. Commonly, weighted sums are used here. This work shows that weighted Chebyshev
distances and factorial achievement scalarising functions are suitable alternatives to weighted sums if combined with
the 3DVFH∗ local path planning algorithm. Both methods considerably reduce the failure probability of simulated
flights in various environments. The standard 3DVFH∗ uses a weighted sum and has a failure probability of 50%
in the test environments. A factorial achievement scalarising function, which minimises the worst combination of
two out of four objective functions, reaches a failure probability of 26%; A weighted Chebyshev distance, which
optimises the worst objective, has a failure probability of 30%. These results show promise for further enhancements
and to support broader applicability.

Nomenclature
A atainable set
BVLoS beyond visual line-of-sight
D drag force
DoE design of experiments
Ekin,i kinetic energy in timestep i
Epot,i potential energy in timestep i
Ethrust,i thrust energy in timestep i
Etot estimated total energy
Ei estimated energy in timestep i
f failure probability
F Feasible domain
FOM figure of merit
Fp epsilon constraint function
g gravitational acceleration
gj inequality constraint j
i time step index, objective index
Iq subset of Nn of cardinality q
m number of constraints, mass
n dimension
nf number of failed flights
ns number of successful flights

C© The Author(s), 2023. Published by Cambridge University Press on behalf of Royal Aeronautical Society. This is an Open Access article, distributed
under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use,
distribution and reproduction, provided the original article is properly cited.

https://doi.org/10.1017/aer.2023.68 Published online by Cambridge University Press

https://doi.org/10.1017/aer.2023.68
https://orcid.org/0000-0002-0640-1003
https://orcid.org/0000-0003-4995-4166
https://orcid.org/0000-0003-4096-0455
mailto:a.thoma@fh-aachen.de
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/aer.2023.68&domain=pdf
https://doi.org/10.1017/aer.2023.68


2126 Thoma et al.

N natural numbers
oi objective function i
oO

i utopian point of oi

O(x) set of objective functions oi

q degree of flexibility
Sref reference surface
T reference thrust
U minimal solution, minimal point
UAV unmanned aerial vehicle
vi velocity in timestep i
vx, vy, vz velocity component
VLoS visual line-of-sight
wi weight i
x vector of the feasible domain
z flight altitude
3DVFH∗ 3D vector field histogram ∗

�t size of time step
ε epsilon constraint
ρ air density

1.0 Introduction
Unmanned aerial vehicles (UAVs) are ideal for various applications, including the medical sector.
Government, industry and academia are working on projects like delivering medical supplies, transport-
ing organs and supporting first responders with UAV-based tele-doctors. Due to limited autonomous
obstacle avoidance capabilities, most UAVs can only operate within their remote pilot’s visual line-
of-sight (VLoS) [1, 2]; however, the medical sector, similarly to various other current and emerging
application domains, requires UAV operation beyond visual line-of-sSight (BVLoS) [3]. In the long
run, the medical sector will require even fully autonomous BVLoS operations to provide nationwide,
inexpensive medical coverage. Even though several obstacle avoidance algorithms exist, reliable and
efficient evasion of static and moving obstacles is still challenging, especially for small UAVs below
5 kg with low computational power, sensor and battery capacity. Hence, more robust and efficient obsta-
cle avoidance algorithms are required to overcome this challenge [4]. Although obstacle detection has
recently progressed, the reliable planning of safe avoidance manoeuvres in the very stringent timeframe
between detecting an obstacle and the potential collision remains particularly challenging [5].

Therefore, path planning is a crucial aspect of autonomous BVLoS UAV operation, where the most
efficient and feasible path must be found between a given position and a goal point [6]. Two different
path planning approaches are available. A global path planner identifies a suitable path between a start
point and a goal point based on given information about the environment. However, global path plan-
ners cannot react to unknown or unforeseen obstacles [6]. Therefore, a global path planner always needs
an accurate and complete a priori database and representation of the environment. On the contrary,
local path planners find suitable paths between the current position and the goal based on information
gathered by a sensor system. Local path planners do not have any additional information about the envi-
ronment, allowing them to operate in changing environments without additional effort [6]. However,
local path planners have a higher risk of failing to find a feasible path from their current position to the
goal point than global path planners [7]. Nonetheless, a local path planner is required if a flight mission
requires flight at low altitudes in uncontrolled environments, even for a short distance. Notably, medical
applications have a variety of unknown components, e.g. terrain, obstacles, exact goal location. At the
same time, UAVs capable of autonomous replanning bring several advantages to the medical sector [8].
For instance, the UAV can quickly fly towards the patient as soon as the goal point is known. This goal
point might be in an unknown area or an area with unknown obstacles. The goal point might also be
located where a safe remotely piloted operation cannot be ensured. This situation requires an efficient
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and reliable local path planning algorithm. Unfortunately, currently available local path planning algo-
rithms have insufficient reliability. This work tackles the insufficient reliability of current algorithms by
investigating the influence of the cost function type of the local path planning algorithm on its reliability.

Path planning requires finding the most efficient and feasible path from the current position to the
goal while considering various constraints such as obstacles, time or distance. This process typically
requires evaluating and comparing multiple alternative paths to identify the best one. Therefore, most
path planning algorithms generate a set of feasible paths and select the optimal. However, defining
which path is the best is nontrivial. Frequently, path planning considers multiple criteria, leading to
a multi-objective optimisation problem that requires a multiple-criteria decision strategy. Most local
and global path planners use cost functions to reduce the multi-objective optimisation problem to a
single-objective optimisation problem and identify the ideal flight path. Traditionally, multi-objective
optimisation strategies rely on weighted sums to prioritise the different aspects in an a priori articulation
of preference [9, 10]. However, they disregard interactions between path planning aspects, are sensitive to
normalisation and weighting parameters, and cannot find all Pareto optimal solutions. Only a few works
consider alternative cost function types, e.g. Ref. (11) for multi-objective UAS trajectory optimisation.

Therefore, this work investigates multiple alternative types of cost functions. First, we discuss them
on a theoretical basis. Besides the classical weighted sum, we investigate variants of weighted products,
weighted Chebyshev distance, and factorial achievement scalarising. Second, we test these functions
with the 3DVFH∗ in simulations of multiple short-range flight missions in various environments. The
3DVFH∗ is a well-known and commonly used local path planning algorithm. It relies on a weighted sum
and represents many optimisation-based local path planning algorithms. We also performed a parame-
ter sweep for the weighting factors to identify ideal parameters and determine the function’s potential.
Then, we compare the performance of the alternative cost functions regarding their safety (crash prob-
ability), reliability (mission failure probability) and suitability for medical applications (average flight
time, distance and energy consumption). We also investigate the sensitivity of the different cost func-
tion types on the choice of weights. We finally present an improved version of the 3DVFH∗ with higher
reliability and better performance.

The contributions of this work summarise as follows:

1. An in-depth analysis and comparative evaluation of the influence of different cost function types
for collision avoidance path planning (implemented in 3DVFH∗) in terms of their reliability
(failure probability) and efficiency (energy consumption).

2. Providing important recommendations for selecting or developing multi-objective optimisation-
based local path planners to target safety and efficiency performance in realistic scenarios.

1.1 Multi-objective path planning
Several hundred path planning algorithms exist for 2D, 2.5D and 3D planning and for local and global
path planning [12]. Most rely on classic deterministic approaches, often based on an optimisation
approach [13]. Several algorithms rely on weighted sums as cost functions [14–17]; however, to the best
of the authors’ knowledge, no comprehensive investigation of the influence of the type of cost function
on the local path planning result is available.

Using artificial neural networks and machine learning also becomes increasingly popular for local
path planning tasks [18]. In general, three types of machine learning are used in local path planning.
First, imitation learning trains a neural network to replicate a human pilot’s actions, e.g. Ref. (19). These
neural networks work well in familiar scenarios; however, they struggle in novel situations. Second,
reinforcement learning uses a reward function to train a neural network to achieve a specific goal, as
in Ref. (20). This approach is well suited to integrate several objectives with an adequate reward func-
tion. However, defining the reward function is very difficult [19]. These algorithms also struggle in
novel situations. Third, deep neural networks are trained to map a specific reaction to a given input
(usually a camera image). This approach proved efficient in very specific situations (e.g. for a UAV
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Figure 1. Feasible domain (a) and attainable set (b) of an arbitrary two-objective optimisation problem.

flying through corridors [21]); however, this approach also struggles in new situations. It is also worth
noting that all machine learning methods are currently not certifiable in line with aeronautical standards
and regulations and that considerable challenges are still faced when evaluating their safe adoption in
real platforms as the ethics and regulations concerning the use of artificial intelligence in increasingly
autonomous vehicles are still being drafted [22]. Some approaches combine classic deterministic local
path planning with deep neural networks, e.g. Ref. (13). While these neural network-based algorithms
have great potential, classic deterministic local path planning is still more robust and predictable than
these novel approaches.

Other works focus on optimised path planning for swarms of UAVs [23, 24] or goal points (commonly
known as the travelling salesman problem) [25]. Other approaches consider different types of threads or
prioritise different tasks [26]. These algorithms often use meta-heuristics to identify the best solution,
e.g. Ref. (27) or optimal control theory to identify the best path [22, 28–30]; however, these approaches
are mostly global planners and therefore require significant a priori knowledge of the environment, as
discussed, although it is possible to formulate real-time variants.

2.0 Theoretical background and methodology
Most path-planning problems are multi-objective optimisation problems with multiple constraints and
typically conflicting objectives in multiple layers. During path planning, goal-driven planning, i.e. flying
in the direction of the goal, usually contradicts feasiblemanoeuvres when avoiding obstacles, e.g. flying
around an obstacle perpendicular to the goal direction. On a more global scale, energy consumption,
flight time, flight distance and risk of failure might conflict with one another. These various objectives
can be formulated independently as objective functions oi with the goal to minimise these functions as
exemplarily given in Equation (1).

min
{
O(x) = [o1(x), o2(x), . . . , on(x)]T

}
(1)

Subject to gj(x) ≤ 0; j = 1, 2, . . . , m (2)

Here, n denotes the number of objective functions, gj represents the constraints, and m denotes
the number of inequality constraints. The vector of variables x ∈ En gives the feasible domain F={
x|gj(x) ≤ 0, j = 1, 2, . . . , m

}
. The attainable set is given by A = {O(x)|x ∈ F}.

However, defining optimal conditions for problems with a vector-valued objective function is gener-
ally impossible [31]. Optimising such functions gives set-valued solutions: a Pareto front in the objective
function space and a Pareto set in the design variable space. Figure 1(a) illustrates a design variable space
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Figure 2. Objective space with a non-convex region in the Pareto front. w1 and w2 belong to two
minimally different sets of weights for the weighted sum.

and its feasible space. Figure 1(b) illustrates an objective function space and its attainable set for a prob-
lem with two objectives. The Pareto front is the line of the attainable set of non-dominated points. Points
are non-dominated if one objective cannot improve without degrading another. The Pareto set consists
of the design variables belonging to the non-dominated points of the Pareto front.

Two main strategies exist to identify the Pareto front: scalarisation and direct solution methods.
Scalarisation converts the multi-objective problem into a single-objective problem or series of single-
objective problems – in engineering, commonly known as cost functions. Most direct solution methods
use populations to test the attainable set, e.g. multi-objective genetic algorithms; however, direct solution
methods lack theoretical convergence proprieties, and unless a very high number of points are evaluated,
no sufficient knowledge about the Pareto front is obtained.

Identifying a large set of Pareto points is often unnecessary in an application, as ultimately, only one
preferred point is needed. Many methods to find one preferred Pareto optimal point use scalarisation.
Therefore, the most common methods are presented and discussed in the following.

2.1 Weighted sum
The ideal solution for all presented methods is a minimal U. In the case of the weighted sum, this scalar
is calculated as per the following equation:

U =
∑n

i=1
wioi(x) (3)

where wi are the weightings of the objective functions oi(x).
Weighted sums are the most common and intuitive strategy to transform a multi-objective optimisa-

tion problem into a single-objective optimisation problem in engineering [32]. Weights assign different
importance to the different objectives of the multi-objective problem [33]. In the objective space, a given
set of weights corresponds to an iso-cost line. In the case of a bi-objective problem, the weights define
the slope of a set of parallel, straight lines in the objective function space. This method finds Pareto
optimal points in non-convex regions of a Pareto front by alternating the weights of the weighted sum.
However, it fails to find all non-dominated points in a non-convex Pareto front, as illustrated by Fig. 2.
Minimal weight changes might lead to fundamentally different Pareto optimal points – one of the most
significant weaknesses of the weighted sum approach.

A priori articulation of preferences identifies a single solution that presumably reflects the desired
conditions. However, the sensitivity to the choice of weighting parameters, as indicated in Fig. 2, shows
the difficulty of this task. Additionally, the magnitude of oi also defines the influence of various objec-
tives [32]. If the magnitude of oi varies greatly, normalisation is required. The type of normalisation,
however, defines the influences on the overall result and is arbitrary to a certain degree [34]. Various

https://doi.org/10.1017/aer.2023.68 Published online by Cambridge University Press

https://doi.org/10.1017/aer.2023.68


2130 Thoma et al.

works investigate methods to set ideal weights, e.g. Ref. (9), or the broader influence of weights on the
results, e.g. Ref. (32). However, none fully overcomes the disadvantages. The most common and intuitive
engineering approach is associating individual objectives with importance. The weights wi accordingly
represent the importance of the respective objectives. Therefore, the weighted sum focuses on optimising
the more important objectives. However, the shape of the attainable set defines how sensitive the result
is to the choice of weight. If the shape is non-convex, even minimal changes in weighting factors might
lead to completely different solutions (see Fig. 2). Frequently, local path planning algorithms use path
objectives (smoothness, obstacle vicinity, goal direction) to identify the optimal path. However, relevant
mission objectives (success, distance, time, energy) may change during the flight (e.g. as a function of
weather conditions) and are only ultimately known after the flight. Therefore, the weights of the path
objectives are chosen such that they hopefully lead to the desired mission outcome. In practice, evidence
suggests that the weighted sum might lead to a difficult-to-tune local path planner with unreliable per-
formance because of the dependency of the result on the shape of the attainable set, the magnitude of
the objectives and the chosen weights.

2.2 Weighted product
The weighted product is analogue to the weighted sum, but the individual objective functions oi are
multiplied and weighted by an exponential wi as in:

U =
∏n

i=1
oi(x)wi (4)

Weighted products require oi(x) > 0, ∀i. Contrary to weighted sums, weighted products do not
require normalisation. However, weighted products also overvalue extremes: if one of the objective
functions oi gives an exceptionally high or low value, the influence on the overall result is strong [33].
Moreover, they may incur saturation of computational precision of the calculator or library used, par-
ticularly in the presence of several objectives. Similar to weighted sum, the weighted product focus on
optimising the most important objectives.

2.3 Weighted Chebyshev distance
The weighted Chebyshev distance optimises the worst of the objective functions:

U = max
{
wi

[
oi − o0

i

]}
(5)

Here, o0
i denotes the utopian point with the best result for every individual objective function; oO

i =
min{oi(x)|x ∈ X} (35). The weighted Chebyshev distance aims to find the lowest worst objective relative
to the utopian point possible.

2.4 Factorial achievement scalarising function
Achievement scalarising functions are based on natural decision-making and using desirable reference
objectives rather than weighting factors [36].

U = max
IqCNn : |Iq|=q

{∑
i∈Iq

max
[
wi ·

(
oi(x) − ou

i

)
, 0

]}
(6)

In parameterised achievement scalarising functions, as in Equation (6), an integer parameter q ∈ Nn

controls the degree of flexibility from a linear L1 metric to a Chebyshev L∞. Iq denotes a subset of Nn

of cardinality q [37]. Achievement scalarising functions aim to find the lowest worst combination of
objectives relative to the utopian point depending on the degree of flexibility.
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Figure 3. Examples of two test scenarios. (a) is an environment with flat rectangular obstacles and (b)
represents an urban environment with various buildings of different sizes and dimensions.

2.5 Epsilon-constraint method
U = min

{
Fp(x)

}
(7)

Subject to Fi(x) ≤ εi, i = 1, . . . , n, i �= p (8)

The Epsilon-constraint method converts all objectives except one, denoted as Fp, into bounds – lead-
ing to a single optimisation problem [38]. By systematically varying bounds on the constraints, the
Pareto front is generated. Therefore, the epsilon-constraint method does not lead to an aggregated objec-
tive function. This approach’s advantage is that the parts of a non-convex Pareto front are also identified.
However, it is also difficult to choose an appropriate value for epsilon, shifting the problem of defining
adequate weights to a problem of defining good epsilon values. The epsilon constraint method is also
computationally heavy because it has to solve several optimisation problems at once; therefore, this
method is not further investigated.

2.6 Experimental setup
We use the 3DVFH∗ as a testing algorithm. The 3DVFH∗ combines a 3D vector field histogram with the
A∗ algorithm. It generates several candidate paths, usually consisting of five waypoints 2m apart, based
on the search behaviour of A∗. It then evaluates all candidate paths with a cost function. The standard
3DVFH∗ has a weighted sum as a cost function, as in Equation (9). The 3DVFH∗ was introduced in Ref.
(39).

U = wyaw · oyaw + wpitch · opitch + wsmooth · osmooth + oobstacle + oheuristics (9)

All oi in Equation (9) depend on x giving oi(x); however, we omitted the (x) in Equation (9) for
abbreviation. The total cost U consists of the cost for horizontal deviation from the direct goal direction
oyaw, weighted by wyaw, the cost for vertical deviation from the direct goal direction opitch, weighted by
wpitch, the cost for deviation from the previous flight direction osmooth weighted by wsmooth, the cost of
proximity to obstacles oobstacle and heuristic cost oheuristic, that describe the remaining distance to the goal.
The algorithm estimates the cost of alternative paths and chooses the cheapest path.

We define two main categories of test scenarios: simple obstacle avoidance and urban environments.
We defined 900 different short-distance flight scenarios in which the UAV has to navigate past one to
40 flat obstacles, standing or floating in the air. We also defined 1,408 challenging urban environments
to evaluate the performance of the different cost functions in different, realistic situations. The urban
environments consist of various cuboidal obstacles in shapes and sizes typical for various buildings.
The obstacles stand in rows with different distances between them. Figure 3 shows sample images of
both types of scenarios. The urban environments represent anything from a small rural village to a large
American-type city centre.

We simulated flights with MATLAB and the UAV toolbox. We used our own implementation of the
3DVFH∗ in Matlab, as previously discussed in Ref. (40). This version is a baseline with a weighted sum
as a cost function. We replaced this cost function with a weighted product, two variants mixing weighted
sum and weighted product, a weighted Chebyshev function, and two versions of factorial achievement
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scalarising functions with different levels of factorisation (q = 2 and q = 3 for Equation (6)). The cost of
proximity to obstacles plays a special role because it ensures safety. Therefore, we tested the Chebyshev
distance and the factorial achievement scalarising function, with oobstacle as part of the cost function and
oobstacle as additional cost.

We also investigated the influence of multiple definitions of the objective cost oi itself. Most
optimisation-based path planning algorithms use two or three main types of cost: deviation from the
goal direction/a global path, obstacle cost, and smoothness cost. While the first two are often formulated
similarly across multiple algorithms, the latter is formulated in multiple ways. Therefore, we investigated
the influence of multiple definitions of the smoothness cost osmooth itself. We tested the standard formu-
lation of velocity cost of the 3DVFH∗ as published in Ref. (39), as well as four alternatives representing
different approaches seen in the broader field of local path planning algorithms.

Changing the cost functions also requires the identification of suitable weights. This work also inves-
tigates the sensitivity of the solution on the chosen weight. Therefore, we chose a design of experiments
(DoE)-inspired approach to get as much information as possible in the shortest time possible. We fully
simulate every flight, which means that our tool needs to render the sensor data for every flight position,
use the avoidance algorithm for these situations and simulate any physical and dynamic limitations.
This approach is computationally heavy. Our limited computational resources do not allow the simu-
lation of millions of flights in a short time. Therefore, we start with a full factorial surface design for
every cost function. Sensitive weights are further refined with additional evaluation points in the DoE.
The approach quickly identifies statistically significant weights and reduces the parameter room. This
trade-off between high-fidelity simulations and optimised experimental design allowed over 600,000
realistic test flights in a reasonable amount of time.

2.7 Performance evaluation
The essential requirement of an obstacle avoidance algorithm is that it has to be safe. Therefore, a
collision has to be avoided in any case. An obstacle avoidance algorithm’s second most important
requirement is to fulfil its mission successfully – its reliability. This work evaluates reliability and safety
combined with failure probability. The failure probability f is defined as:

f = nf

nf + ns

(10)

Where nf denotes the number of failed flights and ns denotes the number of successful flights. A failed
flight is a flight that does not reach its goal. The reason for failure, e.g. crashing or poor path planning,
is irrelevant to its reliability. However, we investigate its safety separately.

Besides the algorithm’s reliability in fulfilling its mission, its efficiency plays a crucial role, especially
in small and nano UAV operations. We use estimated energy consumption as a measure of efficiency.
Determining the energy consumption from the simulation is complex and inaccurate. Therefore, we use
a simplified approach to only roughly estimate the energy consumption. This approach is simple but
sufficient to compare the efficiency of the different cost function types.

The simulation provides accurate position data in x, y and z and velocities in all three directions
at 30 Hz. With this information, potential energy and kinetic energy are easy to determine. However, a
quadcopter hovering in a fixed position has constant potential energy and no kinetic energy, i.e. no change
in energy. In reality, the energy consumption in this situation is the highest. Therefore, a potential and
kinetic energy approach is invalid for quadcopter UAVs. A more precise approach based on all motors’
power consumption is impossible because the simulation does not obtain this data. However, the required
thrust can be estimated from movements. Therefore, the power consumption is estimated with a simple
thrust estimation model. This procedure is inspired by the simplified effective hover mode endurance
presented in Ref. (41).
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The whole flight mission is discretised into time steps. The total energy Etot consumed for a mission
is the sum of all energies consumed during the individual time steps Ei.

Etot =
∑

i
Ei (11)

The energy per timestep Ei is the sum of the change in kinetic energy Ekin, potential energy Epot, and
the energy required to generate a certain thrust Ethrust.

Ei = �Ekin,i + �Epot,i + Ethrust,i (12)

The velocity and attitude in each time step are assumed to be constant. The energy required for attitude
control is neglected. The energy required to accelerate the UAV between two timesteps is estimated by
the acceleration work, which is equal to the change in kinetic energy �Ekin, given by:

�Ekin,i = 1

2
· m · �v2

i (13)

�vi =
√(

vx,i+1 − vx,i

)2 + (
vy,i+1 − vy,i

)2 + (
vz,i+1 − vz,i

)2 (14)

With v = (
vx, vy, vz

)
denoting the flight velocity. The energy required for altitude changes is given

by the change in potential energy, according to:

�Epot,i = m · g · (zi+1 − zi) (15)

Finally, the energy required to provide sufficient thrust is derived from the definition of the figure of
merit [42] and given by:

Ethrust, i = T
3
2

i√
2·Sref ·ρ

· �t

FOM
(16)

�t is the length of the time step, Sref is the reference area, i.e. the disk area, ρ denotes the air density,
and FOM is the figure of merit of the rotors. FOM = 0.72 is assumed for the simulation. The thrust of
the UAV is denoted by T and estimated via:

Ti
∼=

√
(m · g)

2 + D2 (17)

m denotes the weight of the UAV, g the gravitational acceleration, and D the drag force acting on the
UAV. D is estimated from Ref. (43) with assuming low pitch angles. In all UAV applications, energy
is a valuable resource. The lower the energy consumption, the more versatile the UAV application.
Energetically very efficient path planning increases the mission range and mission duration. On the
contrary, too high energy consumption might limit the UAV in its applicability. Therefore, the influence
on energy consumption requires monitoring as well.

The sensitivity of cost function weights is the last parameter to evaluate the different cost function
types. If only a specific set of weights leads to good performance while most other parameters lead to
bad performance, the cost function has low robustness against wrongly chosen weights. The higher the
sensitivity, the lower the robustness of this approach.

2.8 Cost function parameter identification
Local path planning is a two-staged multi-optimisation problem. The local path planning algorithm iden-
tifies the best path by considering aspects like the deviation from the goal direction, vicinity to obstacles
and path smoothness. However, failure probability, flight distance, flight time and energy consumption
measure the algorithm’s performance. The cost function parameters are only loosely coupled with the
actual performance parameters of the algorithm and do not show deterministic behaviour. Therefore,
the ideal choice of cost function parameters is unknown. We conducted a DoE-inspired search for ideal
weights. First, we identified a reasonable parameter room for the different cost function weights. Second,
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Figure 4. Comparison of the failure probability of different variants of a cost function for the 3DVFH∗

for flights in all environments. The bars indicate the minimal failure probability. The error bars indicate
the range of failure probabilities.

we conduct a full factorial surface Design and identify those parameters with a statistically significant
influence. Third, those significant parameters are further investigated with a refined sampling around
the optimum found by the DoE.

3.0 Results and discussion
This chapter presents and discusses three influences of the tested functions: the influence on safety
(failure probability and crash probability), robustness and performance (flight time, distance, and energy
consumption). We tested obstacle cost in the weighted Chebyshev and achievement scalarising functions
and outside of these functions as additional costs because obstacle costs have a specific role – they
evaluate the cost of the vicinity to obstacles.

3.1 Reliability – Failure probability
3.1.1 Factorial achievement scalarising and weighted Chebyshev
Figure 4 shows the failure probability of the weights with the lowest failure probability for each variant.
The error bars indicate the failure probability for worse weightings. Using factorial achievement scalaris-
ing with a degree of freedom of two as the cost function but considering the obstacle cost as an additional
cost has the lowest failure probability (26%) and one of the lowest ranges of failure probabilities (6%).
The other variants of the factorial achievement scalarising function and the weighted Chebyshev dis-
tance have slightly higher minimal failure probabilities, around 30%. The Chebyshev distance is the
most robust function against different choices of objective weighting; however, factorial achievement
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scalarising has only slightly higher sensitivities. The weighted Chebysehv distance considers the single
worst objective, while the factorial achievement scalarising function with a degree of freedom of two
considers the two worst objectives. The factorial achievement scalarising function with a degree of free-
dom of three considers the three worst objectives. All three function types optimise by minimising bad
performance. All three function types have the lowest failure probabilities. All three function types have
the lowest sensitivities on the choice of weights. However, Fig. 4 also shows that an increasing number
of relevant objectives also leads to increased sensitivity (see Fig. 4 from left two right: one worst objec-
tive, one worst objective + obstacle cost, two worst objectives, two worst objectives + obstacle cost,
three worst objectives).

3.1.2 Weighted sum and product
Mixing weighted sum and product also yields good performance regarding the minimal failure prob-
ability (see Fig. 4 mixedV2). However, it also shows the worst performance depending on the type
of mixing (see Fig. 4 mixedV1). In general, all mixed versions of weighted sum and product have a
considerably higher sensitivity on the parameters than Chebyshev distance and factorial achievement
scalarising. Mixed version V2 has the third lowest failure probability (31.5%). This version sums the
costs up, similar to a weighted sum. Exponents perform the weighting, similar to a weighted prod-
uct. Therefore, objectives with high costs dominate the term. When only the worst objectives dominate
the term, it is basically the same as Chebyshev distance or factorial achievement scalarising. However,
it depends on the weight, how easily one or multiple objectives dominate the cost term. This depen-
dency explains the higher sensitivity of mixed Version V2 than the Chebyshev distance and factorial
achievement scalarising function.

Weighted sum and product try to find the best solution for all objectives, whereas Chebyshev and
achievement scalarisation aims at the least bad solution for one or multiple objectives. The analysis
shows that the local path planner reaches the goal more often if it focuses on having the least bad
objectives rather than the better ones.

3.1.3 Conclusion on the failure probability
Considering and minimising the worst objectives proved the best strategy in our test case. Considering
the single worst objective in the Chebyshev distance allows the path planner to automatically consider
this objective as the most important, which has the highest impact on the overall result in the cur-
rent situation. Less important objectives are fully disregarded and do not skew the identification of
an ideal solution. Considering the two worst objectives in the factorised achievement scalarising func-
tion increases the optimisation’s flexibility and gives the objectives’ relevance an inherent dynamic to
prioritise the right objectives. Consideration of the two worst objectives reaches slightly better failure
probabilities than the single worst objective of the weighted Chebyshev distance. A similar output can be
generated with a weighted product or a mixture of a weighted product and sum. The disadvantage of the
weighted product – that extreme values might overrule the complete function – becomes an advantage
in this case. However, weighted product and a mixture of weighted product and sum are more sensitive
to weighting than weighted Chebyshev distance and factorial achievement scalarising function.

Looking into specific sub-environments, e.g. only those with few obstacles, those with many high
obstacles, etc., shows that the ideal number of relevant worst objectives depends on the environment.
Less complex environments, with fewer and smaller obstacles, achieve the lowest failure probability with
the weighted Chebyshev distance and factorial achievement scalarising functions with q = 2. However,
complex environments, e.g. a city centre of a large American city, perform best with q = 3. Analysing
the flight paths shows that simple environments often have one main problem related to one or two
objectives of path planning. By focusing on these objectives (and therefore this single problem) and
ignoring other objectives, the problem is quickly solved, and the path is successful. However, in more
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Figure 5. Comparison of the number of crashes of different variants of a cost function for the 3DVFH∗

for flights in all environments. The bars indicate the minimal failure probability. The error bars indicate
the range of failure probabilities.

complex environments, a series of problems arise simultaneously. If the focus is on too few or too many
objectives, none of the problems is solved, and the path planner gets stuck in an open field.

3.2 Safety – Crash probability
3.2.1 Safety can be measured in two aspects
The previous subchapter already discussed the likelihood of successfully fulfilling a mission. Depending
on the mission, a failure might be more or less severe. Mission failure has one of the most severe impacts
on medical applications and is particularly important in this work. Nonetheless, the probability of the
UAV crashing into an object is also essential for evaluating the different cost function types. Figure 5
shows the number of crashes for the different cost function types and the strongest weakness of the
weighted Chebyshev distance – it navigates into buildings. The same problem is seen in the factorial
achievement scalarising function and version two and three of mixing weighted product and sum. In
these versions, some objectives can easily dominate the whole cost function, leading to similar situa-
tions as in the weighted Chebyshev distance. Analysis of the crashed flights shows that the UAV must
fly far off the goal direction. A safe distance to obstacles is gradually traded for minimal improvements
in the goal direction, which finally leads to a shortfall of a suitable safety distance to obstacles, which
we treat as a potential crash. The choice of weights influences how likely the path planner will trade suf-
ficient safety distance for goal-driven planning. The other cost function types, which consider multiple
objectives simultaneously, are less prone to crash into buildings. In these algorithms, one or a few objec-
tives cannot easily dominate the cost function. Therefore, other costs do not completely override the cost
for the vicinity of obstacles. The two functions with additional obstacle costs (chebshev+obst and fac-
torial achievement scalarising (q = 2)+obst in Fig. 5) can be completely dominated by the Chebyshev
or factorial achievement scalarising term if the weightings are chosen poorly (upper limit of the error
bar).
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Figure 6. Comparison of the average energy consumption of different variants of a cost function for
the 3DVFH∗ for flights in all environments. The bars indicate the energy consumption reached with the
objective weighting for minimal failure probability/maximum reliability. Error bars indicate the best
and worst performance for the individual cost function types with other weightings.

3.3 Performance – Energy consumption
3.3.1 Factorial achievement scalarising and weighted Chebyshev
Some kind of durability is important for many types of missions. The estimated energy consumption
of the performed missions is a good measure of overall efficiency. Figure 6 gives an overview of the
estimated average energy consumption for the different cost function types. The weights used for the
bars in Fig. 6 are those weights that lead to a minimal failure probability and maximum reliability.
Please note that the average energy consumption is based on successful flights only. Therefore, different
bars (and the error bars) are based on partly different environments. The different environments skew
the analysis to a certain degree.

Figure 6 shows that the average energy consumption decreases with an increasing number of relevant
objectives, except for factorial achievement scalarising (q = 2) + obstacle cost. However, the error bar
also indicates that function type can have a lower average energy consumption. That consideration of
more criteria leads to more efficient flight paths is not surprising. One criterium ensures safety (obstacle
cost). All other criteria improve efficiency in one way or another – either by ensuring short paths or
minimal deviation from the goal direction or by ensuring smooth paths requiring fewer control inputs.
Its low failure probability explains the high average energy consumption of the factorial achievement
scalarising (q = 2) and additional obstacle cost function. This function finds suitable paths in environ-
ments in which all other approaches fail. The energy consumption of some of these paths is up to ten
times higher than the average of other paths. These paths are certainly not efficient. Nevertheless, they
are at least valid. These paths lead to the relatively high average energy consumption of this function.
Looking only at environments where all three versions of the factorial achievement scalarising function
succeed has around the same average energy consumption as q = 2 without additional obstacle cost. The
error bar of factorial achievement scalarising (q = 2) + obst also indicates that this function can have the
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same average energy consumption as the other factorial achievement scalarising functions. However, in
these cases, the failure probability is slightly higher.

3.3.2 Weighted sum and product
Weighted product and weighted sum vary greatly in efficiency, depending on the chosen weights. The
UAV has two options to evade an obstacle: fly around or over the obstacle. By setting specific weights
for yaw and pitch cost, the operator chooses which of the two avoidance manoeuvres is preferred to a
certain degree; however, the environment defines which manoeuvre is best. Sometimes, the algorithm
is very efficient in a specific environment but fails in all other environments. In these cases, the aver-
age energy consumption is quite low (low lower error bar). Therefore, most functions’ lowest average
energy consumption is roughly the same. Poor weights can also lead to very high energy consumption
at simultaneously lower failure probability than possible for this function type (upper error bars of the
five right bars in Fig. 6).

3.3.3 Conclusion on the energy consumption
As long as energy is one of the most limiting factors of small UAV, its consumption always needs to
be considered. While low energy consumption can increase a system’s versatility significantly, high
energy consumption can render a system completely unusable. Especially in medical applications, low
energy consumption also allows the transportation of additional equipment – increasing the benefits of
the UAV further. Figure 6 shows that focusing on a few objectives (e.g. with the weighted Chebyshev dis-
tance) leads to significantly higher energy consumption compared to other approaches. Even though this
approach has a relatively low failure probability, its high energy consumption might render it unusable
for some applications. However, Fig. 6 also shows that a well-chosen factorial achievement scalarising
function, for example, one with a degree of freedom of three, is better than the current standard, the
weighted sum.

3.4 Performance – Flight distance
3.4.1 Factorial achievement scalarising and weighted Chebyshev
Figure 7 shows the minimal path length for the different cost function types. Only successful flights
are considered. Similar to the energy consumption and what is seen in Fig. 6, an increasing number of
relevant parameters decrease the average distance. Again, factorial achievement scalarising (q = 2) with
obstacle cost is an exception. The UAV flies long detours to find paths in worlds where other functions
get stuck; however, a slight adaption of objective weighting leads to a strong reduction of flight distance
(lower error bar) at the cost of slightly increased failure probability.

3.4.2 Weighted sum and product
Weighted sum, product and mixtures of those vary less in-flight distance than in energy consumption.
Again, efficiency depends on the parameter setting, and the operator can easily tune the parameters such
that the UAV finds short paths in a certain environment. However, the algorithm is too specific for an
environment such that it fails in many other environments. A wrong choice of parameters can also lead
to long detours and inefficient path planning.

3.4.3 Conclusion on the flight distance
Long flight paths are less efficient and potentially disturb more people on the way. Figure 7 shows that
most functions lie relatively close together. The type of cost function only has a small effect on the path
length.
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Figure 7. Comparison of the average flight distance of different variants of a cost function for the
3DVFH∗ for flights in all environments. The bars indicate the flight distance reached with the objective
weighting for minimal failure probability/maximum reliability. Error bars indicate the best and worst
performance for the individual cost function types with other weightings.

3.5 Performance – Flight time
3.5.1 Factorial achievement scalarising and weighted Chebyshev
Figure 8 shows the flight time for the different cost function types; however, only successful flights give a
meaningful flight time. Additionally, Fig. 8 shows the lowest reachable flight time for every cost function
type, independent of the failure probability, indicated by the error bars.

Like the other performance charts in Figs 6 and 7, factorial achievement scalarising with a degree of
freedom of 3 has the lowest flight time. The more objectives are simultaneously relevant, the better the
result for those functions minimising bad performance. Again, factorial achievement scalarising (q = 2)
with obstacle cost is an exception because of the more complicated missions it solves. In general, the
variability in flight time is also relatively small for the Chebyshev distance and factorial achievement
scalarising functions.

3.5.2 Weighted sum and product
Weighted sum, product and mixtures of both show a wide range of average flight times; notably, weighted
product and mixedV2 are very sensitive to parameter tuning. Low average flight times are achieved with
ideal weights for specific environments. Other environments fail and are irrelevant for Fig. 8, leading to
low lower error bars. Weighted product and mixed V2 also have very high upper error bars. Therefore,
at least one set of weights must be inefficient in most environments. These two function types are most
likely to overvalue extremes. They are also easily dominated by a specific objective if the weight is
poorly chosen. For example, very high obstacle cost weight makes the path planner extremely careful
and leads to long flight times.
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Figure 8. Comparison of the average flight time of different variants of a cost function for the 3DVFH∗

for flights in all environments. The bars indicate the flight time reached with the objective weighting for
minimal failure probability/maximum reliability. Error bars indicate the best and worst performance
for the individual cost function types with other weightings.

3.5.3 Conclusion on the flight time
The flight time is particularly important for medical applications. Here, the different cost function types
show clear differences. The weighted sum is relatively efficient in-flight time. However, a factorial
achievement scalarising function with a degree of freedom of three has a similar flight time but con-
siderably lower failure probability and energy consumption. Therefore, using a weighted sum yields no
advantages over a factorial achievement scalarising function with a degree of freedom of three.

4.0 Conclusion and outlook
Formulating a robust, reliable and energy-efficient path planner for collision avoidance manoeuvers
is a key aspect in developing increasingly autonomous unmanned air vehicles (UAV). The need to
simultaneously address several physical laws and conflicting optimisation goals leads to multi-objective
and multi-constrained optimisation problems, which, coupled with the significant nonlinearities of
flight dynamics, environmental (e.g. weather) and other models, ultimately results in non-convex and
numerically intricate solution spaces. This work demonstrated the potential of various cost functions in
multi-objective optimisation problems for local path planning in various environments. We showed that
functions that aim to minimise the worst performance at every step have a lower failure probability than
those that try to maximise good performance in objective functions. A factorial achievement scalarising
function with a degree of freedom of two and additional cost for vicinity to obstacles has the lowest fail-
ure probability. Other forms of factorial achievement scalarising functions and the weighted Chebyshev
distance have slightly higher failure probabilities. While a mixture of weighted product and sum can
reach similarly low failure probabilities, the mixed cost function is sensitive to the correct choice of
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objective weights. The weighted Chebyshev distance and the factorial achievement scalarising function
are very robust and not as sensitive to the choice of weights as the other methods. Compared to the fac-
torial achievement scalarising function, the weighted Chebyshev distance shows slight disadvantages
regarding flight time, distance and energy consumption. Taking additional objectives into account and
minimising those with the highest costs leads to better overall performance.

However, a verification based on the 3DVFH∗ and the investigated cost functions alone is insufficient
for the generality of path planning application cases and does not capitalise on the advantages offered by
machine learning implementations. Therefore, further work is recommended to improve UAV collision
avoidance path planning algorithms. In particular, combining the 3DVFH∗ with a better cost function
and additional improvements, e.g. bio-inspired flight strategies or a neural network, might decrease the
failure probability further. Investigating the influence of the cost function type on other algorithms with
a better base performance than the 3DVFH∗, e.g. FASTER, is also a potential future research topic.
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