
COMPOSITIO MATHEMATICA

Numerical criteria for divisors on M g to

be ample

Angela Gibney

Compositio Math. 145 (2009), 1227–1248.

doi:10.1112/S0010437X09004047

FOUNDATION 

COMPOSITIO 

MATHEMATICA

https://doi.org/10.1112/S0010437X09004047 Published online by Cambridge University Press

http://dx.doi.org/10.1112/S0010437X09004047
https://doi.org/10.1112/S0010437X09004047


Compositio Math. 145 (2009) 1227–1248
doi:10.1112/S0010437X09004047

Numerical criteria for divisors on M g to

be ample

Angela Gibney

Abstract

The moduli space Mg,n of n-pointed stable curves of genus g is stratified by the
topological type of the curves being parameterized: the closure of the locus of curves
with k nodes has codimension k. The one-dimensional components of this stratification
are smooth rational curves called F -curves. These are believed to determine all ample
divisors.

F -conjecture. A divisor on Mg,n is ample if and only if it positively intersects the
F -curves.

In this paper, proving the F -conjecture on Mg,n is reduced to showing that certain
divisors on M0,N for N 6 g + n are equivalent to the sum of the canonical divisor plus
an effective divisor supported on the boundary. Numerical criteria and an algorithm
are given to check whether a divisor is ample. By using a computer program called the
Nef Wizard, written by Daniel Krashen, one can verify the conjecture for low genus.
This is done on Mg for g 6 24, more than doubling the number of cases for which the
conjecture is known to hold and showing that it is true for the first genera such that
Mg is known to be of general type.

1. Introduction

The moduli space Mg,n of smooth n-pointed curves of genus g and its projective closure, the
Deligne–Mumford compactification Mg,n, have been studied in many areas of mathematics. This
is because properties of families of curves can often be translated into facts about the birational
geometry of the moduli space. For example, asking whether almost any curve of genus g occurs
as a member of a family given by free parameters (i.e. parameterized by an open subset of affine
space) is the same as asking whether Mg,0 (written simply as Mg) is unirational.

To learn about the birational geometry of a projective variety such as Mg,n, it is useful
to study its nef and effective divisors. A nef divisor D on a projective variety X is a divisor
that nonnegatively intersects every effective curve on X. The nef divisors on X parameterize
morphisms from X to any projective variety, since to every regular map f :X −→ Y from X to
a projective variety Y there corresponds a nef divisor, f∗A, where A is ample on Y . The nef and
effective divisors of a variety X form cones inside the Néron–Severi space of X. Interior to the nef
cone is the cone of ample divisors. By studying these cones, one can say a lot about the space X.
For example, one of the strongest results about the birational geometry of Mg is that for g = 22
and for g > 24, the moduli space is of general type. The result for g > 24 was proved by Harris
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and Mumford (and later Eisenbud) while that for g = 22 was proved by Farkas, who also showed
that M23 has positive Kodaira dimension [Far00, Far06, Har77]. After learning enough about
the cone of effective divisors, these authors were able to show that for g = 23 and for g > 24, the
canonical divisor of Mg is interior to it and, furthermore, does not touch the sides. In particular,
in this range Mg is not unirational, and so the general curve of genus g does not appear as a
member of a family of curves parameterized by an open subset of affine space.

The cone of nef divisors of a projective variety X is always contained inside the effective cone
of divisors of X. For Mg, the nef cone is strictly interior to the effective cone in the sense that
they intersect only at the origin (see [Gib00]). As a result of this fact, there is no projective
morphism with connected fiber from Mg to any lower-dimensional variety other than a point.
This is another example illustrating that the cones of nef and effective divisors are extremely
important tools for understanding the birational geometry of a projective variety X. Much more
information would be gained if one could further clarify the relationship between the nef and
effective cones. Ideally, one would like to describe the nef cone explicitly.

One might hope to specify which divisors on a projective variety X are nef by finding a
collection of curves {Ci}i∈I that determine all effective curves, i.e. which span the extremal rays
of the Mori cone of curves. If such a collection of curves exists, then one could say that a divisor D
on X is nef if and only if it intersects these curves. Finding such curves for a given variety X is
a very difficult, and often impossible, task. However, for Mg,n, there are smooth rational curves
called F -curves that seem to be the right candidates to consider.

In order to describe the F -curves, a few facts about the structure of Mg,n will be given.
Points in Mg,n correspond to stable n-pointed curves of genus g. A stable curve has at worst nodal
singularities. The locus of curves with k nodes has codimension k in Mg,n. Since the dimension of
Mg,n is 3g − 3 + n, the (closure of the) locus of curves with 3g − 4 + n nodes is one-dimensional.
Any curve that is numerically equivalent to a component of this one-dimensional locus is called
an F -curve. An F -divisor is any divisor that nonnegatively intersects all the F -curves. The
F -conjecture asserts that the F -cone of divisors is the same as the nef cone of divisors of Mg,n.

F -conjecture. A divisor on Mg,n is nef if and only if it nonnegatively intersects a class of
curves called the F -curves.

In this paper, proving the F -conjecture on Mg,n is reduced to showing that certain divisors
in M0,N for N 6 g + n are equivalent to the sum of the canonical divisor plus an effective
divisor supported on the boundary (Theorem 3.1). As an application of the reduction, numerical
criteria are given which, if satisfied by a divisor D on Mg, guarantee that D is nef (see
Corollaries 5.1–5.5). An algorithm is described for using the reduction to check that a given
F -divisor is nef (Theorem/Algorithm 4.8). Using a computer program called the Nef Wizard,
one can show that the criteria and the algorithm completely determine all nef divisors on Mg for
g 6 24. This computer package, written by Daniel Krashen, can be found at http://www.math.
uga.edu/∼dkrashen/nefwiz/index.html.

Most of the criteria are phrased in such a way that they can be applied to showing
that F -divisors on Mg are nef. However, since by [GKM01, Theorem 0.7] any F -divisor in
M̃0,g =M0,g/Sg is the pullback of an F -divisor on Mg, the criteria can also be used to prove
that F -divisors on this space are nef.

It is worth noting that because, as it turns out, there are a finite number F -curves to begin
with, if the F -conjecture were true, it would mean that there are finitely many extremal rays of

1228

https://doi.org/10.1112/S0010437X09004047 Published online by Cambridge University Press

http://www.math.uga.edu/~dkrashen/nefwiz/index.html
http://www.math.uga.edu/~dkrashen/nefwiz/index.html
http://www.math.uga.edu/~dkrashen/nefwiz/index.html
http://www.math.uga.edu/~dkrashen/nefwiz/index.html
http://www.math.uga.edu/~dkrashen/nefwiz/index.html
http://www.math.uga.edu/~dkrashen/nefwiz/index.html
http://www.math.uga.edu/~dkrashen/nefwiz/index.html
http://www.math.uga.edu/~dkrashen/nefwiz/index.html
http://www.math.uga.edu/~dkrashen/nefwiz/index.html
http://www.math.uga.edu/~dkrashen/nefwiz/index.html
http://www.math.uga.edu/~dkrashen/nefwiz/index.html
http://www.math.uga.edu/~dkrashen/nefwiz/index.html
http://www.math.uga.edu/~dkrashen/nefwiz/index.html
http://www.math.uga.edu/~dkrashen/nefwiz/index.html
http://www.math.uga.edu/~dkrashen/nefwiz/index.html
http://www.math.uga.edu/~dkrashen/nefwiz/index.html
http://www.math.uga.edu/~dkrashen/nefwiz/index.html
http://www.math.uga.edu/~dkrashen/nefwiz/index.html
http://www.math.uga.edu/~dkrashen/nefwiz/index.html
http://www.math.uga.edu/~dkrashen/nefwiz/index.html
http://www.math.uga.edu/~dkrashen/nefwiz/index.html
http://www.math.uga.edu/~dkrashen/nefwiz/index.html
http://www.math.uga.edu/~dkrashen/nefwiz/index.html
http://www.math.uga.edu/~dkrashen/nefwiz/index.html
http://www.math.uga.edu/~dkrashen/nefwiz/index.html
http://www.math.uga.edu/~dkrashen/nefwiz/index.html
http://www.math.uga.edu/~dkrashen/nefwiz/index.html
http://www.math.uga.edu/~dkrashen/nefwiz/index.html
http://www.math.uga.edu/~dkrashen/nefwiz/index.html
http://www.math.uga.edu/~dkrashen/nefwiz/index.html
http://www.math.uga.edu/~dkrashen/nefwiz/index.html
http://www.math.uga.edu/~dkrashen/nefwiz/index.html
http://www.math.uga.edu/~dkrashen/nefwiz/index.html
http://www.math.uga.edu/~dkrashen/nefwiz/index.html
http://www.math.uga.edu/~dkrashen/nefwiz/index.html
http://www.math.uga.edu/~dkrashen/nefwiz/index.html
http://www.math.uga.edu/~dkrashen/nefwiz/index.html
http://www.math.uga.edu/~dkrashen/nefwiz/index.html
http://www.math.uga.edu/~dkrashen/nefwiz/index.html
http://www.math.uga.edu/~dkrashen/nefwiz/index.html
http://www.math.uga.edu/~dkrashen/nefwiz/index.html
http://www.math.uga.edu/~dkrashen/nefwiz/index.html
http://www.math.uga.edu/~dkrashen/nefwiz/index.html
http://www.math.uga.edu/~dkrashen/nefwiz/index.html
http://www.math.uga.edu/~dkrashen/nefwiz/index.html
http://www.math.uga.edu/~dkrashen/nefwiz/index.html
http://www.math.uga.edu/~dkrashen/nefwiz/index.html
http://www.math.uga.edu/~dkrashen/nefwiz/index.html
http://www.math.uga.edu/~dkrashen/nefwiz/index.html
http://www.math.uga.edu/~dkrashen/nefwiz/index.html
http://www.math.uga.edu/~dkrashen/nefwiz/index.html
https://doi.org/10.1112/S0010437X09004047


Numerical criteria for divisors on Mg to be ample

the cone of curves. This is surprising, since the most general thing one can say about the shape
of the cone of curves for an arbitrary variety X is that the part of the cone corresponding to
curves which negatively intersect the canonical divisor is polyhedral; on this part of the cone
there are countably many extremal rays and they are spanned by irreducible, rational curves.
The cone of curves for Mg,n is not K-negative; in fact, since for n= 0, g = 23 and g > 24 the
space Mg is of general type, very much the opposite is true. It is for this reason that in this
work the F -conjecture is checked for genus up to 24; for higher genera there does not seem to
be any feature of the spaces that might prevent the conjecture from being true. Also, the list of
generators of the cone of F -divisors grows extremely fast, so it takes the computer a long time
to run through the list of divisors to check that the criteria are met and the divisors are nef.

Previous results. Prior to this work, the F -conjecture was known to be true on Mg for g 6 11
and for g = 13. The first cases, of g = 3 and 4, were proved by Carel Faber, after whom
F -curves and F -divisors are named. In [GKM01], it was shown that the problem of describing the
nef divisors on Mg,n can be reduced to solving the F -conjecture on M0,g+n/Sg. Results of Keel
and McKernan [KM96], when combined with [GKM01], establish the truth of the conjecture for
g 6 11. Farkas and I were able to extend these results to g = 13.

2. Definitions and notation

Standard definitions are used for cones of divisors and curves as well as for the basic divisor classes
on Mg,n (see, e.g., [FG03, GKM01, Kol91]). Since numerical details are referred to specifically,
the F -curves and F -divisors will now be defined. Following that, formulas for the pullback of a
divisor along certain morphisms will be derived. Since the formulas in §§ 2.2, 2.3 and 2.4 are very
combinatorially involved, the reader may wish to skip ahead to § 3 and refer back as necessary.

2.1 Faber curves and divisors
An F -curve on Mg,n is any curve that is numerically equivalent to a component of the locus of
points in Mg,n having 3g − 4 + n nodes. A subset of the boundary classes δi,I , taken together
with the tautological classes ψi =−δ0,i and the Hodge class λ, forms a basis for the Picard
group of Mg,n. By writing a divisor in terms of these classes and intersecting it with the various
F -curves, one can see that if the divisor is an F -divisor, then its coefficients satisfy certain
inequalities. These inequalities, which can be taken to define an F -divisor, are listed below.

Definition/Theorem 2.1 (cf. [GKM01, Theorems 2.1 and 2.2]). For N = {1 . . . n}, consider
the divisor

D = aλ− b0δ0 −
∑

06i6bg/2c,I⊆N
|I|>1 if i=0

bi,Iδi,I

on Mg,n (with the convention that for given g and n, we omit any terms for which the
corresponding boundary divisor does not exist). Consider the following inequalities:

(i) a− 12b0 + b1,∅ > 0;

(ii) b0 > 0;

(iii) bi,I > 0 for g − 2 > i > 0;

(iv) 2b0 − bi,I > 0 for g − 1 > i > 1;

(v) bi,I + bj,J > bi+j,I∪J for i, j > 0, i+ j 6 g − 1 and I ∩ J = ∅;
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(vi) bi,I + bj,J + bk,K + bl,L − (bi+j,I∪J + bi+k,I∪L + bi+l,I∪L) > 0 for i, j, k, l > 0, i+ j + k + l =
g and I, J, K, L a partition of N ;

where bi,I is defined to be bg−i,Ic for i > bg/2c.
For g > 3, D is an F -divisor if and only if each of the above inequalities holds.
For g = 2, D is an F -divisor if and only if (i) and (iii)–(vi) hold.
For g = 1, D is an F -divisor if and only if (i), (v) and (vi) hold.
For g = 0, D is an F -divisor if and only if (vi) holds.

2.2 Boundary restrictions
Let f :M0,g+n −→Mg,n be the morphism obtained by attaching a pointed curve of genus one to
each of the first g marked points. The pullback f∗D will often be referred to as the restriction
of a divisor D to the flag locus. Divisors in M0,g pulled back along certain so-called boundary
restriction morphisms will also be considered.

Definition 2.2. For z > 2, a > 1 and disjoint subsets Nj ⊂N = {1 . . . n} of order nj > 2, let
[N1 :N2 : . . . :Na] be the boundary restriction morphism, which we denote by va,z :M0,a+z −→
M0,n where n=

∑a
j=1 nj + z, given by attaching an (nj + 1)-pointed genus-zero curve (whose

marked points consist of an attaching point and the Nj) to each of the first a marked points
and renumbering the remaining z marked points. We say that a is the order of the boundary
restriction morphism.

Note that if D is an F -divisor in Mg, then f∗D is an F -divisor in M0,g. This derives from
the fact that 1-strata on M0,g go to 1-strata on Mg via f . Likewise, if D is an F -divisor in M0,n

and v :M0,a+z −→M0,n is a boundary restriction, then v∗D is an F -divisor in M0,a+z. As will
be shown in Lemma 2.4, for any boundary restriction morphism v = [N1 . . . Na], the pullback
v∗f∗D is determined by the orders of the sets Nj . Hence one may denote the boundary restriction
morphism [N1 . . . Na] by the a-tuple [n1 . . . na].

Note 2.3. For B ⊂A, we will often use the notation

∆Z,y
A,B =

∑
Y⊂Z,|Y |=y

δY ∪B.

Lemma 2.4.

(i) Let D = aλ−
∑bg/2c

i=0 biδi in Mg be a divisor. Then

f∗D = b1

g∑
i=1

ψi −
bg/2c∑
i=2

biBi where Bi =
∑

I⊂{1...g}
|I|=i

δI .

(ii) Let v = va,z = [n1 . . . na] be a boundary restriction of M0,g. Then

v∗f∗D =
∑

i∈A={1,...,a}

bniψi + b1
∑

i∈Z=Ac

ψi −
∑

B⊂A,06y6|Z|
26y+|B|6b(a+z)/2c

by+
∑

i∈B ni
∆Z,y

A,B.

Proof. For both formulas, apply [AC98, p. 106, Lemma 3.3]. 2

As one can see from Lemma 2.4, the pullback f∗D is invariant under the natural action of Sg

on M0,g. We shall often be referring to (the image of) f∗D in M̃0,g =M0,g/Sg. In [KM96], Keel
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and McKernan studied M̃0,g, proving, among other things, that its cone of effective divisors
is simplicial and generated by the B̃i, the images of Bi in M̃0,g. This fact will be used in
Proposition 4.5, which says that any nontrivial F -divisor on M̃0,g is big. Keel and McKernan
had previously shown that every nef divisor on M̃0,g is big. They also gave an expression for the
canonical divisor K

M̃0,n
which is used in the proof of Theorem 4.1.

2.3 Description of the A-averages
The equivalence classes of boundary divisors span Pic(M0,n) but are not independent.
Consequently, any divisor class in M0,n, such as the ψi, can be expressed in terms of the boundary
classes and, moreover, there are different ways of doing so. Given i, j, k ∈ {1 . . . n}, one has that

ψi =
∑

I⊆{1...n}
i∈I;j,k/∈I

δI .

In particular, there are
(
n−1

2

)
ways of expressing a divisor class ψi as a sum of boundary divisors

in this manner. By combining these in various ways, one can produce different manifestations of
the ψi as sums of boundary classes. Suppose that A⊆ {1 . . . n} and i ∈A. In this section, four
ways of writing ψi as a sum of boundary divisors with respect to A will be given. These are
used to express a general divisor D on M0,n in terms of boundary classes and will enable one to
locate where the divisor sits in the Néron–Severi space of M0,n with respect to its effective cone
of divisors.

The first way to write ψi for i ∈A as a sum of boundary classes comes from combining all
the expressions for ψi given above such that j, k ∈A\{i}.

Definition/Lemma 2.5. Let A⊆ {1 . . . n} with a= |A| > 3 and let Z =Ac with z = |Z|. The
first A-average of ψi with i ∈A is

ψi =
∑

i∈B⊂A
|B|=b

∑
y

(a− b)(a− b− 1)
(a− 1)(a− 2)

∆Z,y
A,B.

The second A-average is derived by writing down all such expressions for ψi, taking pairs
j ∈A\{i} and k ∈Ac.

Definition/Lemma 2.6. Let A⊂ {1 . . . n} with a= |A| > 2 and let Z =Ac with z = |Z| > 1.
The second A-average of ψi with i ∈A is

ψi =
∑

i∈B⊂A
|B|=b

∑
y

(a− b)(z − y)
(a− 1)z

∆Z,y
A,B.

The third A-average of ψi is generated by taking all expressions such that j, k ∈Ac.

Definition/Lemma 2.7. Let A⊂ {1 . . . n} with a= |A| > 1 and Z =Ac with z = |Z| > 1. The
third A-average of ψi with i ∈A is

ψi =
∑

i∈B⊂A
|B|=b

∑
y

(z − y)(z − y − 1)
z(z − 1)

∆Z,y
A,B.

Finally, by taking all possible pairs j, k ∈ {1 . . . n}\{i}, one obtains the fourth expression
for ψi in terms of the boundary classes. This A-average comes from taking the greatest number
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of ways of expressing the ψi as a sum of boundary divisors in this manner and is referred to as
the big average of ψi; it can be found in [FG03, Lemma 1].

Definition/Lemma 2.8. For i⊂ {1 . . . n}, the fourth or big A-average of ψi is

ψi =
∑

Y⊂{1...n}\{i}

(n− 1− y)(n− 2− y)
(n− 1)(n− 2)

δY ∪{i},

where y is the number of elements in the set Y .

Notice that the big A-average of ψi is the same as the third A-average when one takes |Z|= 1.

2.4 The c-averages of a divisor on M0,n

The main technique in this work is to use different ways to write certain divisors on M0,n as

cKM0,n
+ E,

where E is an effective sum of boundary classes. These expressions are called c-averages of a
divisor.

For D = αλ−
∑

26i6bg/2c biδi on Mg, the pullback v∗f∗D on M0,n of D along the so-called
boundary restriction morphisms can be expressed as

v∗f∗D = b1
∑

i∈Z={i|ni=1}

ψi +
∑

i∈A={1,...,a}

bniψi −
∑

B⊂A,06y6|Z|
26y+|B|6b(a+z)/2c

by+
∑

i∈B ni
∆Z,y

A,B.

Upon replacing, in the expression above, the ψi for i ∈A or i ∈ Z with combinations of the
various A- or Z-averages, respectively, one obtains up to 12 different c-averages of the divisor
v∗f∗D. When a= 0, there is just the big average. To give a flavor of what the expressions look
like, three examples are given below.

Upon replacing the ψi by their big averages, one obtains the big average of D. We will consider
the big averages of f∗D and v∗f∗D for D a divisor in Mg. These big averages are given in the
following definition/lemmas.

Definition/Lemma 2.9. Suppose that D is a divisor in Mg. Let f :M0,g −→Mg be the
morphism given by attaching elliptic tails, and let v :M0,a+z −→M0,g be a boundary
restriction morphism. The big average of f∗D is

f∗D =
bg/2c∑
i=2

(
i(g − i)
g − 1

b1 − bi
)
Bi,

and the big average of v∗f∗D is

v∗f∗D

=
∑

06y6z
B⊂A,|B|=b

26y+b6b(a+z)/2c

(
b1(y(a+ z − y − b)(a+ z − y − b− 1) + (z − y)(y + b)(y + b− 1))

(a+ z − 1)(a+ z − 2)

+
(a+ z − y − b)(a+ z − y − b− 1)

∑
i∈B bni + (y + b)(y + b− 1)

∑
i∈A\B bni

(a+ z − 1)(a+ z − 2)

− by+
∑

i∈B ni

)
∆Z,y

A,B.
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Proof. Replace the ψi in the expressions for f∗D and v∗D in Lemma 2.4 by their big averages. 2

In the next definition/lemma, the c-averages of f∗D and v∗f∗D are given.

Definition/Lemma 2.10. Suppose that D is a divisor in Mg and c > 0. Let f :M0,g −→Mg

be the morphism given by attaching elliptic tails, and let v :M0,a+z −→M0,g be a boundary
restriction morphism. The big c-average of v∗f∗D is

v∗f∗D = cKM0,a+z
+

∑
B⊆A,|B|=b

06y6z,26y+b6b(a+z)/2c

(
fy,b(b1 − c) + gy,b

∑
i∈B

(bni − c)

+ hy,b

∑
i∈Bc

(bni − c) + 2c− by+
∑

i∈B bni

)
∆Z,y

A,B,

where

gy,b =
(a+ z − y − b)(a+ z − y − b− 1)

(a+ z − 1)(a+ z − 2)
, hy,b =

(y + b)(y + b− 1)
(a+ z − 1)(a+ z − 2)

,

fy,b = ygy,b + (z − y)hy,b, ∆Z,y
A,B =

∑
Y⊂Z,|Y |=y

δY ∪B.

Proof. Recall that from Lemma 2.4, if v = va,z = [n1 . . . na] is a boundary restriction of M0,g,
then

v∗f∗D = b1
∑

i∈Z={i|ni=1}

ψi +
∑

i∈A={1,...,a}

bniψi −
∑

B⊂A,06y6|Z|
26y+|B|6b(a+z)/2c

by+
∑

i∈B ni
∆Z,y

A,B.

Using the relation KM0,g
=
∑

16i6g ψi − 2∆, we rewrite the expression as

v∗f∗D =
∑
j∈A

(bnj − c)ψj + (b1 − c)
∑
j∈Z

ψj + c
∑

j∈A∪Z

ψj −
∑

06y6z,B⊆A
26y+|B|6bn/2c

by+
∑

k∈B nk
∆Z,y

A,B

=
∑
j∈A

(bnj − c)ψj + (b1 − c)
∑
j∈Z

ψj + cKM0,g
+

∑
06y6z,B⊆A

26y+|B|6bn/2c

(2c− by+
∑

k∈B nk
)∆Z,y

A,B.

By big-averaging the ψi and distributing the coefficients through the sum, one obtains the
expression given in the theorem. 2

Note that if a= 0, then z = g and v∗f∗D = f∗D. Therefore the big c-average of f∗D is just

f∗D = cKM0,g
+

∑
26i6bg/2c

(
(b1 − c)

i(g − i)
(g − 1)

+ 2c− bi
)
Bi.

Moreover, as long as c > 0, one can write this as

f∗D = c

(
KM0,g

+
∑

26i6bg/2c

(
2g − 2− i(g − i)

g − 1
+
b1i(g − i)− bi(g − 1)

(g − 1)c

)
Bi

)
.

Definition/Lemma 2.11. Suppose that D is a divisor in Mg and c > 0. Let f :M0,g −→Mg

be the morphism given by attaching elliptic tails, and let v = [n1 . . . na] :M0,a+z −→M0,g be a
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boundary restriction morphism such that a > 2 and z > 2. The second c-average of v∗f∗D is

v∗f∗D = cKM0,a+z
+

∑
B⊆A,|B|=b

06y6z,26y+b6b(a+z)/2c

Cy,B∆Z,y
A,B,

where

Cy,B =
(a− b)(z − y)

∑
i∈B(bni − c) + by

∑
i∈Bc(bni − c)

(a− 1)z

+
(b1 − c)((a− b)(z − y) + by)

a(z − 1)
+ 2c− by+

∑
i∈B ni

.

Proof. Recall that from Lemma 2.4, if v = va,z = [n1 . . . na] is a boundary restriction of M0,g,
then

v∗f∗D = b1
∑

i∈Z={i|ni=1}

ψi +
∑

i∈A={1,...,a}

bniψi −
∑

B⊂A,06y6|Z|
26y+|B|6b(a+z)/2c

by+
∑

i∈B ni
∆Z,y

A,B,

where ∆Z,y
A,B =

∑
Y⊂Z,|Y |=y δY ∪B.

Using the relation KM0,g
=
∑

16i6g ψi − 2∆, the expression can be rewritten as

v∗f∗D =
∑
j∈A

(bnj − c)ψj + (b1 − c)
∑
j∈Z

ψj + c
∑

j∈A∪Z

ψj −
∑

06y6z,B⊆A
26y+|B|6bn/2c

by+
∑

k∈B nk
∆Z,y

A,B

=
∑
j∈A

(bnj − c)ψj + (b1 − c)
∑
j∈Z

ψj + cKM0,g
+

∑
06y6z,B⊆A

26y+|B|6bn/2c

(2c− by+
∑

k∈B nk
)∆Z,y

A,B.

Now substitute the second A-average of the ψi for i ∈A, with Z =Ac, and distribute the
coefficients through the sum; also substitute the second Z-average of the ψi for i ∈ Z, with
A= Zc, and distribute the coefficients through the sum. This yields the expression given in the
theorem. 2

One could also combine different averages of the ψi. For example, by substituting the second
A-average of the ψi for i ∈A and substituting the big Z-average of the ψi for i ∈ Z, with A= Zc,
and distributing the coefficients through the sum, one obtains the expression

v∗f∗D = c

(
KM0,a+z

+
∑

B⊆A,|B|=b
06y6z,26y+b6b(a+z)/2c

n(α)
d(α)

+
n(β)
d(β)

/
c ∆Z,y

A,B

)
,

where

n(α) = (a+ z − 1)(a+ z − 2)(2(a− 1)− b(a− b))
− (a− 1)((a+ z − y − b)(a+ z − y − b− 1)y + (y + b)(y + b− 1)(z − y)),

d(α) = (a− 1)(a+ z − 1)(a+ z − 2),

n(β) = (a+ z − 1)(a+ z − 2)((z − y)(a− b)
∑
i∈B

bni + yb
∑
i∈Bc

bni)

+ b1(a− 1)z((a+ z − y − b)(a+ z − y − b− 1)y + (y + b)(y + b− 1)(z − y)),
d(β) = (a+ z − 1)(a+ z − 2)(a− 1)z.
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3. Reduction of the F -conjecture

In this section, proving the F -conjecture is reduced to showing that every F -divisor can be
expressed as a sum of a nonnegative multiple of the canonical divisor and an effective sum of
boundary divisors.

Conjecture 1. Every F -divisor on M0,N is of the form cKM0,N
+ E where c > 0 and E is an

effective sum of boundary classes.

It will be shown in Theorem 3.1 that if Conjecture 1 holds, then the F -conjecture holds on
Mg,n for all pairs g and n such that g + n 6N . The numerical criteria and algorithm in the next
section for showing that a divisor is nef rest on this reduction of the F -conjecture to Conjecture 1.

Theorem 3.1. If Conjecture 1 is true on M0,N for N 6 g + n, then the F -conjecture is true on
Mg,n. In particular, if Conjecture 1 is true, then the F -conjecture is true.

Two facts are needed to explain how Conjecture 1 implies the F -conjecture. The first is that if the
F -conjecture is true in M0,g+n, then it is true in Mg,n. More precisely, let f :M0,g+n −→Mg,n

be the morphism associated to the map given by attaching pointed elliptic tails at each of the
first g marked points.

The Bridge Theorem [GKM01, Theorem 0.3]. A divisor D on Mg,n is nef if and only if:

(i) D is an F -divisor; and

(ii) f∗D is a nef divisor on M0,g+n.

The following result is the second important fact needed to prove Theorem 3.1.

The Ray Theorem ([FG03, Theorem 4] and [KM96, Theorem 1.2]). If R is an extremal ray of
the cone of curves of M0,N and if R · (KM0,N

+G)< 0 where G is any effective sum of boundary

components for which ∆ \G is nonnegative, then R is spanned by an F -curve.

The symbol ∆ denotes the sum of boundary classes. So the condition in the Ray Theorem
is that G=

∑
S aSδS such that 0 6 aS 6 1 for all S. The Ray Theorem is an extension of a

result due to Keel and McKernan which states that if R is an extremal ray of NE(M0,N ) and
R · (KM0,N

+G) 6 0 for G=
∑

S aSδS such that 0 6 aS < 1, then R is spanned by an F -curve.

Proof of Theorem 3.1. Suppose that whenever one has an F -divisor D on M0,N , there exists a
constant c > 0 for which

D = cKM0,N
+ E,

where E is an effective sum of boundary classes. We will show that this assumption implies that
the F -conjecture is true on Mg,n. By the Bridge Theorem, in order to prove the F -conjecture
on Mg,n, it is enough to show that any F -divisor on M0,g+n is nef. Hence if can we show that
our assumption implies that D is nef, then the theorem is proved.

By definition, if D nonnegatively intersects all the extremal rays of the cone of curves, then
D is nef. Suppose that R is an extremal ray of the cone of curves. The first thing to note is
that since D is an F -divisor, if R is spanned by an F -curve, then D nonnegatively intersects R.
We will prove that there are no other kinds of extremal rays. We do this by induction on the
number of marked points. As the base case we take N = 7, since the F -conjecture is true for
N 6 7 (see [KM96]).

1235

https://doi.org/10.1112/S0010437X09004047 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X09004047


A. Gibney

The cone of curves is the closure of NE(M0,N ) in the real vector space N1(M0,N ). So every
extremal ray R either is spanned by an irreducible curve or is the limit of rays spanned by
irreducible curves.

Suppose that R is a D-negative extremal ray of the cone of curves of M0,N for N > 7 which
is not spanned by an F -curve. In other words, suppose that

R ·D =R · (cKM0,N
+ E)< 0.

In particular, by the Ray Theorem, R · E < 0.

If R is spanned by a curve, then since E is an effective sum of boundary classes, to
get a contradiction it is enough to show that D is nef when restricted to the components
in the support of E. This results in pulling D back to a space M0,n for n <N along
a boundary restriction morphism (defined in § 2). Since the pullback of an F -divisor along a
boundary restriction morphism is an F -divisor, we can repeat this argument until we end up in
M0,n for n 6 7.

If the extremal ray R is a limit of curves, then one can find a ray R′ spanned by a curve
which is close enough so that R′ intersects both E and D negatively. In this case, one reaches a
contradiction as above. 2

As will be shown in Theorem 3.2 below, Conjecture 1 is true on M0,N for N 6 6. It was
already known to be true with c= 0 (see [FG03]). However, the proof for the case with c= 0
is much harder, since showing that a divisor class is in the convex hull of boundary classes is
more difficult than showing it is in the convex hull of boundary classes and the canonical divisor.
For larger values of N , it seems unlikely that Conjecture 1 would be true with c= 0, even when
N = 7.

Theorem 3.2. If D is any divisor on M0,n for n= 5 or 6, then there exists a constant k > 0
such that D = cKM0,n

+ E for all c > k, where E is an effective sum of boundary divisors. In

particular, Conjecture 1 is true on M0,n for n 6 6.

Proof of Theorem 3.2. First, suppose that n= 5. By substituting the big averages (see § 2 for
definitions) of the divisors ψi, one can express the divisor D as

D =
∑

16i65

ciψi = c

( ∑
16i65

ψi − 2
∑

ij∈{1...5}

δij

)
+
∑

16i65

(ci − c)ψi + 2c
∑

ij∈{1...5}

δij

= cKM0,5
+

∑
ij∈{1...5}

(
1
2

∑
k∈{i,j}

(ck − c) +
1
6

∑
k∈{i,j}c

(ck − c) + 2c
)
δij

= cKM0,5
+

∑
ij∈{1...5}

(
1
2

∑
k∈{i,j}

ck +
1
6

∑
k∈{i,j}c

ck +
1
2
c

)
δij .

Similarly, when n= 6 one can write D as follows:

D =
∑

16i66

ciψi −
∑

ij∈{2...6}

b1ijδ1ij

= cKM0,6
+

∑
ij∈{1...6}

(
1
2

∑
k∈{i,j}

(ck − c) +
1
10

∑
16k66

(ck − c) + 2c
)
δij
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+
∑

ij∈{2...6}

(
+

3
10

∑
16k66

(ck − c) + 2c− b1ij

)
δ1ij

= cKM0,6
+

∑
ij∈{1...6}

(
1
2

(ci + cj) +
1
10

∑
16k66

ck +
2c
5

)
δij

+
∑

ij∈{2...6}

(
3
10

∑
16k66

ck +
c

5
− b1ij

)
δij .

In either case, if c is taken to be big enough, then the assertion is true. 2

4. Iterative procedures to show that a divisor on Mg is nef

By proving particular cases of Conjecture 1, one can use Theorem 3.1 to define an algorithm for
proving that a divisor D in Mg is nef (see Theorem 4.7). The first step is the following result.

Theorem 4.1. If D = b1
∑

16i6g ψi −
∑

26i6bg/2c biB̃i is any F -divisor on M̃0,g =M0,g/Sg, then
there exists a constant c > 0 for which D = cK

M̃0,g
+ E, where E is an effective sum of boundary

classes.

To prove this, we will begin by showing that any nontrivial F -divisor on M̃0,g is, in fact, big.

Notation 4.2. For positive integers i, j, k and g − (i+ j + k), denote by Fi,j,k,g−(i+j+k) any
F -curve determined by a partition I ∪ J ∪K ∪ (N \ I ∪ J ∪K) of N = {1, . . . , n} with |I|= i,
|J |= j and |K|= k.

Definition 4.3. Let g = 2k − 1 be a nonnegative odd integer; for a nonnegative integer l such
that 1 6 2l + 1 6 g − 3, put

S2k−1
2l+1 =

k−l−2∑
i=1

F1,2l+1,i,2k−(i+2l+3);

for a positive integer l such that 1 6 2l 6 g − 3, put

S2k−1
2l =

1
2
F1,2l,k−l−1,k−l−1 +

k−l−2∑
i=1

F1,2l,i,2k−(i+2l+2).

Let g = 2k be a nonnegative even integer; for j = 2l with 1 6 j 6 g − 3, put

S2k
2l =

k−2l−1∑
i=1

F1,2l,i,2k−(i+2l+1);

for j = 2l + 1 with 1 6 j 6 g − 3, put

S2k
2l+1 =

1
2
F1,2l+1,k−l−1,k−l−1 +

k−2l−2∑
i=1

F1,2l,i,2k−(i+2l+1).

Lemma 4.4. If D = b1
∑g

i=1 ψi −
∑bg/2c

i=2 biBi is an F -divisor on M̃0,g, then:

(i) D · S2k−1
2l+1 = (k − l − 1)b1 + (k − l − 2)b2l+1 − (k − l − 1)b2l+2;

(ii) D · S2k−1
2l = ((2k − 2l − 1)/2)b1 + ((2k − 2l − 3)/2)b2l − ((2k − 2l − 1)/2)b2l+1;
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(iii) D · S2k
2l = (k − l)b1 + (k − l − 1)b2l − (k − l)b2l+1;

(iv) D · S2k
2l+1 = ((2k − 2l − 1)/2)b1 + ((2k − 2l − 3)/2)b2l+1 − ((2k − 2l − 1)/2)b2l+2.

Proof. To show (i),

S2k−1
2l+1 =

k−l−2∑
i=1

D · F1,2l+1,i,2k−(i+2l+2)

=
k−l−2∑

i=1

(b1 + b2l+1 + bi + bi+2l+2 − b2l+2 − b1+i − bi+2l+1)

= (k − l − 2)(b1 + b2l+1 − b2l+2) +
k−l−2∑

i=1

(bi + bi+2l+2 − b1+i − bi+2l+1)

= (k − l − 2)(b1 + b2l+1 − b2l+2) + b1 + bk+l − bk−l−1 − b2l+2

= (k − l − 1)b1 + (k − l − 2)b2l+1 − (k − l − 1)b2l+2.

Since g = 2k − 1 in this case, one has that bk+l = b2k−1−(k+l) = bk−l−1. The computations for
(ii)–(iv) are analogous. 2

Proposition 4.5. If D = b1
∑g

i=1 ψi −
∑bg/2c

i=2 biB̃i is a nontrivial F -divisor on M̃0,g
∼=M0,g/Sg,

then for i ∈ {2, . . . , bg/2c} one has that (i(g − i)/(g − 1))b1 − bi > 0. In particular, D is big.

Proof. One can average the ψi to express D as D =
∑bg/2c

i=2

(
(i(g − i)/(g − 1))b1 − bi

)
B̃i; so if

the first assertion of the proposition is true, then D is big. Let us first show that each of the
coefficients is nonnegative; we then show that if any of the coefficients is zero, D is trivial.

Notice that for g = 2k − 1,

2(g − 2)
(g − 1)

b1 − b2 =
2k − 3
(k − 1)

b1 − b2 =
1

(k − 1)
D · S2k−1

1 ,

while for g = 2k,
2(g − 2)
(g − 1)

b1 − b2 =
4(k − 1)
(2k − 1)

b1 − b2 =
2

(2k − 1)
D · S2k

1 .

The next computation will show that for j > 2, upon putting D · Sg
j = c1b1 + cjbj − cj+1bj+1

one has that
(j + 1)(g − j − 1)

(g − 1)
b1 − bj+1 =

1
cj+1

(
Sg

j + cj

(
j(g − j)
(g − 1)

b1 − bj
))

.

In the following, the details will be given for the cases where g = 2k − 1 and j = 2l + 1 are both
odd and where g = 2k and j = 2l are both even. The other two cases are completely analogous.

When g is odd,

1
(k − l − 1)

(
D · S2k−1

j + (k − 1− 2)
(
j(g − j)
(g − 1)

b1 − bj
))

=
1

(k − l − 1)
(
(k − l − 1)b1 + (k − l − 2)bj − (k − l − 1)bj+1

)
+

(k − 1− 2)
(k − l − 1)

(
(2l + 1)(2k − 2l)

2(k − 1)
b1 − bj

)
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=
1

(k − l − 1)

(
(k − l − 1)b1 +

(2l + 1)(k − l − 2)(k − l − 1)
(k − 1)

b1 − (k − l − 1)bj+1

)
=

1
(k − l − 1)

(
(k − l − 1)((k − l) + (2l + 1)(k − l − 2))

(k − 1)
b1 − (k − l − 1)bj+1

)
=

(k − l) + (2l + 1)(k − l − 2)
(k − 1)

b1 − bj+1 =
(l + 1)(2k − 2l − 3)

(k − 1)
b1 − bj+1

=
(j + 1)(g − (j + 1))

(g − 1)
b1 − bj+1.

When g is even,

1
(k − l)

(
D · S2k

j + (k − l − 1)
(
j(2k − j)
(2k − 1)

b1 − bj
))

= b1 +
(k − l − 1)j(2k − j)

(k − l)(2k − 1)
b1 − bj+1 =

(k − l)(2l + 1)(2k − 2l − 1)
(k − l)(2k − 1)

b1 − bj+1

=
(j + 1)(2k − j − 1)

(2k − 1)
b1 − bj+1.

When j = 2l + 1 is odd,

2
2k − 2l − 1

(
S2k

2l+1 +
(2k − 2l − 3)

2

(
(2l + 1)(2k − 2l − 1)

(2k − 1)
b1 − b2l+1

))
=

(2l + 2)(2k − 2l − 2)
(2k − 1)

b1 − b2l+2.

Next, we show that if D · S1 = 0, then D is trivial. Suppose that D · S1 = 0; then, in
particular, D · F1,1,i,g−i−2 = 0 for all 1 6 i 6 g − 3 and (2(g − 2)/(g − 1))b1 − b2 = 0. Note that
D · F1,1,1,g−3 = 3b1 + b3 − 3b2 = 0 and (2(g − 2)/(g − 1))b1 − b2 = 0 imply that

0 = 3b1 + b3 − 3b2 = 3b1 + b3 − 3
2(g − 2)
(g − 1)

b1 = b3 −
3(g − 3)
(g − 1)

b1,

and so (3(g − 3)/(g − 1))b1 − b3 = 0. Now, if

i(g − i)
(g − 1)

b1 − bi = 0 and
(i+ 1)(g − (i+ 1))

(g − 1)
b1 − bi+1 = 0,

then since

D · F1,1,i,g−(i+2) = 2b1 + bi + bi+2 − b2 − 2bi+1 = 0,

we have

bi+2 =
(

2(g − 2)
(g − 1)

+
2(i+ 1)(g − (i+ 1))

(g − 1)
− 2(g − 1)

(g − 1)
− i(g − i)

(g − 1)

)
b1 =

(i+ 2)(g − (i+ 2))
(g − 1)

b1.

Finally, if any of the coefficients is zero, then D · S1 = 0, which implies that D is trivial. 2

Proof of Theorem 4.1. Assume that D = b1
∑

16i6g ψi −
∑

26i6bg/2c biB̃i is any F -divisor on

M̃0,g =M0,g/Sg. Using the fact (from [KM96, Lemma 4.5]) that

K
M̃0,g

=− (g + 1)
2(g − 1)

B̃2 +
∑

36i6bg/2c

2(g − 1)− i(g − i)
(g − 1)

B̃i,
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we consider the c-average of D:

D = c

(
K

M̃0,g
+
c(g + 1) + 2(2(g − 2)b1 − (g − 1)b2)

2c(g − 1)
B̃2

+
∑

36i6bg/2c

(
2g − 2− i(g − i)

g − 1
+
b1i(g − i)− bi(g − 1)

(g − 1)c

)
B̃i

)
.

Assume first that g > 8, and for i > 3 let ci = αi + (βi/c), where αi = (2g − 2− i(g − i))/(g − 1)
and βi = (i(g − i)b1 − (g − 1)bi)/(g − 1). Note that by Proposition 4.5, since D is a nontrivial
F -divisor, we have that i(g − i)b1 > (g − 1)bi. In particular, for c > 0, the coefficient of B̃2 is
positive. Moreover, βi > 0 for all i > 3. As will be shown, αi < 0 for all i > 3. Indeed, the numerator
n(i) = 2g − 2− i(g − i) is negative: n(i) is decreasing with respect to i since ∂n/∂i= i− g, and
n(3) = 7− g < 0 for g > 8.

We shall argue that there is a positive c for which all the coefficients ci, for i > 3, are positive.
For all i, the functions αi + βi/c have vertical asymptotes at c= 0.

For i > 3, the function αi + βi/c is concave up and decreasing, crossing the c axis when
c= βi/αi > 0. Hence we can take

c= min
{
βi

αi

∣∣∣ 3 6 i 6

⌊
g

2

⌋}
.

In the g = 7 case, one has the relation 2b1 > b3 from intersecting D with the F -curve given
by the 4-tuple [1 : 1 : 2 : 3]. In this case,

D = c

(
K

M̃0,7
+
(

2c+ 5b1 − 3b2
3c

)
B̃2 +

(
2b1 − b3

c

)
B̃3

)
.

In particular, one must take c so that c+ 5b1 − 3b2 > 0. But, by Proposition 4.5, 5b1 − 3b2 > 0,
so this just requires that c > 0. Since, by Theorem 3.2, the result holds more generally for g 6 6,
Theorem 4.1 is proved. 2

This result was known to be true for c= 0 (see [FG03]). As was pointed out in [FG03], the
problem of showing that a particular F -divisor D on Mg is nef can therefore be reduced to
showing that f∗D = E is nef when restricted to all of the boundary divisors in the support of E.
However, as will be shown in Theorem 4.7, that it works for c > 0 is a drastic improvement,
since one can then immediately reduce the problem of showing that a particular F -divisor is nef
to showing that it is nef when restricted to the boundary divisors in the support of E having
coefficient larger than c.

To prove the next theorem, it will be necessary to refer to the boundary restriction
morphisms and c-averages defined in § 2.4. In particular, so-called ‘necessary’ boundary
restriction morphisms will be considered.

Definition 4.6. Let D be a divisor on M0,g, and suppose that the c-average of v∗D is of
the form cKM0,a+z

+ E where c > 0, E is an effective sum of distinct boundary classes, and
va,z = [n1 . . . na−1] :M0,a+z −→M0,g is any boundary restriction morphism. We define necessary
boundary restrictions to be the boundary restrictions vS and vSc such that the coefficient of δS in
this expression is greater than c. Here, for S ⊂ {p1 . . . pa+z}, one defines vS to be the boundary
restriction morphism

vS =
[ ∑

i∈S∩A

ni + |S ∩ Z|, {ni}i∈Sc∩A

]
.
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Recall that A= {pi ∈ {p1 . . . pa+z} | ni > 2} is the set of attaching points of the boundary
restriction morphism and that Z = {pi ∈ {p1 . . . pa+z} | ni = 1} is the set of points to which
nothing is attached.

Theorem 4.7. Consider an F -divisor of the form D = b1
∑g

i=1 ψi −
∑bg/2c

i=2 biB̃i on M̃0,g =
M0,g/Sg. If for each composition of necessary boundary restrictions v there exists a constant
cv > 0 such that

v∗D = cvK + E,

where E is an effective sum of boundary classes, then D is nef.

Proof. By Theorem 4.1, the divisor D is of the form cK
M̃0,g

+ E where c > 0 and E is an effective
sum of distinct boundary classes. Exactly as in the proof of Theorem 3.1, the Ray Theorem gives
that D is nef as long as it nonnegatively intersects all curves in the support of any component of
E with coefficient larger than c. In other words, supposing that the coefficient of δS is larger c,
it is then enough to show that D is nef when restricted to ∆S ; that is, it is enough to show that
v∗D is nef for vS = [S] and vSc = [Sc]. By hypothesis,

v∗SD = cvKM0,1+g−|S|
+ E,

where E is an effective sum of distinct boundary classes. Repeating this argument, it suffices
to show that for each composition of necessary boundary restrictions v, there exists a constant
cv > 0 such that

v∗D = cvK + E,

where E is an effective sum of boundary classes. Eventually, the process must stop, since the
F -conjecture is known to be true on M0,N for N 6 7 (see [KM96]). 2

To have a computer check that any composition of necessary boundary restrictions of an
F -divisor on M̃0,g =M0,g/Sg always restricts to a divisor on M0,a+z of the form cKM0,a+z

+ E,
one can use any of the c-averages defined in § 2.4.

Theorem/Algorithm 4.8. Let D be an F -divisor of the form aλ−
∑bg/2c

i=0 biδi on Mg. If the
c-average v∗f∗D = cK + E of any necessary boundary restriction v of f∗D is effective, then D
is nef.

Proof. This follows from Theorem 4.7 and the Bridge Theorem. 2

5. Numerical criteria

In this section, as an application of Theorem 3.1 and the iterative procedures given in § 4, we
give numerical criteria which guarantee that divisors on Mg are nef. These criteria can be viewed
as a way of carving the cone of F -divisors on Mg into nef sub-cones. As is explained in the next
section, these sub-cones cover the entire F -cone for g 6 24.

Corollary 5.1. Let D = aλ−
∑

06i6bg/2c biδi be an F -divisor on Mg. If for i ∈ {2, . . . , bg/2c},

−b0(g − 1) 6 i(g − i)(b1 − b0) + (g − 1)(b0 − bi) 6 0,

then D is nef.
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Proof. First, using Mumford’s identity on Mg, we have

−δ0 =−12λ+ κ1 +
∑

16i6bg/2c

δi.

Write
D = (a− 12b0)λ+ b0κ1 +

∑
16i6bg/2c

(b0 − bi)δi;

then, by Lemma 2.4, one has

f∗D = b0κ1 + (b1 − b0)
∑

16i6g

ψi +
∑

26i6bg/2c

(b0 − bi)Bi.

Substituting the relation κ1 =KM0,g
+
∑

Bi and then big-averaging the ψi, one obtains

f∗D = b0KM0,g
+ (b1 − b0)

∑
16i6g

ψi +
∑

26i6bg/2c

(2b0 − bi)Bi

= b0KM0,g
+

∑
26i6bg/2c

(
i(g − i)
(g − 1)

(b1 − b0) + 2b0 − bi
)
Bi.

It is enough to show that under the given hypothesis, the coefficients of the Bi above are
nonnegative and no greater than b0, so that by the Ray Theorem f∗D, and hence D, is nef;
that is, for 2 6 i 6 bg/2c,

−b0(g − 1) 6 i(g − i)b1 + (i2 − ig + g − 1)b0 − (g − 1)bi
= i(g − i)(b1 − b0) + (g − 1)(b0 − bi) 6 0.

But this is true by assumption. 2

Corollary 5.2. Let D = aλ−
∑

06i6b g
2
c biδi be an F -divisor on Mg. If there exists a constant

c > 0 such that
2g − 2− i(g − i)

g − 1
+
b1i(g − i)− bi(g − 1)

(g − 1)c
6 c

for all i ∈ {2 . . . bg/2c}, then D is nef.

Proof. By the Bridge Theorem, D is nef as long as f∗D is nef. To show that the assumptions
in the theorem guarantee that f∗D is nef, use the proof of Theorem 4.1 in conjunction with the
Ray Theorem. 2

It appears that Corollary 5.2 cannot be improved using Mumford’s criteria.
A divisor that does not meet the conditions above can, of course, still be nef. For example, in

Corollary 5.2, if no matter what constant c is tried there is a boundary class in the support of D
with a coefficient larger than c, then more needs to be done to show that D is nef. In particular,
one can still prove D is nef by showing that the divisor is nef when restricted to the boundary
component whose class has coefficient bigger than c. By assuming more about the divisor (for
instance, that every boundary restriction has to be nef), one obtains the criteria stated in the
next two corollaries. The first, Corollary 5.3, comes from applying Theorem 4.7 with c= 0. The
remaining criteria of the section are all consequences of this fact; each provides an easy-to-check
condition which guarantees that a divisor on Mg is nef.

Corollary 5.3. An F -divisor D = aλ−
∑bg/2c

i=0 biδi on Mg is nef provided that bi 6 b1 for all
i > 2.

1242

https://doi.org/10.1112/S0010437X09004047 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X09004047


Numerical criteria for divisors on Mg to be ample

Proof. Let D be as described in the hypothesis. It will be shown that any boundary restriction of
an F -divisor f∗D is equivalent to an effective sum of boundary classes. For simplicity of notation,
put D = f∗D.

Let v = va,z :M0,a+z −→M0,g be a boundary restriction where we attach an (ni + 1)-pointed
curve (note that ni + 1 > 3 here) to each point pi ∈A with |A|= a. Then, as we have seen in
Lemma 2.4,

v∗D = b1
∑

i∈Z={i|ni=2}

ψi +
∑

i∈A={1,...,a}

bniψi −
∑

B⊂A,y6|Z|
26y+|B|6bg/2c

by+
∑

i∈B ni
∆Z,y

A,B,

where ∆Z,y
A,B =

∑
Y⊂Z,|Y |=y δY ∪B.

The proof is divided into three cases: z > 4, z = 3 and z = 2. First, suppose that z > 4. Let
Z = {1, . . . , z}. By averaging the ψi, the divisor Dz satisfies

Dz =
∑
i∈Z

ψi −
∑
S⊂Z

26s=|S|6bz/2c

δS =
∑
S⊂Z

26s=|S|6bz/2c

(
(s− 1)z − s2 + 1

z − 1

)
δS

in M0,z, with each coefficient positive as long as z > 4. To see this, put f(s) = (s− 1)z − s2 + 1.
Then f ′(s) = z − 2s > 0 since s 6 z/2. So the function f(s) is increasing in the range that we
are interested in. Now, as f(2) > 1, f is always positive. In particular, π∗a(Dz) is an effective
sum of boundary classes in M0,a+z. Let πa :M0,a+z −→M0,z be the morphism which drops the
attaching points pi ∈A. Then

v∗D − b1π∗a(Dz) =
∑
i∈A

bniψi −
∑
I⊂A

b∑
i∈I ni

∆Z,0
A,I +

∑
y>0,I⊂A
06|I|6a

(b1 − by+
∑

i∈I ni
)∆Z,y

A,I .

For y > 0, the coefficients of the classes ∆Z,y
A,I are nonnegative since, by hypothesis, b1 > bi for

all i. Fix two elements p, q ∈ Z. Then, for i ∈A, we have ψi =
∑

I⊂{p,q}c δI∪i and so∑
i∈A

bniψi −
∑
I⊂A

b∑
i∈I ni

∆Z,0
A,I =

∑
I⊂A

(∑
i∈I

bni − b∑i∈I ni

)
∆Z,0

A,I + E,

where E is an effective sum of boundary classes. That the coefficients (
∑

i∈I bni − b∑i∈I ni
) are

nonnegative is a consequence of the assumption of D being an F -divisor, so that its coefficients
satisfy property (v) of Definition/Theorem 2.1.

Now suppose that z = 3. Upon replacing the ψi for i ∈ Z by their averages and using the
same partial average for the ψi for i ∈A, as was done in the previous case, we get that

v∗D =
∑

B⊂A,|B|=b
26b6a

(
b13b(b− 1)

(a+ 1)(a+ 2)
+
(∑

i∈B

bni − b∑i∈B ni

))
∆Z,0

A,B

+
∑

B⊂A,|B|=b
16b6a−1

(
b12(2 + b)(1 + b)

(a+ 2)(a+ 1)
+ (b1 − b1+

∑
i∈B ni

)
)

∆Z,y
A,B.

These coefficients are nonnegative, since by hypothesis b1 > bi > 0 for all i and by assumption D
is an F -divisor so that, owing to Definition/Theorem 2.1, (

∑
i∈I bni − b∑i∈I ni

) > 0.
Consider the case z = 2. For p ∈ Z, we form a partial average of ψp by taking q = Z \ p and

fixing any i ∈A such that ψp =
∑

I⊂A\{i} δI∪p. There are a ways of fixing such a point i ∈A.
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So aψp =
∑

I⊂A,|I|=i(a− i)δI∪p and hence, for Z = {p, q},

(ψp + ψq) =
∑

I⊂A,|I|=i
16i6a−1

(
a− i
a

+
a− (a− i)

a

)
∆Z,1

A,I =
∑
I⊂A

16|I|6a−1

∆Z,1
A,I .

Once again, by replacing the ψi for i ∈A as was done in the two previous cases, we get that

v∗D =
∑
B⊂A

26|B|6a

(∑
i∈B

bni − b∑i∈B ni

)
∆Z,0

A,B +
∑
B⊂A

16|B|6a−1

(b1 − b1+
∑

i∈B ni
)∆Z,y

A,B.

These coefficients are nonnegative by assumption. Therefore, any F -divisor D = b1
∑g

i=1 ψi −∑bg/2c
i=2 biBi in M0,g such that bi 6 b1 for all i is nef. 2

Corollary 5.4. An F -divisor D = aλ−
∑bg/2c

i=0 biδi on Mg is nef provided that

2 min{bi | i > 1} > max{bi | i > 1}.

Proof. Let D be as described in the hypothesis. It will be shown that any boundary restriction
of an F -divisor f∗D is equivalent to cK + E, where E is an effective sum of boundary classes
for some c > 0. For simplicity of notation, put D = f∗D.

Let v = va,z :M0,a+z −→M0,g be a boundary restriction where we attach an (ni + 1)-pointed
curve to each point pi ∈A, with |A|= a, and renumber the z points qi ∈ Z. Then, as we have
seen in Lemma 2.4, for Z = {i | ni = 1} and A= {i | ni > 1},

v∗D = b1
∑
i∈Z

ψi +
∑
i∈A

bniψi −
∑

B⊂A,y6|Z|
26y+|B|6bg/2c

by+
∑

i∈B ni
∆Z,y

A,B

= (b1 − c)
∑
i∈Z

ψi +
∑
i∈A

(bni − c)ψi + c
∑

i∈A∪Z

ψi −
∑

B⊂A,y6|Z|
26y+|B|6bg/2c

by+
∑

i∈B ni
∆Z,y

A,B

= (b1 − c)
∑
i∈Z

ψi +
∑
i∈A

(bni − c)ψi + cKM0,a+z
+

∑
B⊂A,y6|Z|

26y+|B|6bg/2c

(2c− by+
∑

i∈B ni
)∆Z,y

A,B,

where ∆Z,y
A,B =

∑
Y⊂Z,|Y |=y δY ∪B. Recall, as explained in § 2, that each class ψi is equivalent to an

effective sum of boundary classes. So, as long as c 6 bi 6 2c for all i, we have v∗D = cKM0,a+z
+ E

as required. Just take c ∈ [max{bi | i > 1}/2,min{bi | i > 1}], which, by hypothesis, is a nonempty
interval. 2

Corollary 5.5. Let D = aλ−
∑bg/2c

i=0 biδi be an F -divisor on Mg. If g is odd and bj = 0 or if
g is even and bj = 0 for j < g/2, then D is nef.

To prove Corollary 5.5, the following result will be used.

Lemma 5.6. If D = aλ−
∑bg/2c

i=0 biδi is an F -divisor in Mg such that bi = 0, then:

(i) bj = bk for all j and k such that j + k = i;

(ii) bj = bi+j for all j > 1 such that i+ j 6 g − 1.
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Proof. Since D is an F -divisor, bg−(j+k) + bj − bk > 0 and bg−(j+k) + bk − bj > 0. But bg−(j+k) =
bi = 0, so bj = bk. The second assertion follows from the fourth type of inequality bi + bj > bi+j ,
which, since bi = 0, gives that bj > bi+j . By substituting bj = bg−j and bi+j = bg−(i+j), one obtains
bi+j > bj . 2

Proof of Corollary 5.5. Let D = aλ−
∑bg/2c

i=0 biδi in Mg be an F -divisor such that bj = 0 for some
j. The result will be proved by induction on j. Of course, if b1 = 0, the divisor is trivial and there
is nothing to prove. If b2 = 0, then by Lemma 5.6, b2 = b2x = 0 for all x such that 2x 6 g − 1 and
b1 = b1+2x for all x such that 1 + 2x 6 g − 1. Therefore, bi 6 b1 for all i so that, by Corollary 5.3,
D is nef.

Suppose that bk = 0 for some 3 6 k < bg/2c and that the statement is true when bi = 0 for all
i < k. Consider m such that mk 6 g − 1 but (m+ 1)k > g − 1. By Lemma 5.6, 0 = bk = bmk =
bg−mk. Then g −mk < k, and so bg−mk = 0 means that, by induction, the statement is true.

Now suppose that g = 2n− 1 is odd and bbg/2c = bn = 0. Then, by Lemma 5.6, bn = b2n =
b1 = 0. Hence bi = 0 for all i > 1 and D satisfies Corollary 5.3. 2

6. Using the Nef Wizard to show that the criteria prove Conjecture 1
for low values of g

One can show via a computer check that all the F -divisors in Mg, for at least g 6 24, are nef.

Theorem 6.1. The F -conjecture is true on M0,g/Sg for g 6 24.

Corollary 6.2. The F -conjecture is true on Mg for g 6 24.

Proof of Corollary 6.2. Apply [GKM01, Theorem 0.7]. 2

The procedure for doing so is explained in this section. The starting point is that, by [GKM01],
the conjecture on Mg is equivalent to the conjecture on M̃0,g =M0,g/Sg. In particular, if one
can prove that the extremal F -divisors on M̃0,g are nef, then the F -conjecture is true on Mg.
The computer program Nef Wizard generates the extremal F -divisors on M̃0,g in terms of the
sums of boundary classes B̃i. Nef Wizard finds F -divisors on Mg that pull back to the extremal
divisors via f so that the criteria may be applied.

To prove Theorem 6.1, the following result will be used.

Lemma 6.3. Let E =
∑

26i6bg/2c eiB̃i be a divisor on M̃0,g, and consider

DE = aλ− b0δ0 − b1δ1 −
∑

26i6bg/2c

(
i(g − i)
(g − 1)

b1 − ei
)
δi

where:

(i) b1 = max{0, ((g − 1)/(i(g − i)))ei, ((g − 1)/(2ij))(ei + ej − ei+j) | 1 6 i, j; I + j 6 g − 1};
(ii) b0 = 1

2 max{bi | i > 1}; and

(iii) a= 12b0 − b1.

Then f∗DE = E and if E is an F -divisor, so is DE .
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Proof. To see that f∗DE = E, use Lemmas 2.4 and 2.9:

f∗DE = b1
∑

16i6g

ψi −
∑

26i6bg/2c

(
i(g − i)
(g − 1)

b1 − ei
)
B̃i

=
∑

26i6bg/2c

(
i(g − i)
(g − 1)

b1 −
(
i(g − i)
(g − 1)

b1 − ei
))

B̃i.

Now suppose that E is an F -divisor. To show that DE is also an F -divisor one just has to check
that it satisfies the five inequalities of Theorem 2.1. The first four are true by definition of DE .
For example, to see that bi + bj − bi+j > 0, we calculate that(

i(g − i)
(g − 1)

b1 − ei
)

+
(
j(g − j)
(g − 1)

b1 − ej
)
−
(

(i+ j)(g − (i+ j))
(g − 1)

b1 − ei+j

)
=

2ijb1
(g − 1)

− (ei + ej − ei+j),

which is nonnegative as long as

b1 >
(g − 1)

2ij
(ei + ej − ei+j).

The fifth inequality holds because f∗DE = E. 2

Proof of Theorem 6.1. By using a computer program such as LRS [AF01], one can generate a list
of extremal divisors E for the F -cone of M0,g/Sg. This computation is convenient to perform by
considering divisors expressed in the basis for Pic(M0,g/Sg) given by {B̃i}26i6bg/2c. To change
these extremal divisors into the form necessary to apply the theorems, one can solve for DE as
in Lemma 6.3 and then pull back. Finally, to check that the divisors are all nef, we ran them
through the program Nef Wizard. 2

7. Relevance of the F -conjecture

If the F -conjecture holds, it would imply that the extremal rays of the cone of curves NE(Mg) are
spanned by the F -curves. This would be very good information to have since, as was illustrated in
the introduction, NE(Mg) reveals information about the birational geometry of Mg. Moreover,
it would mean that NE(Mg) is an interesting example of a cone of curves. To explain why, I shall
say a little bit about the minimal model program (MMP).

The MMP generalizes the birational classification of smooth surfaces using certain kinds
of projective morphisms called contractions. Contractions are morphisms f :X −→ Y between
projective varieties such that f∗(OX) =OY ; they are determined by the faces of the cone of
curves. Unlike the situation for surfaces, for higher-dimensional projective varieties contractions
are not so resolutely understood, nor is their existence guaranteed.

In order to classify X using contractions X −→ Y , one studies the image variety Y and the
fibers of the contraction morphism. There are a couple of possibilities depending on whether or
not the image Y has the same dimension as X. If dimX > dim Y , this is a fibral type contraction.
As was mentioned above, by [Gib00] there are no fibral type contractions of Mg. The other
possibility is that dimX = dim Y . For Mg and other higher-dimensional varieties X, two things
can happen. The first is that the morphism X −→ Y is a so-called divisorial contraction: this is
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the analog of the surface case wherein X is the blowup of Y . By [GKM01, Proposition 6.4], for
g > 5 the only divisorial contraction of Mg is a blowdown of elliptic tails. When g = 3 there is
another divisorial contraction [Rul], and the problem is open when g = 4. The remaining kind of
contraction does not have an analog in the classification of surfaces. It is called a small contraction
and is essentially the case where the image variety Y has bad singularities so that one has to
surgically repair it (i.e. do flips or flops) in order to proceed with the program. As stated in
the introduction, since there are a finite number of F -curves to begin with, if the F -conjecture
is true, then the cone of curves is polyhedral, like the cone of curves for a Fano variety. This is
counter-intuitive, since for g = 22 and g > 24 the moduli space is of general type.

Finally, when one considers Mg to be defined over a field of positive characteristic, then
every extremal face of NE(Mg) gets contracted. This is also surprising since contractions of a
variety X are only guaranteed for KX -negative extremal rays, and only one of the F -curves is
KMg

-negative.

In any case, for low genus when the nef cones and the F -cones of Mg are the same, one
has a series of explicit examples of cones of curves that have finitely many extremal rays, each
spanned by a smooth, irreducible and rational curve. Moreover, when the characteristic of the
field is positive, every face of the cones gets contracted, none of the contractions is fibral and,
in fact, all but one are small contractions. Hence one has a rich collection of examples which
help to deepen our understanding of the birational geometry of the spaces Mg. Furthermore,
although admittedly not the simplest of examples, these cones broaden our understanding of
cones of curves in general.
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