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Abstract

A duality theorem for the stable module category of representations of a finite group
scheme is proved. One of its consequences is an analogue of Serre duality, and the
existence of Auslander–Reiten triangles for the p-local and p-torsion subcategories of
the stable category, for each homogeneous prime ideal p in the cohomology ring of the
group scheme.

1. Introduction

This work concerns the modular representation theory of finite groups and group schemes.
A starting point for it is a duality theorem for finite groups due to Tate, that appears already
in Cartan and Eilenberg [CE56]. For our purposes it is useful to recast this theorem in terms
of stable module categories. The stable module category of a finite group scheme G over a
field k is the category obtained from the (abelian) category of finite-dimensional G-modules
by annihilating morphisms that factor through a projective module; we denote it stmodG, and
write HomG(−,−) for the morphisms in this category. The category stmodG is triangulated
with suspension Ω−1, and Tate duality translates to the statement that for all finite-dimensional
G-modules M and N there are natural isomorphisms

Homk(HomG(M,N), k) ∼= HomG(N,ΩδG ⊗kM).

Here δG is the modular character of G, described in Jantzen [Jan03, § I.8.8]; it is isomorphic to
the trivial representation k when G is a finite group. Tate duality can be deduced from a formula
of Auslander and Reiten [Aus78] that applies to general associative algebras; see Theorem 4.2.

In the language introduced by Bondal and Kapranov [BK89] the isomorphism above says
that stmodG has Serre duality with Serre functor M 7→ ΩδG ⊗k M . One of the main results of
our work is that such a duality also holds locally.

The precise statement involves a natural action of the cohomology ring H∗(G, k) of G on the
graded abelian group

Hom∗G(M,N) =
⊕
n∈Z

HomG(M,Ω−nN).
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Local duality

The ring H∗(G, k) is graded commutative, and also finitely generated as a k-algebra, by a result
of Friedlander and Suslin [FS97]. Fix a homogeneous prime ideal p not containing H>1(G, k)
and consider the triangulated category γp(stmodG) that is obtained from stmodG by localising
the graded morphisms at p and then taking the full subcategory of objects such that the graded
endomorphisms are p-torsion; see § 7 for details. Our interest in the subcategories γp(stmodG)
stems from the fact that they are the building blocks of stmodG and play a key role in the
classification of its tensor ideal thick subcategories; see [BIK15]. These subcategories may thus be
viewed as analogues of the K(n)-local spectra in stable homotopy theory that give the chromatic
filtration of a spectrum; see [Rav92].

The following is our version of local Serre duality.

Theorem 1.1. Let C := γp(stmodG) and d the Krull dimension of H∗(G, k)/p. For all M,N in
C there are natural isomorphisms

HomH∗(G,k)(Hom∗C(M,N), I(p)) ∼= HomC(N,ΩdδG ⊗kM),

where I(p) is the injective hull of the graded H∗(G, k)-module H∗(G, k)/p.

One corollary is that γp(stmodG) has Auslander–Reiten (AR) triangles, so one can bring
to bear the techniques of AR theory to the study of G-modules. These results are contained in
Theorem 7.10.

We deduce Theorem 1.1 from a more general result concerning StModG, the stable
category of all (including infinite dimensional) G-modules. Consider its subcategory Γp(StModG)
consisting of the p-local p-torsion modules; in other words, the G-modules whose support is
contained in {p}. This is a compactly generated triangulated category and the full subcategory
of compact objects is equivalent, up to direct summands, to γp(stmodG); this is explained in
Remark 7.2. There is an idempotent functor Γp : StModG → StModG with image the p-local
p-torsion modules; see § 2 for details. The central result of this work is that Γp(δG) is a dualising
object for Γp(StModG), in the following sense.

Theorem 1.2. For any G-module M and i ∈ Z there is a natural isomorphism

Êxt
i

G(M,Γp(δG)) ∼= HomH∗(G,k)(H
∗−d−i(G,M), I(p)).

This result is proved in § 5. In the isomorphism, the vector space on the left is HomG(M,

Ω−iΓp(δG)). The statement is in terms of Êxt to underscore its similarity to Serre duality on a
nonsingular projective variety X of dimension n:

ExtiX(F , ωX) ∼= Homk(H
n−i(X,F), k),

for any coherent sheave F on X; see, for example, Hartshorne [Har77].
When G is a finite group Γp(k) is the Rickard idempotent module κV , introduced by Benson,

Carlson and Rickard [BCR96], that is associated to the irreducible subvariety V of ProjH∗(G, k)
defined by p. In this context, Theorem 1.2 was proved by Benson and Greenlees [BG08]; see the
paragraph following Theorem 5.1 below for a detailed comparison with their work and that of
Benson [Ben08].

Concerning Γp(k), the following consequences of Theorem 1.2 have been anticipated in
[Ben01] when G is a finite group.
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Theorem 1.3. Assume δG ∼= k. The H∗(G, k)-module Êxt
∗
G(k, Γp(k)) is injective and isomorphic

to a twist of I(p). Also, there is an isomorphism of k-algebras

Êxt
∗
G(Γp(k), Γp(k)) ∼= (H∗(G, k)p)

∧,

where (−)∧ denotes completion with respect to the p-adic topology, and the G-module Γp(k) is
pure injective.

Theorem 1.2 can be interpreted to mean that the category StModG is Gorenstein, for it is
analogous to Grothendieck’s result that a commutative noetherian ring A is Gorenstein if, and
only if, ΓpA is the injective hull of A/p, up to suspension, for each p in SpecA. In § 6 we propose
a general notion of a Gorenstein triangulated category, in an attempt to place these results in a
common framework.

To prove Theorem 1.2 we use a technique from algebraic geometry in the tradition of
Zariski and Weil; namely, the construction of generic points for algebraic varieties. Given a
point p ⊆ H∗(G, k), there is a purely transcendental extension K of k and a closed point
m of ProjH∗(GK ,K) lying above the point p in ProjH∗(G, k). Here, GK denotes the group
scheme that is obtained from G by extending the field to K. The crux is that one can choose m
such that the following statement holds.

Theorem 1.4. Restriction of scalars induces an exact functor

stmodGK ⊇ γm(stmodGK) −→ γp(stmodG)

that is surjective on objects, up to isomorphism.

This result is proved in § 3, building on our work in [BIKP18]. It gives a remarkable
description of the compact objects in Γp(StModG): they are obtained from the finite-dimensional
objects in Γm(StModGK) by restriction of scalars. This allows one to reduce the proof of
Theorem 1.2 to the case of a closed point, where it is essentially equivalent to classical Tate
duality. The theorem above has other consequences; for example, it implies that the compact
objects in Γp(StModG) are endofinite G-modules in the sense of Crawley-Boevey [Cra92]; see § 3.

2. Cohomology and localisation

In this section we recall basic notions concerning certain localisation functors on triangulated
categories with ring actions. The material is needed to state and prove the results in this work.
The main triangulated category of interest is the stable module category of a finite group scheme,
but the general framework is needed in §§ 6 and 7. Primary references for the material presented
here are [BIK08, BIK11a]; see [BIKP18] for the special case of the stable module category.

Triangulated categories with central action
Let T be a triangulated category with suspension Σ. For objects X and Y in T set

Hom∗T(X,Y ) :=
⊕
i∈Z

HomT(X,ΣiY ) and End∗T(X) := Hom∗T(X,X).

Composition makes End∗T(X) a graded ring and Hom∗T(X,Y ) a left-End∗T(Y ) right-End∗T(X)
module.
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Let R be a graded commutative noetherian ring. In what follows we will only be concerned
with homogeneous elements and ideals in R. In this spirit, ‘localisation’ will mean homogeneous
localisation, and SpecR will denote the set of homogeneous prime ideals in R.

We say that a triangulated category T is R-linear if for each X in T there is a homomorphism
of graded rings φX : R → End∗T(X) such that the induced left and right actions of R on
Hom∗T(X,Y ) are compatible in the following sense: for any r ∈ R and α ∈ Hom∗T(X,Y ), one has

φY (r)α = (−1)|r| |α|αφX(r).

An exact functor F : T → U between R-linear triangulated categories is R-linear if the
induced map

Hom∗T(X,Y ) −→ Hom∗U(FX,FY )

of graded abelian groups is R-linear for all objects X,Y in T.
In what follows, we fix a compactly generated R-linear triangulated category T and write Tc

for its full subcategory of compact objects.

Localisation
Fix an ideal a in R. An R-module M is a-torsion if Mq = 0 for all q in SpecR with a 6⊆ q.
Analogously, an object X in T is a-torsion if the R-module Hom∗T(C,X) is a-torsion for all
C ∈ Tc. The full subcategory of a-torsion objects

ΓV(a)T := {X ∈ T | X is a-torsion}
is localising and the inclusion ΓV(a)T ⊆ T admits a right adjoint, denoted ΓV(a).

Fix a p in SpecR. An R-module M is p-local if the localisation map M → Mp is invertible,
and an object X in T is p-local if the R-module Hom∗T(C,X) is p-local for all C ∈ Tc. Consider
the full subcategory of T of p-local objects

Tp := {X ∈ T | X is p-local}
and the full subcategory of p-local and p-torsion objects

ΓpT := {X ∈ T | X is p-local and p-torsion}.
Note that ΓpT ⊆ Tp ⊆ T are localising subcategories. The inclusion Tp → T admits a left adjoint
X 7→ Xp while the inclusion ΓpT → Tp admits a right adjoint. We denote by Γp : T → ΓpT the
composition of those adjoints; it is the local cohomology functor with respect to p; see [BIK08,
BIK11a] for the construction of this functor.

The following observation is clear.

Lemma 2.1. For any element r in R\p, say of degree n, and p-local object X, the natural map

X
r−→ ΣnX is an isomorphism.

The functor ΓV(a) commutes with exact functors preserving coproducts.

Lemma 2.2. Let F : T → U be an exact functor between R-linear compactly generated
triangulated categories such that F is R-linear and preserves coproducts. Suppose that the
action of R on U factors through a homomorphism f : R → S of graded commutative rings. For
any ideal a of R there is a natural isomorphism

F ◦ ΓV(a) ∼= ΓV(aS) ◦ F
of functors T → U, where aS denotes the ideal of S that is generated by f(a).

Proof. The statement follows from an explicit description of ΓV(a) in terms of homotopy colimits;
see [BIK11a, Proposition 2.9]. 2
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Injective cohomology objects
Given an object C in Tc and an injective R-module I, Brown representability yields an object
T (C, I) in T such that

HomR(Hom∗T(C,−), I) ∼= HomT(−, T (C, I)). (2.1)

This yields a functor

T : Tc × InjR −→ T.

For each p in SpecR, we write I(p) for the injective hull of R/p and set

Tp := T (−, I(p)),

viewed as a functor Tc
→ T.

Tensor triangulated categories
Let T = (T,⊗,1) be a tensor triangulated category such that R acts on T via a homomorphism
of graded rings R → End∗T(1). Brown representability yields functions objects Hom(X,Y )
satisfying an adjunction isomorphism

HomT(X ⊗ Y,Z) ∼= HomT(X,Hom(Y,Z)) for all X,Y, Z in T.

Set X∨ := Hom(X,1) for each X in T. It is part of our definition of a tensor triangulated
category that the unit, 1, is compact, and that compact objects are rigid : for all C,X in T with
C compact the natural map

C∨ ⊗X −→ Hom(C,X)

is an isomorphism; see [BIK08, § 8] for details.
The functors Γp and Tp can be computed as follows:

Γp ∼= Γp(1)⊗− and Tp ∼= Tp(1)⊗−. (2.2)

Indeed, the first isomorphism is from [BIK08, Corollary 8.3], while the second one holds because
for each X ∈ T and compact object C there are isomorphisms

HomT(X,Tp(1)⊗ C) ∼= HomT(X,Hom(C∨, Tp(1)))
∼= HomT(X ⊗ C∨, Tp(1))
∼= HomR(Hom∗T(1, X ⊗ C∨), I(p))
∼= HomR(Hom∗T(1,Hom(C,X), I(p)))
∼= HomR(Hom∗T(C,X), I(p)).

The first and the fourth isomorphisms above hold because C is rigid; the second and the last
one are adjunction isomorphisms; the third one is by the defining isomorphism (2.1).

We turn now to modules over finite group schemes, following the notation and terminology
from [BIKP18].

The stable module category
Let G be a finite group scheme over a field k of positive characteristic. The coordinate ring and
the group algebra of G are denoted k[G] and kG, respectively. These are finite-dimensional Hopf
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algebras over k that are dual to each other. We write ModG for the category of G-modules
and modG for its full subcategory consisting of finite-dimensional G-modules. We often identity
ModG with the category of kG-modules, which is justified by [Jan03, I.8.6].

We write H∗(G, k) for the cohomology algebra, Ext∗G(k, k), of G. This is a graded
commutative k-algebra, because kG is a Hopf algebra, and acts on Ext∗G(M,N), for any G-
modules M,N . Moreover, the k-algebra H∗(G, k) is finitely generated, and, when M,N are
finite dimensional, Ext∗G(M,N) is finitely generated over it; this is by a theorem of Friedlander
and Suslin [FS97].

The stable module category StModG is obtained from ModG by identifying two morphisms
between G-modules when they factor through a projective G-module. An isomorphism in
StModG will be called a stable isomorphism, to distinguish it from an isomorphism in ModG.
In the same vein, G-modules M and N are said to be stably isomorphic if they are isomorphic
in StModG; this is equivalent to the condition that M are N are isomorphic in ModG, up to
projective summands.

The tensor product over k of G-modules passes to StModG and yields a tensor triangulated
category with unit k and suspension Ω−1, the inverse of the syzygy functor. The category StModG
is compactly generated and the subcategory of compact objects identifies with stmodG, the stable
module category of finite-dimensional G-modules. See Carlson [Car96, § 5] and Happel [Hap88,
ch. I] for details.

We use the notation HomG(M,N) for the Hom-sets in StModG. The cohomology algebra
H∗(G, k) acts on StModG via a homomorphism of k-algebras

−⊗kM : H∗(G, k) = Ext∗G(k, k) −→ Hom∗G(M,M).

Thus, the preceding discussion on localisation functors on triangulated categories applies to the
H∗(G, k)-linear category StModG.

Koszul objects
Each b in Hd(G, k) corresponds to a morphism k → Ω−dk in StModG; let k//b denote its mapping
cone. This gives a morphism k → Ωd(k//b). For a sequence of elements b := b1, . . . , bn in H∗(G, k)
and a G-module M , we set

k//b := (k//b1)⊗k · · · ⊗k (k//bn) and M//b := M ⊗k k//b.

It is easy to check that for a G-module N and s =
∑

i |bi|, there is an isomorphism

HomG(M,N//b) ∼= HomG(Ωn+sM//b, N). (2.3)

Let b = (b) be the ideal of H∗(G, k) generated by b. By abuse of notation we set M//b :=
M//b. If b′ is a finite set of elements in H∗(G, k) such that

√
(b′) =

√
(b), then, by [BIK15,

Proposition 3.10], for any M in StModG there is an equality

Thick(M//b) = Thick(M//b′). (2.4)

Fix p in SpecH∗(G, k). We will repeatedly use the fact that Γp(StModG)c is generated
as a triangulated category by the family of objects (M//p)p with M in stmodG; see [BIK11a,
Proposition 3.9]. In fact, if S denotes the direct sum of a representative set of simple G-modules,
then there is an equality

Γp(StModG)c = Thick((S//p)p). (2.5)

It turns out that one has Γm(StModG) = {0} where m denotes H>1(G, k), the ideal of elements of
positive degree; see Lemma 2.5 below. For this reason, it is customary to focus on ProjH∗(G, k),
the set of homogeneous prime ideals not containing m, when dealing with StModG.
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Tate cohomology

By construction, the action of H∗(G, k) on StModG factors through Hom∗G(k, k), the graded

ring of endomorphisms of the identity. The latter ring is not noetherian in general, which is one

reason to work with H∗(G, k). In any case, there is little difference, vis-à-vis their action on

StModG, as the next remarks should make clear.

Remark 2.3. Let M and N be G-modules. The map HomG(M,N) → HomG(M,N) induces a

map Ext∗G(M,N) → Hom∗G(M,N) of H∗(G, k)-modules. This map is surjective in degree zero,

with kernel PHomG(M,N), the maps from M to N that factor through a projective G-module. It

is bijective in positive degrees and hence one gets an exact sequence of graded H∗(G, k)-modules

0 −→ PHomG(M,N) −→ Ext∗G(M,N) −→ Hom∗G(M,N) −→ X −→ 0 (2.6)

with Xi = 0 for i > 0. For degree reasons, the H∗(G, k)-modules PHomG(M,N) and X are

m-torsion. Consequently, for p in ProjH∗(G, k) the induced localised map is an isomorphism:

Ext∗G(M,N)p
∼=−−→ Hom∗G(M,N)p. (2.7)

More generally, for each r in m localisation induces an isomorphism

Ext∗G(M,N)r
∼=−−→ Hom∗G(M,N)r

of H∗(G, k)r-modules. This means that ProjH∗(G, k) has a finite cover by affine open sets on

which ordinary cohomology and stable cohomology agree.

Given the finite generation result due to Friedlander and Suslin mentioned earlier, the next

remark can be deduced from the exact sequence (2.6).

Remark 2.4. When M,N are finite-dimensional G-modules, Hom>s
G (M,N) is a finitely generated

H∗(G, k)-module for any s ∈ Z. Moreover the H∗(G, k)p-module

Hom∗G(Mp, Np) ∼= Hom∗G(M,N)p

is finitely generated for each p in ProjH∗(G, k).

Lemma 2.5. One has Γm(StModG) = {0}, where m = H>1(G, k).

Proof. Given (2.5) it suffices to check that S//m = 0 in StModG, where S is the direct

sum of representative set of simple G-modules. For any G-module M , the H∗(G, k)-module

Hom∗G(M,S//m) is m-torsion; see [BIK08, Lemma 5.11(1)]. Thus, when M is finite dimensional,

the H∗(G, k)-module Hom>0
G (M,S//m) is m-torsion and finitely generated, so it follows that

Homi
G(M,S//m) = 0 for i� 0, by Remark 2.4. This implies that S//m is projective, since kG is

self-injective. 2

To gain a better understanding of the discussion above, it helps to consider the homotopy

category of InjG, the injective G-modules.
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The homotopy category of injectives
Let K(InjG) and D(ModG) denote the homotopy category of InjG and the derived category of
ModG, respectively. These are also H∗(G, k)-linear compactly generated tensor triangulated
categories, with the tensor product over k. The unit of the tensor product on K(InjG)
is an injective resolution of the trivial G-module k, while that of D(ModG) is k. The
canonical quotient functor K(InjG) → D(ModG) induces an equivalence of triangulated category
K(InjG)c

∼−→ Db(modG), where the target is the bounded derived category of modG; see [Kra05,
Proposition 2.3].

Taking Tate resolutions identifies StModG with Kac(InjG), the full subcategory of acyclic
complexes in K(InjG). In detail, let pk and ik be a projective and an injective resolution of the
trivial G-module k, respectively, and let tk be the mapping cone of the composed morphism
pk → k → ik; this is a Tate resolution of k. Since projective and injective G-modules coincide,
one gets the exact triangle

pk −→ ik −→ tk −→ (2.8)

in K(InjG). For a G-module M , the complex M ⊗k tk is a Tate resolution of M and the
assignment M 7→ M ⊗k tk induces an equivalence of categories

StModG
∼−→ Kac(InjG),

with quasi-inverse X 7→ Z0(X), the submodule of cycles in degree 0. Assigning X in K(InjG) to
X ⊗k tk is a left adjoint of the inclusion Kac(InjG) → K(InjG). These results are contained in
[Kra05, Theorem 8.2]. Consider the composed functor

π : K(InjG)
−⊗ktk−−−−→ Kac(InjG)

∼−−→ StModG.

A straightforward verification yields that these functors are H∗(G, k)-linear. The result below is
the categorical underpinning of Remark 2.3 and Lemma 2.5.

Lemma 2.6. There is a natural isomorphism ΓmX ∼= X ⊗k pk for X ∈ K(InjG). For each p in
ProjH∗(G, k), the functor π induces triangle equivalences

K(InjG)p
∼−→ (StModG)p and Γp(K(InjG))

∼−→ Γp(StModG).

Proof. We identify StModG with Kac(InjG). This entails Γm(Kac(InjG)) = {0}, by Lemma 2.5.
It is easy to check that kG is m-torsion, and hence so is pk, for it is in the localising subcategory
generated by kG, and the class of m-torsion objects in K(InjG) is a tensor ideal localising
subcategory; see, for instance, [BIK08, § 8]. Thus, applying Γm(−) to the exact triangle (2.8)
yields pk ∼= Γm(ik). It then follows from (2.2) that X ⊗k pk ∼= ΓmX for any X in K(InjG).

From the construction of π and (2.8), the kernel of π is the subcategory

{X ∈ K(InjG) | X ⊗k pk ∼= X}.

These are precisely the m-torsion objects in K(InjG), by the already established part of the result.
Said otherwise, X ∈ K(InjG) is acyclic if and only if ΓmX = 0. It follows that Kac(InjG) contains
the subcategory K(InjG)p of p-local objects, for each p in ProjH∗(G, k). On the other hand, the
inclusion Kac(InjG) ⊆ K(InjG) preserves coproducts, so its left adjoint π preserves compactness
of objects and all compacts of Kac(InjG) are in the image of π. Given this a simple calculation
shows that K(InjG)p contains Kac(InjG)p. Thus Kac(InjG)p = K(InjG)p. 2
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3. Passage to closed points

Let G be a finite group scheme over a field k of positive characteristic. In this section we describe
a technique that relates the p-local p-torsion objects in StModG, for a point p in ProjH∗(G, k),
to the corresponding modules at a closed point defined over a field extension of k. Recall that a
point m is closed when it is maximal with respect to inclusion: m ⊆ q implies m = q for all q in
ProjH∗(G, k). In what follows, k(p) denotes the graded residue field of H∗(G, k) at p.

For a field extension K/k extension of scalars and restriction give exact functors

K ⊗k (−) : StModG −→ StModGK and (−)↓G : StModGK −→ StModG.

The functors form an adjoint pair, with the left adjoint K⊗k (−) mapping k to K and respecting
tensor products, so one has a well-known projection formula:

M ⊗k N↓G ∼= (MK ⊗K N)↓G (3.1)

for a G-module M and GK-module N ; see [BDS16, (2.16)] or [BIKP17, Lemma 2.2].
The functor K ⊗k (−) yields a homomorphism H∗(G, k) → H∗(GK ,K) of rings. There is a

natural isomorphism H∗(GK ,K)
∼−→ K ⊗k H∗(G, k) of K-algebras, so the preceding map above

is just extension of scalars. There is an induced map

ProjH∗(GK ,K) −→ ProjH∗(G, k),

with q mapping to p := q ∩H∗(G, k). We say that q lies over p to indicate this.
The main objective of this section is the proof of the following result. We say a functor is

dense if it is surjective on objects, up to isomorphism.

Theorem 3.1. Fix p in ProjH∗(G, k) and K/k a purely transcendental extension of degree
dim(H∗(G, k)/p)− 1. There exists a closed point m in ProjH∗(GK ,K) lying over p with k(m) ∼=
k(p) such that the functor (−)↓G restricts to functors

Γm(StModGK) → Γp(StModG) and Γm(StModGK)c → Γp(StModG)c

that are dense.

The proof of the theorem yields more: there is a subcategory of Γm(StModGK) on which
(−)↓G is full and dense; ditto for the category of compact objects. However, the functor need
not be full on all of Γm(StModGK)c; see Example 3.7.

Here is one consequence of Theorem 3.1.

Corollary 3.2. The compact objects in Γp(StModG) are, up to isomorphism, the restrictions
of finite-dimensional GK-modules in Γm(StModGK).

Proof. By [BIK08, Theorem 6.4], for any ideal a in H∗(G, k), we have

ΓV(a)(StModG)c = ΓV(a)(StModG) ∩ stmodG.

Applying this observation to the ideal m of H∗(GK ,K) and noting that Γm = ΓV(m), since m is
a closed point, the desired result follows from Theorem 3.1. 2

The closed point in Theorem 3.1 depends on the choice of a Noether normalisation of
H∗(G, k)/p as is explained in the construction below, from [BIKP18, § 7].
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Construction 3.3. Fix p in ProjH∗(G, k); the following construction is relevant only when p
is not a closed point. Choose elements a := a0, . . . , ad−1 in H∗(G, k) of the same degree such
that their image in H∗(G, k)/p is algebraically independent over k and H∗(G, k)/p is finitely
generated as a module over the subalgebra k[a]. Thus the Krull dimension of H∗(G, k)/p is d.
Set K := k(t1, . . . , td−1), the field of rational functions in indeterminates t1, . . . , td−1 and

bi := ai − a0ti for i = 1, . . . , d− 1

viewed as elements in H∗(GK ,K). Let p′ be the extension of p to H∗(GK ,K) and

q := p′ + (b) and m :=
√
q.

It is proved as part of [BIKP18, Theorem 7.7] that the ideal m is a closed point in ProjH∗(GK ,K)
with the property that m ∩ H∗(G, k) = p. What is more, it follows from the construction
(see in particular [BIKP18, Lemmas 7.6, and (7.2)]) that the induced extension of fields is an
isomorphism

k(p)
∼=−−→ k(m).

The sequence of elements b in H∗(GK ,K) yields a morphism K → Ωs(K//b), where s =∑
i |bi|, and composing its restriction to G with the canonical morphism k → K↓G gives in

StModG a morphism

f : k −→ Ωs(K//b)↓G.

Since the ai are not in p, Lemma 2.1 yields a natural stable isomorphism

ΩsM ∼= M (3.2)

for any p-local G-module M . This remark will be used often in the sequel.

The result below extends [BIKP18, Theorem 8.8]; the latter is the case M = k//p.

Theorem 3.4. For anyG-moduleM , the morphismM⊗kf induces a natural stable isomorphism
of G-modules

ΓpM ∼= M ⊗k Γm(K//b)↓G ∼= (MK ⊗K Γm(K//b))↓G.

When M is p-torsion, these induce natural stable isomorphisms

ΓpM ∼= Mp
∼= M ⊗k (K//b)↓G ∼= (MK ⊗K K//b)↓G.

Proof. We begin by verifying the second set of isomorphisms. As M is p-torsion so is Mp and
then it is clear that the natural map ΓpM = ΓV(p)Mp → Mp is an isomorphism. The third of
the desired isomorphisms follows from (3.1). It thus remains to check that M ⊗k f induces an
isomorphism

Mp
∼= M ⊗k (K//b)↓G.

It is easy to verify that the modules M having this property form a tensor ideal localising
subcategory of StModG. Keeping in mind (3.2), from [BIKP18, Theorem 8.8] one obtains
that this subcategory contains k//p. The desired assertion follows since the p-torsion modules
form a tensor ideal localising subcategory of StModG that is generated by k//p; see [BIK11a,
Proposition 2.7].
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Now we turn to the first set of isomorphisms. There the second one holds by (3.1), so we
focus on the first. Let M be an arbitrary G-module, and let p′ be as in Construction 3.3. Since
ΓV(p)M is p-torsion, the already established isomorphism yields the second one below:

ΓpM ∼= (ΓV(p)M)p
∼= ((ΓV(p)M)K ⊗K K//b)↓G
∼= (ΓV(p′)(MK)⊗K K//b)↓G
∼= (MK ⊗K ΓV(p′)(K//b))↓G
∼= (MK ⊗K ΓV(p′+(b))(K//b))↓G
∼= (MK ⊗K Γm(K//b))↓G.

The third one holds by Lemma 2.2, applied to the functor K⊗k (−) from StModG to StModGK .
The next one is standard, the penultimate one holds as K//b is (b)-torsion, and the last follows
from

√
p′ + (b) = m. This completes the proof. 2

In the next remark we recast part of Theorem 3.4.

Remark 3.5. Fix a point p in ProjH∗(G, k), and let K, b and m be as in Construction 3.3.
Consider the following adjoint pair of functors.

λ : StModG −→ StModGK and ρ : StModGK −→ StModG
λ(M) = MK ⊗K K//b ρ(N) = HomK(K//b, N)↓G

It is easy to check that this induces an adjoint pair

Theorem 3.4 implies that (λM)↓G ∼= M for any M in Γp(StModG).

Proof of Theorem 3.1. Let m, q, and b be as in Construction 3.3. As noted there, m is a closed
point in ProjH∗(GK ,K) lying over p and k(m)∼= k(p). The modules in Γp(StModG) are precisely
those with support contained in {p}. It then follows from [BIKP18, Proposition 6.2] that (−)↓G
restricts to a functor

Γm(StModGK) −→ Γp(StModG).

This functor is dense because for any G-module M that is p-local and p-torsion one has M ∼=
(λM)↓G where λ is the functor from Remark 3.5.

Consider the restriction of (−)↓G to compact objects in Γm(StModGK). First we verify that
its image is contained in the compact objects of Γp(StModG). To this end, it suffices to check
that there exists a generator of Γm(StModGK)c, as a thick subcategory, whose restriction is in
Γp(StModG)c.

Let S be the direct sum of a representative set of simple G-modules. Each simple GK-module
is (isomorphic to) a direct summand of SK , so from (2.5) one gets the first equality below:

Γm(StModGK)c = Thick(SK//m) = Thick(SK//q).

The second one holds by (2.4), since
√
q = m. From Theorem 3.4 one gets isomorphisms of

G-modules
(SK//q)↓G ∼= ((S//p)K ⊗K K//b)↓G ∼= (S//p)p.

It remains to note that (S//p)p is in Γp(StModG)c, again by (2.5).
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The last item to verify is that restriction is dense also on compacts. Since K//b is compact,
the functor ρ from Remark 3.5 preserves coproducts, and hence its left adjoint λ preserves
compactness. Thus Theorem 3.4 gives the desired result. 2

Theorem 3.4 yields that f ∼= (fK)↓G for any morphism f in Γp(StModG); in particular, the
restriction functor is full and dense on the subcategory of Γm(StModGK) consisting of objects
of the form λM , where M is a p-local p-torsion G-module. It need not be full on the entire
category, or even on its subcategory of compact objects; see Example 3.7, modelled on the
following example from commutative algebra.

Example 3.6. Let k be a field and k[a] the polynomial ring in an indeterminate a. Let D(k[a])
denote its derived category; it is k[a]-linear in an obvious way. For the prime p := (0) of k[a]
the p-local p-torsion subcategory Γp(D(k[a])) is naturally identified with the derived category of
k(a), the field of rational functions in a.

With k(t) denoting the field of rational functions in an indeterminate t, the maximal ideal
m := (a− t) of k(t)[a] lies over the prime ideal p of k[a]. The inclusion k[a] ⊂ k(t)[a] induces an
isomorphism k(a) ∼= k(t)[a]/m ∼= k(t). The analogue of Theorem 3.4 is that restriction of scalars
along the inclusion k[a] ⊂ k(t)[a] induces a dense functor

Γm(D(k(t)[a])) −→ Γp(D(k[a])) ' D(k(a)).

This property can be checked directly: the m-torsion module k(t)[a]/(a− t) restricts to k(a), and
each object in D(k(a)) is a direct sum of shifts of k(a). This functor is, however, not full: for
n > 1, the k(t)[a]-module L := k(t)[a]/(a− t)n is m-torsion, and satisfies

rankk(a) EndD(L) = n and rankk(a) EndD(L↓k[a]) = n2,

where D stands for the appropriate derived category. In particular, if n > 2, the canonical map
EndD(L) → EndD(L↓k[a]) is not surjective.

Indeed, the module of endomorphisms of L in D(k(t)[a]) is

EndD(L) = Homk(t)[a](L,L) ∼= L.

In particular, it has rank n as an k(a)-vector space. On the other hand, restricted to k[a], the
k(t)[a]-module k(t)/(a− t) is isomorphic to k(a). It then follows from the exact sequences

0 −→ k(t)[a]

(a− t)
17→(a−t)i
−−−−−−→ k(t)[a]

(a− t)i+1
−→ k(t)[a]

(a− t)i
−→ 0

of k(t)[a]-modules that L restricts to a direct sum of n copies of k(a), so that

EndD(L↓k[a]) = Homk(a)(k(a)n, k(a)n) ∼= k(a)n
2
.

In particular, this has rank n2 as a k(a)-vector space.

Example 3.7. Let V = Z/2 × Z/2 and k a field of characteristic two. As k-algebras, one has
H∗(V, k) ∼= k[a, b], where a and b are indeterminates of degree one. For the prime ideal p = (0)
of k[a, b], Construction 3.3 leads to the field extension K := k(t) of k, and the closed point
m = (b− at) of ProjH∗(VK ,K).

Set F := EndV (kp); this is the component in degree 0 of the graded field k[a, b]p and can be
identified with K; see Construction 3.3.

Fix an integer n > 1 and set N := K//(b− at)n. This is a finite-dimensional m-torsion VK-
module and hence compact in Γm(StModVK). We claim that

rankF EndVK (N) = 2n and rankF EndV (N↓V ) = n2,

and hence that the map EndVK (N) → EndV (N↓V ) is not surjective when n > 3.
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The claim can be checked as follows. Set S := End∗VK (K)m ∼= K[a, b]m. Since (b− at)n is not
a zero divisor on S, applying HomVK

(K,−) to the exact triangle

K
(b−at)n
−−−−→ Ω−nK −→ N −→

one gets that Hom∗VK (K,N) is isomorphic to S/(b−at)n, as an S-module; in particular (b−at)n
annihilates it. Given this, applying HomVK

(−, N) to the exact triangle above yields that the
rank of EndVK (N), as an F -vector space, is 2n.

As to the claim about N↓V : the category Γp(StModV ) is semi-simple for its generator kp
has the property that End∗V (kp) is a graded field. It thus suffices to verify that N↓V ∼= knp ;
equivalently, that rankF HomV (kp, N↓V ) = n. This follows from the isomorphisms

HomV (kp, N↓V ) ∼= HomV (k,N↓V ) ∼= HomVK
(K,N) ∼= Fn.

The first isomorphism holds because N↓V is p-local, the second one holds by adjunction.
There is a close connection between this example and Example 3.6. Namely, the Bernstein–

Gelfand–Gelfand (BGG) correspondence sets up an equivalence between StModV and the
derived category of dg modules over R := k[a, b], viewed as a dg algebra with zero differential,
modulo the subcategory of (a, b)-torsion dg modules; see [BGG78] and also [BIK12, § 5.2.2].
The BGG correspondence induces the equivalences in the following commutative diagram of
categories:

where D(−) denotes the derived category of dg modules. The functor on the right is restriction
of scalars along the homomorphism of rings Rp → S, which is induced by the inclusion
R = k[a, b] ⊂ K[a, b]. Under the BGG equivalence, the VK-module N corresponds to S/(b−at)n,
viewed as dg S-module with zero differential. Since Rp is a graded field, isomorphic to K[a±1],
each dg Rp-module is isomorphic to a direct sum of copies of Rp. Arguing as in Example 3.6 one
can verify that the dg S-module S/(b− at)n restricts to a direct sum of n copies of Rp. This is
another way to compute the endomorphism rings in question.

The remainder of this section is devoted to a further discussion of the compact objects in
Γp(StModG). This is not needed subsequently.

Endofiniteness
Following Crawley-Boevey [Cra91, Cra92], a module X over an associative ring A is endofinite
if X has finite length as a module over EndA(X).

An object X of a compactly generated triangulated category T is endofinite if the EndT(X)-
module HomT(C,X) has finite length for all C ∈ Tc; see [KR00].

Let A be a self-injective algebra, finite dimensional over some field. Then an A-module is
endofinite if and only if it is endofinite as an object of StModA. This follows from the fact X
is an endofinite A-module if and only if the EndA(X)-module HomA(C,X) has finite length for
every finite-dimensional A-module C.

Lemma 3.8. Let F : T → U be a functor between compactly generated triangulated categories
that preserves products and coproducts. Let X be an object in T. If X is endofinite, then so is
FX and the converse holds when F is fully faithful.
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Proof. By Brown representability, F has a left adjoint, say F ′. It preserves compactness, as F
preserves coproducts. For X ∈ T and C ∈ Uc, there is an isomorphism

HomU(C,FX) ∼= HomT(F ′C,X)

of EndT(X)-modules. Thus if X is endofinite, then HomU(C,FX) is a module of finite length
over EndT(X), and therefore also over EndU(FX). For the converse, observe that each compact
object in T is isomorphic to a direct summand of an object of the form F ′C for some C ∈ Uc. 2

Proposition 3.9. Let p be a point in ProjH∗(G, k) and M a G-module that is compact in
Γp(StModG). Then M is endofinite both in StModG and in Γp(StModG).

Proof. By Corollary 3.2, the moduleM is of the formN↓G for a finite-dimensionalGK-moduleN .
Clearly, N is endofinite in StModGK and (−)↓G preserves products and coproducts, so it
follows by Lemma 3.8 that M is endofinite in StModG. By the same token, as the inclusion
(StModG)p → StModG preserves products and coproducts, M is endofinite in (StModG)p as
well. Finally, the functor ΓV(p) is a right adjoint to the inclusion Γp(StModG) → (StModG)p.
It preserves products, being a right adjoint, and also coproducts. Thus M is endofinite in
Γp(StModG), again by Lemma 3.8. 2

4. G-modules and Tate duality

Now we turn to various dualities for modules over finite group schemes. We begin by recalling the
construction of the transpose and the dual of a module over a finite group scheme, and certain
functors associated with them. Our basic reference for this material is Skowroński and Yamagata
[SY11, ch. III].

Throughout G will be a finite group scheme over k. We write (−)∨ = Homk(−, k).

Transpose and dual
Let Gop be the opposite group scheme of G; it can be realised as the group scheme associated
to the cocommutative Hopf algebra (kG)op. Since kG is a G-bimodule, the assignment M 7→
HomG(M,kG) defines a functor

(−)t : ModG −→ ModGop.

Let M be a finite-dimensional G-module and P1
f−→ P0 → M a minimal projective presentation.

The transpose of M is the Gop-module TrM := Coker(f t). By construction, there is an exact
sequence of Gop-modules:

0 −→ M t −→ P t0
f t−−→ P t1 −→ TrM −→ 0.

The P ti are projective Gop-modules, so this yields an isomorphism of Gop-modules

M t ∼= Ω2 TrM.

Given aGop-moduleN , the k-vector space Homk(N, k) has a natural structure of aG-module,
and the assignment N 7→ Homk(N, k) yields a functor

D := Homk(−, k) : stmodGop −→ stmodG.
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The Auslander–Reiten translate
In what follows we write τ for the Auslander–Reiten translate of G:

τ := D ◦ Tr: stmodG → stmodG.

Given an extension of fields K/k, for any finite-dimensional G-module M there is a stable
isomorphism of GK-modules

(τM)K ∼= τ(MK).

Nakayama functor
The Nakayama functor

ν : ModG
∼−−→ ModG

is given by the assignment
M 7→ D(kG)⊗kGM ∼= δG ⊗kM,

where δG = ν(k) is the modular character of G; see [Jan03, I.8.8]. Since the group of characters
of G is finite, by [Wat79, §§ 2.1 and 2.2], there exists a positive integer d such that δ⊗dG

∼= k and
hence as functors on ModG there is an equality

νd = id. (4.1)

When M is a finite-dimensional G-module, there are natural stable isomorphisms

νM ∼= D(M t) ∼= Ω−2τM.

When in addition M is projective, one has

HomG(M,−)∨ ∼= (M t ⊗kG −)∨ ∼= HomG(−, νM).

Let K/k be an extension of fields. For any G-module M there is a natural isomorphism of
GK-modules

(νM)K ∼= ν(MK). (4.2)

This is clear for M = kG since

K ⊗k Homk(kG, k) ∼= Homk(kG,K) ∼= HomK(K ⊗k kG,K),

and the general case follows by taking a free presentation of M .

Remark 4.1. A finite group scheme is unimodular if the character δG is trivial; equivalently,
when kG is symmetric. Examples include finite groups, unipotent groups schemes, and Frobenius
kernels of reductive groups; see [Jan03, I.8.9, II.3.4(a)]. Group schemes that are not unimodular
also abound.

Frobenius kernels of Borel subgroups of reductive groups are not unimodular for p > 3; see
[Jan03, II.3.4(c)]. The finite group scheme associated to a Lie algebra is unimodular if and only
if tr(adx) = 0 for any x in the Lie algebra; see [Jan03, I.9.7]. This condition fails for the upper
triangular matrices inside sl2 for p > 3.

Tate duality
For finite groups, the duality theorem below is classical and due to Tate [CE56, ch. XII,
Theorem 6.4]. A proof of the extension to finite group schemes was sketched in [BIKP17, § 2],
and is reproduced here for readers convenience.
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Theorem 4.2. Let G be a finite group scheme over a field k. For any G-modules M,N with M
finite dimensional, there are natural isomorphisms

HomG(M,N)∨ ∼= HomG(N,Ω−1τM) ∼= HomG(N,ΩνM).

Proof. A formula of Auslander and Reiten [Aus78, Proposition I.3.4], see also [Kra03, Corollary
p. 269], yields the first isomorphism below

HomG(M,N)∨ ∼= Ext1G(N, τM) ∼= HomG(N,Ω−1τM).

The second isomorphism is standard. It remains to recall that τM ∼= Ω2νM . 2

Restricted to finite-dimensional G-modules, Tate duality is the statement that the k-linear
category stmodG has Serre duality, with Serre functor Ων. A refinement of this Serre duality
will be proved in § 7.

5. Local cohomology versus injective cohomology

Let k be a field and G a finite group scheme over k. In this section we establish the main result
of this work; it identifies for a prime ideal p in H∗(G, k), up to some twist and some suspension,
the local cohomology object Γp(k) with the injective cohomology object Tp(k).

Theorem 5.1. Fix a point p in ProjH∗(G, k) and let d be the Krull dimension of H∗(G, k)/p.
There is a stable isomorphism of G-modules

Γp(δG) ∼= Ω−dTp(k);

equivalently, for any G-module M there is a natural isomorphism

HomG(M,ΩdΓp(δG)) ∼= HomH∗(G,k)(H
∗(G,M), I(p)).

When G is the group scheme arising from a finite group the modular character δG is trivial,
and the result above was proved by Benson and Greenlees [BG08, Theorem 2.4] using Gorenstein
duality for cochains on the classifying space of G. Benson [Ben08, Theorem 2] gave a different
proof by embedding G into a general linear group and exploiting the fact that its cohomology ring
is a polynomial ring, as was proved by Quillen. These results have been extended to compact
Lie groups; see [BG14, Theorem 6.10], and work of Barthel, Heard and Valenzuela [BHV18,
Proposition 4.33].

Theorem 5.1 is established using (by necessity) completely different arguments, thereby giving
yet another proof in the case of finite groups that is, in a sense, more elementary than the other
ones for it is based on classical Tate duality.

A caveat: in [Ben08, BG08] it is asserted that Γp(k) ∼= ΩdTp(k). However, this is incorrect
and the correct shift is the one in the preceding theorem. We illustrate this by computing these
modules directly for the quaternions.

Example 5.2. Let G := Q8, the quaternions, viewed as a group scheme over a field k of
characteristic 2. In this case δG = k, the trivial character. The cohomology algebra of G is

H∗(G, k) = k[z]⊗k B where B = k[x, y]/(x2 + xy + y2, x2y + xy2),
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with |x| = 1 = |y| and |z| = 4; see, for instance, [Ben84, p. 186]. Thus ProjH∗(G, k) consists of
a single point, namely m := (x, y). In particular, Γmk = k, in StModG.

Next we compute I(m) as a module over H∗(G, k)m ∼= k[z±1] ⊗k B, using Lemma A.3.
The extension k[z±1] ⊆ k[z±1] ⊗k B is evidently finite (and hence also residually finite). Since
m ∩ k[z±1] = (0) and k[z±1] is a graded field, from Lemma A.3 one gets an isomorphism of
H∗(G, k)m-modules,

I(m) ∼= Homk[z±1](k[z±1]⊗k B, k[z±1])

∼= k[z±1]⊗k Homk(B, k)
∼= k[z±1]⊗k Σ3B
∼= Σ3H∗(G, k)m.

This yields the first isomorphism below of G-modules

Tm(k) ∼= Ω−3k ∼= Ω1k,

and the second one holds because Ω4k ∼= k in StModG.

In the proof of Theorem 5.1 the following simple observation will be used repeatedly; it is a
direct consequence of Yoneda’s lemma.

Lemma 5.3. Let X and Y be G-modules that are p-local and p-torsion. There is an isomorphism
X ∼= Y in StModG if and only if there is a natural isomorphism

HomG(M,X) ∼= HomG(M,Y )

for all p-local and p-torsion (equivalently, for all) G-modules M .

Proof of Theorem 5.1. The G-module Tp(k) is p-local and p-torsion; see, for example, [BIK11b,
Lemma 11.10]. This fact will be used in the sequel, without comment.

The first isomorphism of the theorem is equivalent to the second: by (2.7) for any p-local
H∗(G, k)-module I there is an isomorphism

HomH∗(G,k)(H
∗(G,M), I) ∼= HomH∗(G,k)(Hom∗G(k,M), I).

Consequently, one can rephrase the defining isomorphism (2.1) for the object Tp(k) as a natural
isomorphism

HomG(M,Tp(k)) ∼= HomH∗(G,k)(H
∗(G,M), I(p)).

The desired equivalence is then a consequence of Lemma 5.3.
The main task is to prove that there is a stable isomorphism:

Γp(νk) ∼= Ω−dTp(k).

Recall that νk = δG.
We first verify the isomorphism above for closed points of ProjH∗(G, k) and then use a

reduction to closed points.

Claim. The desired isomorphism holds when m is a closed point of ProjH∗(G, k).

Set A := H∗(G, k) and R := Am. The injective hull, I(m), of the A-module A/m is the same as
that of the R-module k(m), viewed as an A-module via restriction of scalars along the localisation
map A → R. Thus I(m) is the module I described in Lemma A.2; this is where the fact that m
is closed is used.
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Let M be a G-module that is m-local and m-torsion. Given Lemma 5.3, the claim is a
consequence of the following computation:

HomG(M,ΩΓm(νk)) ∼= HomG(M,Ωνk)
∼= HomG(k,M)∨

∼= HomR(Hom∗G(k,M), I(m))
∼= HomA(Hom∗G(k,M), I(m))
∼= HomG(M,Tm(k)).

The first isomorphism holds because M is m-torsion; the second is Tate duality, Theorem 4.2, and
the next one holds by Lemma A.2, which applies because Hom∗G(k,M) is m-local and m-torsion
as an A-module. The penultimate one holds because the A-module Hom∗G(k,M) is m-local, and
the last one is by definition (2.1).

Let p be a point in ProjH∗(G, k) that is not closed, and let K, b, and m be as in
Construction 3.3. Recall that m is a closed point in H∗(GK ,K) lying over p.

Claim. There is a stable isomorphism of G-modules

(Tm(K)//b)↓G ∼= Ω−d+1Tp(k), (5.1)

where d is the Krull dimension of H∗(G, k)/p.

Let M be a G-module that is p-local and p-torsion. Then Theorem 3.4 applies and yields
isomorphisms of G-modules:

(MK//b)↓G ∼= (MK ⊗K K//b)↓G ∼= M.

This gives the sixth isomorphism below:

HomG(M,Ωd−1(Tm(K)//b)↓G) ∼= HomGK
(MK ,Ω

d−1(Tm(K)//b))
∼= HomGK

(MK//b, Tm(K))
∼= HomH∗(GK ,K)(Hom∗GK

(K,MK//b), I(m))
∼= HomH∗(G,k)(Hom∗GK

(K,MK//b), I(p))
∼= HomH∗(G,k)(Hom∗G(k, (MK//b)↓G), I(p))
∼= HomH∗(G,k)(Hom∗G(k,M), I(p))
∼= HomG(M,Tp(k)).

The first and the fifth isomorphisms are true by adjunction. The second isomorphism is easily
verified by a direct computation using (2.3) and (3.2). The next isomorphism is by definition and
the fourth one holds by Lemma A.3 applied to the canonical homomorphism H∗(G, k) →H∗(GK ,
K); note that the H∗(GK ,K)-module Hom∗GK

(K,MK//b) is m-torsion. The desired isomorphism
(5.1) holds by Lemma 5.3, because both modules in question are p-torsion; for the one on the
left, see [BIKP18, Proposition 6.2].

We are now ready to wrap up the proof of the theorem. Since m is a closed point
in ProjH∗(GK ,K), the first claim yields that the GK-modules Γm(νK) and Ω−1Tm(K) are
isomorphic. This then gives an isomorphism of GK-modules:

νK ⊗K Γm(K//b) ∼= Γm(νK)//b ∼= Ω−1Tm(K)//b.
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Restricting to G and applying (5.1) gives the last of the following isomorphisms of G-modules:

Γp(νk) ∼= ((νk)K ⊗K Γm(K//b))↓G
∼= (νK ⊗K Γm(K//b))↓G
∼= Ω−dTp(k).

The first one holds by Theorem 3.4 and the second by (4.2). 2

The following consequence of Theorem 5.1 was anticipated in [Ben01, p. 203]. It concerns
the Tate cohomology of a G-module M , namely the H∗(G, k)-module

Ĥ∗(G,M) := Êxt
∗
G(k,M) ∼= Hom∗G(k,M).

For a graded module N =
⊕

p∈ZN
p and i ∈ Z the twist N(i) is the graded module with

N(i)p = Np+i.

Corollary 5.4. Fix p in ProjH∗(G, k). With d the Krull dimension of H∗(G, k)/p there are
isomorphisms of H∗(G, k)-modules

Ĥ∗(G,Γp(k)) ∼= Hom∗H∗(G,k)(H
∗(G, δG), I(p))(d)

and

Ĥ∗(G,Endk(Γp(k))) ∼= (H∗(G, k)p)
∧,

where (−)∧ denotes completion with respect to the p-adic topology.

Proof. Set R = H∗(G, k). The first of the stated isomorphisms is a composition of the following
isomorphisms of R-modules:

Hom∗G(k, Γp(k)) ∼= Hom∗G(δG, Γp(δG))
∼= Hom∗G(δG,Ω

−dTp(k))
∼= Hom∗G(δG, Tp(k))(d)
∼= Hom∗R(H∗(G, δG), I(p))(d).

The second isomorphism holds by Theorem 5.1, the one after is standard, while the last one is
by the definition of Tp(k).

In the same vein, one has the following chain of isomorphisms:

Hom∗G(k,Endk(Γp(k))) ∼= Hom∗G(Γp(k), Γp(k))
∼= Hom∗G(Tp(k), Tp(k))
∼= Hom∗R(Hom∗G(k, Tp(k)), I(p))
∼= Hom∗R(I(p), I(p))
∼= (Rp)

∧.

The second isomorphism holds by Theorem 5.1 and the rest are standard. 2

Remark 5.5. Another consequence of Theorem 5.1 is that Γp(δG), and hence also Γpk, is an
indecomposable pure injective object in StModG; see [BK02, Theorem 5.1].
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6. The Gorenstein property

In this section we introduce a notion of a Gorenstein triangulated category and reinterpret
Theorem 5.1 to mean that StModG has this property. The definition is justified by its
consequences for modular representations; it yields duality results which will be discussed in
the subsequent § 7.

Let R be a graded commutative noetherian ring and T a compactly generated R-linear
triangulated category. The support of T is by definition the set

suppR(T) = {p ∈ SpecR | Γp 6= 0}.

Definition 6.1. We say that T is R-Gorenstein (or simply Gorenstein when the action of R is
clear) if there is an R-linear triangle equivalence

F : Tc ∼−→ Tc

and for every p in suppR(T) there is an integer d(p) and a natural isomorphism

Γp ◦ F ∼= Σd(p) ◦ Tp

of functors Tc
→ T.

In this context we call F a global Serre functor, because in Proposition 7.3 we show that
localising at p induces a functor Σ−d(p)Fp which is an analogue of a Serre functor in the sense of
Bondal and Kapranov [BK89].

We have not as yet explored fully the dependence of the Gorenstein property of T on the
ring R; a beginning has been made in the work of Yuliawan [Yul17].

Let T = (T,⊗,1) be a tensor triangulated category such that R acts on T via a
homomorphism of graded rings R → End∗T(1). We assume that 1 is compact and that each
compact object is rigid; see § 2 for details. The Gorenstein property is implied by the existence
of a dualising object in T, as explained below.

Lemma 6.2. Let T be a tensor triangulated category with an R-action. Suppose that there exists
a compact object W with the following properties.

(i) There is a compact object W−1 such that W ⊗W−1 ∼= 1.

(ii) For each p in suppR(T) there exists an integer d(p) and an isomorphism

ΓpW ∼= Σd(p)Tp(1).

Then T is R-Gorenstein, with global Serre functor F := W ⊗−.

Proof. Since W is compact, so is W ⊗ C for any compact object C of T. Thus F induces a
functor on compact objects. It is an equivalence of categories with quasi-inverse W−1 ⊗ −, by
condition (i). Moreover for any compact object C and p ∈ suppR(T) one has isomorphisms

Σd(p)Tp(C) ∼= Σd(p)Tp(1)⊗ C ∼= ΓpW ⊗ C ∼= Γp(W ⊗ C),

where the first and the last one are consequences of (2.2), and the middle one is by (ii). 2

The example below justifies the language of Gorenstein triangulated categories.
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Example 6.3. Let A be a commutative noetherian ring and D the derived category of A-modules.
This is an A-linear compactly generated tensor triangulated category, with compact objects the
perfect complexes of A-modules, that is to say, complexes quasi-isomorphic to bounded complexes
of finitely generated projective A-modules.

Recall that the ring A is Gorenstein if for each p ∈ SpecA the injective dimension of Ap, as
a module over itself, is finite; see [BH98, 3.1]. By Grothendieck’s local duality theorem [BH98,
§ 3.5], this is equivalent to an isomorphism of Ap-modules

ΓpA ∼= Σ−dimApI(p).

Thus D is Gorenstein with dualising object A and d(p) = −dimAp; see Lemma 6.2. Conversely,
it is not difficult to check that D is Gorenstein only if A is Gorenstein.

For a finite group scheme G over a field k, the Gorenstein property for StModG is basically
a reformulation of Theorem 5.1.

Corollary 6.4. As an H∗(G, k)-linear triangulated category, StModG is Gorenstein, with F =
δG ⊗k − the Nakayama functor and d(p) = dimH∗(G, k)/p for each p in ProjH∗(G, k).

Next we discuss the Gorenstein property for K(InjG) for a finite group scheme G. To this
end observe that the assignment X 7→ νX induces triangle equivalences

K(InjG)
∼−→ K(InjG) and Db(modG)

∼−→ Db(modG).

We are ready to establish the Gorenstein property for K(InjG).

Theorem 6.5. Let G be a finite group scheme over a field k. Then K(InjG) is Gorenstein as
an H∗(G, k)-linear triangulated, with F induced by the Nakayama functor and d(p) = dimH∗

(G, k)/p for each p ∈ SpecH∗(G, k).

Proof. Set R := H∗(G, k) and m := R>1, the maximal ideal of R. It is easy to verify
that I(m) := Homk(R, k) is the injective hull of R/m as an R-module and hence that
HomR(−, I(m)) = Homk(−, k) on the category of graded R-modules; see [BH98, Proposition
3.6.16]. This observation is used in the first isomorphism below.

Let pk be a projective resolution of the trivial representation. For any X in K(InjG) the
complex pX := pk ⊗k X is a projective resolution of X.

Suppose X is compact in K(InjG); one may assume Xn = 0 for n � 0 and that Hn(X)
is finitely generated for all n and equal to 0 for n � 0; see [Kra05, Proposition 2.3(2)]. Then,
for each Y in K(InjG) from [KL06, Theorem 3.4] one gets the first of the following natural
isomorphisms:

HomR(Hom∗K(X,Y ), I(m)) ∼= HomK(Y,D(kG)⊗kG pX)
∼= HomK(Y, δG ⊗k pX)
∼= HomK(Y, p(δG ⊗k X)).

The second one holds by the definition of the modular character, and the last one is immediate
from the definition of p and the commutativity of tensor products. Since p(δG ⊗k X) =
Γm(δG ⊗k X), by Lemma 2.6, it follows that Tm ∼= Γm ◦ F .

For a prime ideal p 6= m, the assertion follows from Theorem 5.1, for localisation at p yields
a triangle equivalence Γp(K(InjG))

∼−→ Γp(StModG) by Lemma 2.6. 2
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Remark 6.6. There are extensions of the Gorenstein property to differential graded algebras, see
[FIJ03] and [DGI06], for instance, and a natural question is how these relate to the Gorenstein
property, in the sense of Definition 6.1, of the associated derived categories. We defer exploring
these connections to another occasion.

Balmer, Dell’Ambrogio and Sanders [BDS16] have introduced a categorical framework
extending the duality theory for schemes due to Grothendieck and Neeman. The relationship to
our work might be explained thus: a commutative noetherian ring R is Gorenstein precisely when
it has an invertible dualising complex. The framework in [BDS16] captures the relative version
(dealing with a morphism of rings, or schemes) of the Gorenstein property and its characterisation
in terms of the relative dualising complex. We are interested in the characterisation of the
Gorenstein property in terms of local cohomology, and in the fact that when R is Gorenstein, so
is Rp for each prime p in SpecR. Theorem 5.1 may be seen as an analogue of these results for
modular representations.

7. Local Serre duality

In this section we introduce a notion of local Serre duality for an essentially small R-linear
triangulated category and link it to the Gorenstein property from § 6. We use the concept of
a Serre functor for a triangulated category which is due to Bondal and Kapranov [BK89]; this
provides a conceptual way to formulate classical Serre duality and Grothendieck’s local duality
in a triangulated setting.

In the second part of this section we discuss the existence of AR-triangles. These were
introduced by Happel for derived categories of finite-dimensional algebras [Hap88], and in [Hap91]
he established the connection with the Gorenstein property, while Reiten and Van den Bergh
[RV02] discovered the connection between AR-triangles and the existence of a Serre functor.

Small triangulated categories with central action
Let C be an essentially small R-linear triangulated category. Fix p ∈ SpecR and let Cp denote
the triangulated category obtained from C by keeping the objects of C and setting

Hom∗Cp
(X,Y ) := Hom∗C(X,Y )p.

Then Cp is an Rp-linear triangulated category and localising the morphisms induces an exact
functor C → Cp; see [Bal10, Theorem 3.6] or [BIK15, Lemma 3.5].

Let γpC be the full subcategory of p-torsion objects in Cp, namely

γpC := {X ∈ Cp | End∗Cp
(X) is p-torsion}.

This is a thick subcategory of Cp; see [BIK15, p. 458f]. In [BIK15] this category is denoted ΓpC.
The notation has been changed to avoid confusion.

Remark 7.1. Let F : C → C be an R-linear equivalence. It is straightforward to check that
this induces triangle equivalences Fp : Cp

∼−→ Cp and γpC
∼−→ γpC making the following diagram

commutative.
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Remark 7.2. Let T be a compactly generated R-linear triangulated category. Set C := Tc and fix
p ∈ SpecR. The triangulated categories Tp and ΓpT are compactly generated. The left adjoint of

the inclusion Tp → T induces (up to direct summands) a triangle equivalence Cp
∼−→ (Tp)

c and
restricts to a triangle equivalence

γpC
∼−→ (ΓpT)c.

This follows from the fact that the localisation functor T → Tp taking X to Xp preserves
compactness and that for compact objects X,Y in T

Hom∗T(X,Y )p
∼−→ Hom∗Tp

(Xp, Yp).

For details we refer to [BIK08].

Local Serre duality
Let R be a graded commutative ring that is local ; thus there is a unique homogeneous maximal
ideal, say m. Extrapolating from Bondal and Kapranov [BK89, § 3], we call an R-linear triangle
equivalence F : C

∼−→ C a Serre functor if for all objects X,Y in C there is a natural isomorphism

HomR(Hom∗C(X,Y ), I(m))
∼−→ HomC(Y, FX). (7.1)

The situation when R is a field was the one considered in [BK89]. For a general ring R, the
appearance of Hom∗R(−, I(m)), which is the Matlis duality functor, is natural for it is an extension
of vector-space duality; see also Lemma A.2. The definition proposed above is not the only
possible extension to the general context, but it is well suited for our purposes.

For an arbitrary graded commutative ring R, we say that an R-linear triangulated category
C satisfies local Serre duality if there exists an R-linear triangle equivalence F : C

∼−→ C such
that for every p ∈ SpecR and some integer d(p) the induced functor Σ−d(p)Fp : γpC

∼−→ γpC is a
Serre functor for the Rp-linear category γpC. Thus for all objects X,Y in γpC there is a natural
isomorphism

HomR(Hom∗Cp
(X,Y ), I(p))

∼−→ HomCp(Y,Σ−d(p)FpX).

For a compactly generated triangulated category, the Gorenstein property 6.1 is linked to
local Serre duality for the subcategory of compact objects.

Proposition 7.3. Let R be a graded commutative noetherian ring and T a compactly generated
R-linear triangulated category. Suppose that T is Gorenstein, with global Serre functor F and
shifts {d(p)}. Then for each p ∈ suppR(T), object X ∈ (ΓpT)c and Y ∈ Tp there is a natural
isomorphism

HomR(Hom∗T(X,Y ), I(p)) ∼= HomT(Y,Σ−d(p)Fp(X)).

Proof. Given Remark 7.2 we can assume X = Cp for a p-torsion compact object C in T. The
desired isomorphism is a concatenation of the following natural ones:

HomR(Hom∗T(Cp, Y ), I(p)) ∼= HomR(Hom∗T(C, Y ), I(p))
∼= HomT(Y, Tp(C))
∼= HomT(Y,Σ−d(p)ΓpF (C))
∼= HomT(Y,Σ−d(p)ΓV(p)F (C)p)

∼= HomT(Y,Σ−d(p)ΓV(p)Fp(Cp))

∼= HomT(Y,Σ−d(p)Fp(Cp)).
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In this chain, the first map is induced by the localisation C 7→ Cp and is an isomorphism because
Y is p-local. The second one is by the definition of Tp(C); the third is by the Gorenstein property
of T; the fourth is by the definition of Γp; the last two are explained by Remark 7.2, where for
the last one uses also the fact that Cp, and hence also Fp(Cp), is p-torsion. 2

Corollary 7.4. Let R be a graded commutative noetherian ring and T a compactly generated
R-linear triangulated category. If T is Gorenstein, then Tc satisfies local Serre duality.

Proof. Given Remark 7.2, the assertion follows from Proposition 7.3. 2

Example 7.5. In the notation of Example 6.3, when A is a (commutative noetherian) Gorenstein
ring, local Serre duality reads: For each p ∈ SpecA and integer n there are natural isomorphisms

HomAp(ExtnAp
(X,Y ), I(p)) ∼= Ext

n+dimAp

Ap
(Y,X),

where X is a perfect complexes of Ap-modules with finite length cohomology, and Y is a complex
of Ap-modules.

Auslander–Reiten triangles
Let C be an essentially small triangulated category. Following Happel [Hap88], an exact triangle

X
α−→ Y

β−→ Z
γ−→ ΣX in C is an Auslander–Reiten triangle if:

(i) any morphism X → X ′ that is not a split monomorphism factors through α;

(ii) any morphism Z ′ → Z that is not a split epimorphism factors through β;

(iii) γ 6= 0.

In this case, the endomorphism rings of X and Z are local, and in particular the objects are
indecomposable. Moreover, each of X and Z determines the AR-triangle up to isomorphism.
Assuming conditions (ii) and (iii), the condition (i) is equivalent to the following.

(i′) The endomorphism ring of X is local.

See [Kra00, § 2] for details.
Let C be a Krull–Schmidt category, that is, each object decomposes into a finite direct

sum of objects with local endomorphism rings. We say that C has AR-triangles if for every
indecomposable object X there are AR-triangles

V → W → X → ΣV and X → Y → Z → ΣX.

The next proposition establishes the existence of AR-triangles; it is the analogue of a result
of Reiten and Van den Bergh [RV02, I.2] for triangulated categories that are Hom-finite over a
field.

Proposition 7.6. Let R be a graded commutative ring that is local, and let C be an essentially
small R-linear triangulated category that is Krull–Schmidt. If C has a Serre functor, then it has
AR-triangles.

Proof. Let F be a Serre functor for C and X an indecomposable object in C. The ring EndC(X)
is thus local; let J be its maximal ideal and I the right ideal of End∗C(X) that it generates.
One has I0 = J , by Remark 7.7, so End∗C(X)/I is nonzero. Choose a nonzero morphism
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End∗C(X)/I → I(m) and let γ : X → FX be the corresponding morphism in C provided by
Serre duality (7.1). We claim that the induced exact triangle

Σ−1FX → W → X
γ−→ FX

is an AR-triangle. Indeed, by construction, if X ′ → X is not a split epimorphism, then the
composition Hom∗C(X,X ′) → End∗C(X)/I → I(m) is zero, and therefore the naturality of (7.1)

yields that the composition X ′ → X
γ−→ FX is zero. Moreover as X is indecomposable so is FX.

Applying this construction to F−1ΣX yields an AR-triangle starting at X. 2

The following observations about graded rings has been, and will again be, used.

Remark 7.7. Let E be a graded ring. For any J a right ideal in E0, the right ideal JE of E it
generates satisfies JE ∩ E0 = J ; this can be verified directly, or by noting that E0 is a direct
summand of E, as right E0-modules. It follows that if E is artinian than so is E0: any descending
chain of ideals in E0 stabilises, because the chain of ideals in E that they generate stabilises; cf.
the proof of [BH98, Theorem 1.5.5].

Let R be a graded commutative ring. An R-linear triangulated category C is noetherian if
the R-module Hom∗C(X,Y ) is noetherian for all X,Y in C.

Lemma 7.8. Let R be a graded commutative ring and C an essentially small, noetherian, R-linear
triangulated category. For each p ∈ SpecR, the idempotent completion of γpC is a Krull–Schmidt
category.

Proof. The noetherian property implies that for any object X in γpC the Rp-module E :=
End∗γpC(X) is of finite length. The graded ring E is thus artinian, and then so is the ring E0,
by Remark 7.7. Artinian rings are semi-perfect, so the idempotent completion of γpC is a Krull–
Schmidt category; see [Kra15, Corollary 4.4]. 2

Corollary 7.9. Let T be a compactly generated R-linear triangulated category with Tc

noetherian. If T is Gorenstein, then (ΓpT)c has AR-triangles for p ∈ SpecR.

Proof. Set S := (ΓpT)c; this is an idempotent complete, essentially small, Rp-linear triangulated
category. Since Tc is noetherian, it follows from Remark 7.2 and Lemma 7.8, that S is a Krull–
Schmidt category. The Gorenstein hypothesis implies that the Rp-linear category S has a Serre
functor, by Proposition 7.3, and then Proposition 7.6 yields the existence of AR-triangles. 2

Next we consider local Serre duality for Db(modG) and stmodG. Recall from Lemma 2.6 that
localisation at p ∈ ProjH∗(G, k) induces a triangle equivalence Γp(K(InjG))

∼−→ Γp(StModG).
Using Remark 7.2, this yields (up to direct summands) triangle equivalences

γp(D
b(modG))

∼−→ Γp(K(InjG))c
∼−→ Γp(StModG)c

∼−→ γp(stmodG).

The result below contains Theorem 1.1 in the introduction.

Theorem 7.10. Let G be a finite group scheme over a field k. Then the H∗(G, k)-linear
triangulated category D := Db(modG) satisfies local Serre duality. Said otherwise, given p in
SpecR and with d the Krull dimension of H∗(G, k)/p, for each M in γpD and N in Dp, there
are natural isomorphisms

HomH∗(G,k)(Hom∗Dp
(M,N), I(p)) ∼= HomDp(N,ΩdδG ⊗kM).

In particular, γpD has AR-triangles.
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Proof. The first assertion follows from Theorem 6.5 and Proposition 7.3. The existence of AR-
triangles then follows from Corollary 7.9, as D is noetherian. 2

AR-components and periodicity
The existence of AR-triangles for a triangulated category C gives rise to an AR-quiver ; see for
example [HPR82, Liu10]. The vertices are given by the isomorphism classes of indecomposable
objects in C and an arrow [X] → [Y ] exists if there is an irreducible morphism X → Y .

In the context of stmodG, one can describe part of the structure of the AR-quiver of the
p-local p-torsion objects as the Serre functor is periodic.

Proposition 7.11. Let G be a finite group scheme over a field k. Fix a point p in ProjH∗(G, k)
and set d = dimH∗(G, k)/p. Then the Serre functor

Ωdν : γp(stmodG)
∼−→ γp(stmodG)

is periodic, that is, (Ωdν)r = id for some positive integer r.

Proof. Lemma 2.1 and (4.1) provide an integer r > 0 such that νrM ∼= M and ΩrM ∼= M for
M in γp(stmodG). Thus (Ωdν)r = id, since ν and Ω commute. 2

This has the following consequence.

Corollary 7.12. Every connected component of the AR-quiver of γp(stmodG) is a stable tube
in case it is infinite; and otherwise, it is of the form Z∆/U , where ∆ is a quiver of Dynkin type
and U is a group of automorphisms of Z∆.

Proof. Since the Serre functor on γp(stmodG) is periodic, the desired result follows from [Liu10,
Theorem 5.5]; see also [HPR82]. 2

The preceding result may be seen as a first step in the direction of extending the results
of Farnsteiner’s [Far07, § 3] concerning stmodG to γp(stmodG) for a general (meaning, not
necessarily closed) point p of ProjH∗(G, k).
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Appendix A. Injective modules at closed points

In this section we collect some remarks concerning injective hulls over graded rings, for use
in § 5. Throughout k will be a field and A :=

⊕
i>0A

i a finitely generated graded commutative
k-algebra with A0 = k; we have in mind H∗(G, k), for a finite group scheme G over k.

As usual ProjA denotes the homogeneous prime ideals in A that do not contain the ideal
A>1. Given a point p in ProjA, we write k(p) for the graded residue field at p; this is the
homogeneous field of fractions of the graded domain A/p. Observe that k(p)0 is a field extension
of k and k(p) is of the form k(p)0[t±1] for some indeterminate t over k(p)0; see, for example,
[BH98, Lemma 1.5.7].

Lemma A.1. The degree of k(m)0/k is finite for any closed point m in ProjA.
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Proof. One way to verify the lemma is as follows. The Krull dimension of A/m is one so, by
noetherian normalisation, there exists a subalgebra k[t] of A/m where t is an indeterminate
over k and the A/m is finitely generated k[t]-module. Thus, inverting t, one gets that (A/m)t
is a finitely generated module over the graded field k[t±1], and hence isomorphic to k(m). The
finiteness of the extension k(m)/k[t±1] implies that the extension k(m)0/k of fields is finite. 2

The result below is familiar; cf. [BH98, Proposition 3.6.16].

Lemma A.2. Let A be as above, let m be a closed point in ProjA and set R := Am. The
R-submodule I :=

⋃
i>0 Hom∗k(R/m

i, k) of Hom∗k(R, k) is the injective hull of k(m), and for any
m-torsion R-module N , there is a natural isomorphism

HomR(N, I) ∼= Homk(N, k).

Proof. Set K = k(m)0 and recall that k(m) = K[t±1], for some indeterminate t over K. Thus,
one has isomorphisms of graded k(m)-modules

Hom∗k(k(m), k) ∼= Hom∗K(k(m),Homk(K, k))
∼= Hom∗K(k(m),K)
∼= k(m). (A.1)

The first isomorphism is adjunction, the second holds because rankkK is finite, by Lemma A.1,
and the last one is a direct verification.

The R-module Hom∗k(R, k) is injective and hence so is its m-torsion submodule⋃
i>0

Hom∗R(R/mi,Hom∗k(R, k)).

This is precisely the R-module I, by standard adjunction. Thus I must be a direct sum of shifts
of injective hulls of k(m). It remains to verify that I is in fact just the injective hull of k(m). To
this end, note that for any m-torsion R-module N , one has isomorphisms of graded k(m)-modules

Hom∗R(N, I) ∼= Hom∗R(N,Hom∗k(R, k))
∼= Hom∗k(N, k).

This settles the last assertion in the desired result and also yields the first isomorphism below
of graded k(m)-modules:

Hom∗R(k(m), I) ∼= Hom∗k(k(m), k) ∼= k(m).

The second one holds by (A.1). It follows that I is the injective hull of k(m). 2

The next result, whose proof is rather similar to the one above, gives yet another way to get
to the injective hull at a closed point of Proj.

Recall that I(p) denotes the injective hull of A/p for any p in SpecA.

Lemma A.3. Let A → B be a homomorphism of graded commutative algebras, let m be a closed
point in ProjB, and set p := m∩A. If the extension of residue fields k(p) ⊆ k(m) is finite, then the
B-module ΓV(m) Hom∗A(B, I(p)) is the injective hull of B/m, and, for any m-torsion B-module N ,
adjunction induces an isomorphism

HomB(N, I(m)) ∼= HomA(N, I(p)).
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Proof. The B-module I := ΓV(m) Hom∗A(B, I(p)) is injective, for it is the m-torsion submodule
of the injective B-module Hom∗A(B, I(p)). As m is a closed point, I is a direct sum of shifts of
copies of I(m). It remains to make the computation below:

Hom∗B(k(m), I) ∼= Hom∗B(k(m),Hom∗A(B, I(p)))
∼= Hom∗A(k(m), I(p))
∼= Hom∗k(p)(k(m),Hom∗A(k(p), I(p)))
∼= Hom∗k(p)(k(m), k(p))
∼= k(m).

These are all isomorphisms of k(m)-modules. The last one is where the hypothesis that k(m)/k(p)
is finite is required. This implies that I ∼= I(m). Given this, the last isomorphism follows by
standard adjunction. 2
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Wat79 W. C. Waterhouse, Introduction to affine group schemes, Graduate Texts in Mathematics,
vol. 66 (Springer, New York, NY, 1979).

Yul17 F. Yuliawan, Actions of Hochschild cohomology and local duality in modular representation
theory, PhD thesis, Universität Bielefeld (2017).

Dave Benson

Institute of Mathematics, University of Aberdeen, King’s College, Aberdeen AB24 3UE, UK

Srikanth B. Iyengar iyengar@math.utah.edu

Department of Mathematics, University of Utah, Salt Lake City, UT 84112, USA

Henning Krause

Fakultät für Mathematik, Universität Bielefeld, 33501 Bielefeld, Germany

Julia Pevtsova

Department of Mathematics, University of Washington, Seattle, WA 98195, USA

453

https://doi.org/10.1112/S0010437X19007061 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X19007061

	1 Introduction
	2 Cohomology and localisation
	3 Passage to closed points
	4 G-modules and Tate duality
	5 Local cohomology versus injective cohomology
	6 The Gorenstein property
	7 Local Serre duality
	Acknowledgements
	Appendix A  Injective modules at closed points
	References

