NS Proceedings of the Nutrition Society

Winter Meeting, 4-5 December 2018, Optimal diet and lifestyle strategies for the management of cardio-metabolic risk

Micronutrient intake and adequacy in women of child-bearing age (WCBA) (18-50v) in Ireland

J. Walton^{1,2}, L. Kehoe², B.A. McNulty³, A.P. Nugent^{3,4} and A. Flynn²

¹Dept. Biological Sciences, Cork Institute of Technology, Ireland, ²School of Food and Nutritional Sciences, University College Cork, Ireland, ³UCD Institute of Food and Health, University College Dublin, Ireland and ⁴Institute for Global Food Security, Oueens University Belfast, N. Ireland

There is an increasing recognition that women's pre-conceptual health (including nutritional status) sets the foundation for a successful pregnancy and the subsequent lifelong health of the baby. Almost half of pregnancies in Ireland are unplanned and dietary recommendations for women of child-bearing age (WCBA) are not differentiated by pregnancy intention. A daily 400µg folic acid supplement is recommended for all WCBA to reduce the risk of neural tube defect in an occurring pregnancy^(I). The objective of this study was to estimate micronutrient intake, adequacy of intake and compliance with the folic acid supplement recommendation in WCBA (18-50y) in Ireland. Analyses were based on the National Adult Nutrition Survey (NANS) (2008-2010) (www.iuna.net). A 4 day semi-weighed food record was used to collect food and beverage intake data (including nutritional supplement use) from a nationally representative sample of 1500 adults (487 women (18-50y)). Nutrient analyses were carried out using UK⁽²⁾ and Irish⁽³⁾ food composition data. Usual intakes of nutrients were calculated via the NCI-method using SAS[©] Enterprise Guide⁽⁴⁾. Adequacy of micronutrient intake was assessed using the most recently published estimated average requirements (EAR) from the European Food Safety Authority (EFSA)⁽⁵⁾ or the UK Department of Health⁽⁶⁾ and the Institute of Medicine's EAR in the case of vitamin D and iodine^(7,8). Under-reporters (32 % of sample), defined using minimum energy intake cut-off points, calculated as multiples of BMR were excluded from analyses.

Only 6 % of WCBA complied with the recommendation to take a folic acid supplement (400µg) daily to supplement their dietary folate intake. Furthermore, a significant proportion of women of child-bearing age had inadequate intakes of important nutrients including vitamins A, D & C, riboflavin, dietary folate equivalents, calcium and iodine. Strategies to increase micronutrient intakes and improve compliance with the folic acid supplement recommendation are needed to improve pre-conceptual health status for women of WCBA in Ireland.

The National Adult Nutrition Survey was funded by the Irish Department of Agriculture, Fisheries & Food under the Food for Health Research Initiative (2007-2012).

Table 1. Usual micronutrient intakes in women of childbearing age and the proportion of women with micronutrient intakes below the estimated average requirement (EAR) excluding under-reporters (n 335)

Micronutrients	Mean	SD	Median	EAR	% < EAR
Vitamin D (µg)	4.0	0.3	3.3	10µg/d	95.9
Vitamin C (mg)	118	9.6	91.9	80mg/d	43.1
Dietary folate equivalents (µg)	391	21.8	342	250µg/d	27.9
Riboflavin (mg)	2.4	0.2	2.0	1.3mg/d	23.4
Vitamin A (µg)	999	51.4	901	490µg/d	13.2
Vitamin B6 (mg)	3.2	0.2	2.7	1.3mg/d	9.0
Vitamin B12 (µg)	5.4	0.4	4.5	1.25µg/d	3.6
Thiamin (mg)	1.2	0.1	10.6	0.3mg/1000kcal	1.5
Niacin (mg)	21.7	0.6	20.9	5.5mg NE/1000kcal	0.0
Calcium (mg)	891	31.0	854	750mg/d	35.7
Iodine (µg)	149	7.2	137	95µg/d	23.5
Iron (mg)	13.5	0.6	12.2	7mg/d	5.9

- Food Safety Authority of Ireland (2011) Dublin: The Food Safety Authority.
 Food Standards Agency (2002) Cambridge: Royal Society of Chemistry.
 Black LJ, Ireland J, Møller A et al. (2011) J Food Comp Anal 24, 1017–1023.
 Tooze JA, Kipnis V, Buckman DW et al. (2010) Stat Med. 29 (27): 2857–68.
 EFSA (2017) EFSA J 14 (12): e15121E.
 LK Department of Health (1901) London: HMSO

- UK Department of Health (1991). London: HMSO.
 Institute of Medicine (2011) Washington, DC: The National Academies Press.
 Institute of Medicine (2011) Washington, DC: The National Academies Press.
- https://doi.org/10.1017/S0029665119000442 Published online by Cambridge University Press