BULL. AUSTRAL. MATH. SOC. Vol. 37 (1988) [81-87]

FIXED POINT OF SUM FOR CONCAVE AND CONVEX OPERATORS WITH APPLICATIONS

LI BINGYOU

In this paper we study fixed points of sums of α -concave and $(-\alpha)$ -convex operators in Υ -complete partially ordered linear spaces. As an application we obtain existence and uniqueness theorems for solutions of a certain type of nonlinear integral equation.

I INTRODUCTION

The concept of α -concave and $(-\alpha)$ -convex operators was first introduced by Potter [5]. Then Guo Dajun, [1] studied fixed points and intrinsic elements of the two kinds of operators. Ortega [4] and Leggett [3] studied the fixed points of the sum and product of operators. In this paper we extended the real partially ordered Banach spaces in [5], [1] to Υ -complete partially ordered linear spaces, and we study the fixed points of the sum of α -concave and $(-\alpha)$ -convex operators. We use the above result to obtain an existence and uniqueness theorem for the solution of a kind of nonlinear integral equation. Obviously the results in this paper are more general than those in [3] and [5].

II MAIN RESULTS

DEFINITION 1: Let P be a positive cone in a Υ -complete partially ordered linear space E (see [2]). Φ is the set of interior points of P. An operator $f: \Phi \to \Phi$ ($0 < \alpha < 1$) is called α -concave (or $(-\alpha)$ -convex) if it satisfies the following condition:

$$f(tx) \ge t^{\alpha} fx$$
 (or $f(tx) \le t^{\alpha} fx$) $\forall x \in \Phi, 0 < t < 1$

It is easy to see that f is α -concave (or $(-\alpha)$ -convex) if and only if

$$f(sx) \leq s^{\alpha} fx$$
 (or $f(sx) \geq s^{-\alpha} fx$), $\forall x \in \Phi, s > 1$

Received 5 March 1987

Copyright Clearance Centre, Inc. Serial-fee code: 0004-9729/88 \$A2.00+0.00.

Li Bingyou

THEOREM 1. Let P be a positive cone in a Υ -complete partially ordered linear space E. $g,h: \Phi \to \Phi$ are the increasing α -concave and decreasing $(-\alpha)$ -convex operators respectively, $0 < \alpha < 1$. Then the operator

(1)
$$Ax = gx + hx + C \quad (x \in \Phi, C \in P)$$

has a unique fixed point x^* in Φ , and for any $x_o \in \Phi$, we have

(2)
$$x^{\star} = \vee \{x_n\} = \wedge \{x_n\},$$

where $x_n = Ax_{n-1}$, and we have the estimate

$$(3) 0 \leq x^{\star} - x_n \leq (1 - S_0^{-2\alpha^n}) S_0 x_0$$

where

$$S_0 = \max\{S_1, S_2\}$$

(4)
$$S_{1} = \sup\{S > 1 : S^{\alpha-1}x_{0} \leq gx_{0} + hx_{0}\}$$
$$S_{2} = \inf\{S > 1 : gx_{0} + hx_{0} \leq S^{1-\alpha}x_{0}\}$$

PROOF: First let c = 0. Then it is clear that $S_0 > 1$. For any $x_0 \in \Phi$, from [4] we have

(5)
$$\frac{1}{2}S_0^{\alpha-1}x_0 \leq gx_0 + hx_0 \leq \frac{1}{2}S_0^{1-\alpha}x_0$$

Let $U_0 = S_0^{-1} x_0$, $V_0 = S_0 x_0$ then $V_0 >> U_0$. Put

(6)
$$U_n = gU_{n-1} + hV_{n-1}, \quad V_n = gV_{n-1} + hU_{n-1}.$$

We may prove by induction that

(7)
$$[U_n, V_n] \subseteq [U_{n-1}, V_{n-1}], \quad (n = 1, 2, ...).$$

Since E is Υ -incomplete, there exists u^* , $v^* \in E$ such that

$$u^{\star} = \vee \{u_n\}, \quad v^{\star} = \wedge \{v_n\},$$

and $u_n \leq u^* \leq v^* \leq v_n$. Thus

$$u_{n-1} = gu_n + hv_n \leqslant gu^* + hv^* \leqslant gv_n + hu_n = v_{n+1}.$$

Hence

[3]

(8)
$$u_n \leq u^* \leq gu^* + hv^* \leq v^* \leq v_n.$$

By induction it is easy to prove that

(9)
$$u_n \ge S_0^{-2\alpha^n} v_n \quad (n = 0, 1, 2, ...)$$

From (8) and (9) we have

$$0 \leqslant v^{\star} - u^{\star} \leqslant v_n - u_n \leqslant (1 - S_0^{-2\alpha^n})v_0.$$

By the Archimedean property we deduce that $v^* = u^*$. So by (8) it follows that u^* is a fixed point of A.

Now we prove uniqueness. Suppose $\overline{x}, \overline{\overline{x}} \in \Phi$ are two distinct fixed points of A. Then there exists $\mu > 1$, such that

$$\mu^{-\alpha}\overline{x}\leqslant\overline{\overline{x}}\leqslant\mu^{-\alpha}\overline{x}.$$

We may prove by induction that

$$\mu^{-\alpha''}\overline{x}\leqslant\overline{\overline{x}}\leqslant\mu^{\alpha''}\overline{x}.$$

In the foregoing inequality we take the limit as $n \to \infty$ and obtain $\overline{x} \leq \overline{\overline{x}} \leq \overline{x}$. So $\overline{x} = \overline{\overline{x}}$.

Next we prove that x^* , defined by (2), is a fixed point of A. Hence it is a unique fixed point. First, we may prove by induction that

(10)
$$u_n \leqslant x_n \leqslant v_n \quad (n = 0, 1, 2, \ldots).$$

Let $x_{\star} = \wedge \{x_n\}$, $x^{\star} = \vee \{x_n\}$. From (10) and (7), we obtain

(11)
$$u_n \leqslant v^* \leqslant x_* \leqslant x^* \leqslant v^* \leqslant v_n.$$

Since $u^* = v^*$, so $x_* = x^* = u^*$. Hence x^* is a fixed point of A. By (11) and (9), we know that (3) is true. Finally, let $c \neq 0$. Since $Gx = gx + \frac{1}{2}C$, $Hx = hx + \frac{1}{2}C$ are increasing α -concave and decreasing $(-\alpha)$ -convex operators respectively, so the theorem is still valid in the case $c \neq 0$.

Li Bingyou

III APPLICATIONS

From Theorem 1 we obtain immediately:

THOEREM 2. Under the conditions of Theorem 1, the equation

$$Bx = g(\frac{1}{x}) + h(\frac{1}{x}) + C = x$$

has a unique solution.

THEOREM 3. Under the conditions of Theorem 1, we use x_{λ} to denote the unique solution of the equation $Ax = gx + hx + C = \lambda x$. Then x_{λ} is decreasing for λ (that is, $0 < \lambda_1 < \lambda_2 \Rightarrow x_{\lambda_1} > x_{\lambda_2}$), o-continuous (that is, for $\lambda_0 > 0$, $0 - \lim_{\lambda \to \lambda_0} x_{\lambda} = x_{\lambda_0}$) and

(12) $0 - \lim_{\lambda \to +\infty} x_{\lambda} = 0, \quad 0 - \lim_{\lambda \to 0^*} x_{\lambda} = +\infty$ (the infinite element in Φ .

PROOF: For $\lambda > 0$, by Theorem 1 we know that $Ax = \lambda x$ has a unique solution x_0 in Φ . Let $0 < \lambda_1 < \lambda_2$, if $x_{\lambda_2} \leq x_{\lambda_2}$, put

(13)
$$M = \inf\{u : x_{\lambda_2} \leq u x_{\lambda_1}\}$$
$$m = \sup\{\Theta : \Theta x_{\lambda_1} \leq x_{\lambda_2}\}$$

It is easy to see that M > 1 and m > 1 and

$$mx_{\lambda_1} \leqslant x_{\lambda_2} \leqslant Mx_{\lambda_1}, \quad m \leqslant M.$$

If $m^{-1} \ge M^{-1}$, then $m \le M^{-1}$. This contradicts m > 1. Hence, $m^{-1} < M$, i.e., $M^{-1} < m$. Thus we have

$$M^{-1}x_{\lambda_1} \leqslant x_{\lambda_2} \leqslant Mx_{\lambda_1},$$
$$x_{\lambda_2} \leqslant \frac{1}{\lambda_2} [g(Mx_{\lambda_1}) + h(M^{-1}x_{\lambda_1}) + C] \leqslant \frac{\lambda_1}{\lambda_2} M^{\alpha}x_{\lambda_1}.$$

By (13) we have $M = \frac{\lambda_1}{\lambda_2} M^{\alpha}$. Thus $\lambda_2 < \lambda_1$. This contradicts the hypothesis of the theorem. Hence $x_{\lambda_2} \leq x_{\lambda_1}$. Since the fixed point of $\frac{1}{\lambda}A$ is unique, so $x_{\lambda_2} < x_{\lambda_1}$.

Now we prove o-continuity. We observe that $0 < \lambda_1 < \lambda_2 \Rightarrow x_{\lambda_2} < x_{\lambda_1}$. Put

(14)
$$m = \sup\{\Theta : \Theta x_{\lambda_1} \leq x_{\lambda_2}\}$$
$$M = \inf\{\mu : x_{\lambda_2} \leq \mu x_{\lambda_1}\}$$

It is easy to see that 0 < m < 1,

$$mx_{\lambda_1} \leqslant x_{\lambda_2} \leqslant Mx_{\lambda_1}, \qquad m \leqslant M.$$

If $m^{-1} < M$, then M > 1, $M^{-1} < m$. Hence

$$M^{1}x_{\lambda_{1}} \leqslant x_{\lambda_{2}} \leqslant Mx_{\lambda_{1}},$$

$$x_{\lambda_2} \leqslant rac{1}{\lambda_2} [g(Mx_{\lambda_1}) + h(M^{-1}x_{\lambda_1}) + C] \leqslant rac{\lambda_1}{\lambda_2} M^{lpha} x_{\lambda_1}.$$

By (14) we have

$$M \leqslant \frac{\lambda_1}{\lambda_2} M^{\alpha}, \qquad \frac{\lambda_1}{\lambda_2} \geqslant M^{1-\alpha} > 1$$

so $\lambda_1 > \lambda_2$, which contradicts our hypothesis. Hence $M \leqslant m^{-1}$. Then we have

$$mx_{\lambda_1} \leqslant x_{\lambda_2} \leqslant m^{-1}x_{\lambda_1}$$

(15)
$$x_{\lambda_2} \geq \frac{1}{\lambda_2} [g(mx_{\lambda_1}) + h(m^{-1}x_{\lambda_1}) + C] \geq \frac{\lambda_1}{\lambda_2} m^{\alpha} x_{\lambda_1}.$$

By (14) we have

$$\frac{\lambda_1}{\lambda_2}m^{\alpha} \leqslant m, \qquad (\frac{\lambda_1}{\lambda_2})^{\frac{1}{1-\alpha}} \leqslant m.$$

Hence

$$\begin{aligned} x_{\lambda_2} \ge m x_{\lambda_1} \ge (\frac{\lambda_1}{\lambda_2})^{\frac{1}{1-\alpha}} x_{\lambda_1} \\ 0 < x_{\lambda_1} - x_{\lambda_2} \le x_{\lambda_1} - (\frac{\lambda_1}{\lambda_2})^{\frac{1}{1-\alpha}} x_{\lambda_1} = [1 - (\frac{\lambda_1}{\lambda_2})^{\frac{1}{1-\alpha}} x_{\lambda_1} \end{aligned}$$

In this inequality, let $\lambda_1 = \lambda_0$, $\lambda_2 = \lambda$. Then x_{λ} is *o*-continuous with respect to λ . As in (15) we have

$$(\frac{\lambda_1}{\lambda_2})M^{-\alpha}x_{\lambda_1}\leqslant x_{\lambda_2}.$$

Hence

$$\frac{\lambda_1}{\lambda_2}M^{-\alpha}x_{\lambda_1}\leqslant x_{\lambda_2}\leqslant \frac{\lambda_1}{\lambda_2}M^{\alpha}x_{\lambda_1}.$$

In this inequality, let $\lambda_2 = \lambda$, and we see that (12) holds.

THEOREM 4. Let E be a Υ -complete Riesz space of Banach type and Φ be a non-empty positive cone of E. With operator A defined as in Theorem 1, we have that A is a contraction on Φ . That is, there exists r, R (0 < r < R). such that

$$\begin{aligned} \forall x \in \Phi, \quad 0 \leq \parallel x \parallel < r \Rightarrow Ax \leq x, \\ \forall x \in \Phi, \quad \parallel x \parallel > R \Rightarrow Ax \geq x. \end{aligned}$$

[5]

PROOF: By Theorem 1 we deduce that A has a fixed point x^* . $\forall x \in \Phi$, put

(16)
$$t_0 = \sup\{t : tx^* \leq x\}$$
$$s_0 = \inf\{s : x \leq sx^*\}$$

Obviously,

(17)
$$t_0 x^* \leqslant x \leqslant s_0 x^*, \quad t_0 \leqslant s_0.$$

First we prove that

(18) $x \in \Phi, \quad x \ge Ax \Rightarrow x \ge x^{\star}.$

By (17), $s_0^{-1} \leq t_0$. Hence $s_0 < t_0^{-1}$. By (17), we have

$$t_0x^\star\leqslant x\leqslant t_0^{-1}x^\star$$

If $t_0 < 1$, then $x \ge Ax \ge t_0^{\alpha} x^*$. By (16), we have $t_0^{\alpha} \le t_0$, which is a contradiction. So $t_0 \ge 1$, and (18) holds.

Similarly, we have

$$(19) x \in \Phi, \ x \leqslant Ax \Rightarrow x \leqslant x^*$$

Since the interval in a Υ -complete Riesz space of Banach type is bounded, from (18), (19) we see that the Theorem holds.

THEOREM 5. Consider the integral equation

(20)
$$\lambda x(t) = \int_{\mathbb{R}^n} \{k_1(t,s) \sum_{i=1}^\infty a_i(s)[x(s)]^{\alpha_i} + k_2(t,s) \sum_{i=1}^\infty b_i(s)[x(s)]^{-\beta_i}\} ds$$

where $\lambda > 0$, \mathbb{R}^n is an *n*-dimensional Euclidean space. If

- (i) $\alpha_i, \beta_i > 0$ and $\sup_i \alpha_i = \sup_i \beta_i = \alpha > 1$;
- (ii) $k_i(\ell, s)$ (i = 1, 2) are nonnegative measureable functions on \mathbb{R}^{2n} , and there exist constants m, M (0 < m < M) such that

$$m \leqslant \int_{\mathbb{R}^n} k_i(\ell,s) ds \leqslant M, \quad i=1,2, \quad \forall t \in \mathbb{R}^n;$$

(iii) $a_i(s)$, $b_i(s)$ are nonnegative measurable functions on \mathbb{R}^n and there exist constants Υ_i , Θ_i (i = 1, 2), $0 < \Theta_i < \Upsilon_i$ such that

$$\Theta_i \leqslant \sum_{i=1}^{\infty} a_i(s) \leqslant \Upsilon, \quad \Theta_2 \leqslant \sum_{i=1}^{\infty} b_i(s) \leqslant \Upsilon_2,$$

then equation (20) has a unique continuous solution $x_{\lambda}(t)$ satisfying the condition

$$0 < \inf_{t \in \mathbb{R}^n} x_{\lambda}(t) \leq \sup_{t \in \mathbb{R}^n} x_{\lambda}(t) < +\infty$$

PROOF: The proof is an easy application of Theorem 1.

[6]

References

- Guo Dajun, "Fixed point and intrinsic element of a kind of concave and convex operator', science Bulletin (in Chinese) 30 (1985), 1132-1135.
- [2] E. Hille and R.S. Phillips, "Functional Analysis and Semi-groups", American Mathematical Society Colloquium Publications 31 (1957).
- [3] R.W. Leggett, "On certain nonlinear integral equations", J. Math. Anal. Appl. 57 (1977), 462-468.
- [4] J.M. Ortega and W.C. Rheinboldt, Iterative Solutions of Nonlinear Equations (Academic Press New York, 1970).
- [5] A.J.B. Potter, "Application of Hilbert's projective metric to certain classes of non-homogenous operators", Quart. J. Math. Oxford (2) 28 (1977), 93-99.

Department of Mathematics, Hebei Teacher's University, SHIJAIZHUANG, China