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FIXED POINT OF SUM FOR CONCAVE AND CONVEX
OPERATORS WITH APPLICATIONS

Li BlNGYOU

In this paper we study fixed points of sums of ct-concave and ( — a)-convex operators in
T -complete partially ordered linear spaces. As an application we obtain existence and
uniqueness theorems for solutions of a certain type of nonlinear integral equation.

I INTRODUCTION

The concept of a-concave and (—a)-convex operators was first introduced by-
Potter [5]. Then Guo Dajun, [1] studied fixed points and intrinsic elements of the
two kinds of operators. Ortega [4] and Leggett [3] studied the fixed points of the sum
and product of operators. In this paper we extended the real partially ordered Banach
spaces in [5], [1] to T-complete partially ordered linear spaces, and we study the fixed
points of the sum of a-concave and (—a)-convex operators. We use the above result
to obtain an existence and uniqueness theorem for the solution of a kind of nonlinear
integral equation. Obviously the results in this paper are more general than those in
[3] and [5].

II MAIN RESULTS

DEFINITION 1: Let P be a positive cone in a T-complete partially ordered linear
space E (see [2]). $ is the set of interior points of P . An operator / : $ — > $ (0 <
a < 1) is called a-concave (or (—a)-convex) if it satisfies the following condition:

f(tx) > tafx (or f{tx) < tafx ) Vz G $, 0 < t < 1

It is easy to see that / is a-concave (or (—a)-convex) if and only if

f{sx)^safx (or f(sx) >s-afx), Vx G $ , s>l
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THEOREM 1. Let P be a positive cone in a T -complete partially ordered linear

space E. g,h : <fr —> $ are the increasing a-concave and decreasing (—a) -convex

operators respectively, 0 < a < 1. Then the operator

(1) Ax = gx + hx + C (x €$, C £ P)

has a unique fixed point x* in $ , and for any xo 6 $ , we have

(2) ** = V{zn} = A{zn},

where xn = i4Kn_i , and we have the estimate

(3) O^x*-xn^{l-S-2an)S0x0

where

So = max{Si, S2}

(4) Si = sup{5 > 1 : 5'a~1a;0 ^ gx0 + hx0}

S2 = inf{5 > 1 : gx0 + hx0 < S 1 ""^}

PROOF: First let c = 0. Then it is clear that 50 > 1. For any x0 £ $ , from [4]
we have

(5) -Sg^xo < 3x0 + hx0 ^ -Sl~ax0

Let f/0 = S^xo , Vo = 5oa;o then Vo » Uo . Put

(6) Un = gUn-! + /lVn_j , yn = 5 y n _! + / t ^ - ! .

We may prove by induction that

(7) [Un,Vn)C [£/„_!,!/„_!], (n = l ,2 , . . . ) .

Since E is T -incomplete, there exists u*, v* G E such that

w* = V{un}, v* = A{vn}}

and un ^ u* ^ v* ^ vn. Thus

u n - i = gun + hvn ^ gu* + hv* < pun + hun — vn+i.
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Hence

(8) un ^ u* < gu* + hv* < v* < i7n.

By induction it is easy to prove that

(9) un^S-2a\n (n = 0 ,1 ,2 , . . . ) -

From (8) and (9) we have

0 < v* - u* < vn - un < (1 - 50~2a")v0.

By the Archimedean property we deduce that v* = u* . So by (8) it follows that u* is

a fixed point of A.

Now we prove uniqueness. Suppose x ,!c £ $ are two distinct fixed points of A.

Then there exists \x > 1, such that

fj.~a~x < x

We may prove by induction that

— a"— = rv" —
fl X ^ X ^ / i X .

Ill the foregoing inequality we take the limit as n —+ oo and obtain ~x ^ ~x ^ x. So

x = x.

Next we prove that x*, defined by (2), is a fixed point of A. Hence it is a unique

fixed point. First, we may prove by induction that

(10) un^xn^vn (n = 0 , 1 , 2 , . . . ) .

Let i« = A{a;n}, x* — V{z n } . From (10) and (7), we obtain

(11) un < v* ^ x, ^ x* ^ v* < vn.

Since u* = v*, so x* = x* = u*. Hence x* is a fixed point, of A. By (11) and (9),
we know that (3) is true. Finally, let c ^ 0. Since Gx = gx + \C, Hx = hx + \C

are increasing a-concave and decreasing (—a)-convex operators respectively, so the
theorem is still valid in the case c ^ 0. |
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III APPLICATIONS

From Theorem 1 we obtain immediately:

THOEREM 2. Under the conditions of Theorem 1, the equation

Bx = g(-) + h(-) + C = x
x x

has a unique solution.

THEOREM 3. Under the conditions of Theorem 1, we use x\ to denote the unique
solution of the equation Ax = gx + hx + C = \x . Then x\ is decreasing for A (that is,
0 < Aj < A2 => X\x > x\2 ) , o -continuous (that is, for Ao > 0 , 0 — lim\^\Qx\ = x\0 )
and

(12) 0 — lim x\ = 0, 0 — lim x\ = +oo (the infinite element in $.
A—>+oo \—>0*

PROOF: For A > 0, by Theorem 1 we know that Ax = Ax has a unique solution
x0 in $ . Let 0 < Aj < A2 , if xx2 £ x\2 , put

M = inf{u : x

m = sup{0 :

It is easy to see that M > 1 and m > 1 and

m ^ M.

If m"1 ^ M" 1 , then m < M - 1 . This contradicts m > 1. Hence, m~1 < M, i.e.,
Af"1 < m. Thus we have

M~1xXl ^ xx2 ^ M I A J ,

xx2 < ±[g(Mxxl) + h(M-1xxl) + C] < ^ - J l f x ^ .

By (13) we have M = ^Ma. Thus A2 < Xi. Tliis contradicts the hypothesis of the
theorem. Hence xx2 ^ xxx • Since the fixed point of jA is unique, so xx2 < x\x .

Now we prove o-continuity. We observe that 0 < Aj < A2 => xx2 < xxl • Put

m = sup{0 : QxXl ^ xXi}
(14)

M = inf{ji : XA2 ^ }

It is easy to see that 0 < m < 1,
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If m'1 < M, then M > 1, M " 1 < m. Hence

A2 A2

By (14) we h a v e

so Aj > A2, which contradicts our hypothesis. Hence M < m~1. Then we have

mxx1 ^ XA2 ^ in KAj

1 , Ai

A2 A2

By (14) we h a v e
A! , A , i

771 % 771, I I i ~ a ^- 771.
A2

 V A 2 '

Hence

0 < xXl -xx2 <XAX - ( T 1 ) 1 ^ ^ ^ ! = [ l - ( T
i ) T ^ X A 1 -

A2 A2

In th i s inequa l i ty , let Ai = Ao , A2 = A. T h e n XA is o - con t i nuous w i t h respec t t o A.

As in (15) we have

Hence

^ - M - a x A l < X A 2 ^^-MaxXl.
A2 A2

In this inequality, let A2 = A, and we see that (12) holds. |

THEOREM 4. Let E be a T -complete Riesz space of Banach type and $ be a
non-empty positive cone of E. With operator A defined as in Theorem 1, we have
that A is a contraction on $ . That is, there exists r , R (0 < r < R). such that

Vx G $, 0 ^|| x ||< r=> Ax £ x,

Vx £ $, || x ||> R^ Ax^x.
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PROOF: By Theorem 1 we deduce that A has a fixed point x*. Vx G $ , put

t0 = sup{< : tx* < x}
(16)

so = inf{s : x ^ sx*}.

Obviously,

(17) tox* ^ x < sox*, t0 ^ so-

First we prove that

(18) x G $, x > viz => a; > a;*.

By (17), s'1 £ t0 • Hence s0 < t ' 1 . By (17), we have

t()X ^ X ^ t0 X .

If to < 1, then x ^ .Ax > t"x* • By (16), we have t j ^ to , wliich is a contradiction.

So t0 ^ 1, and (18) holds.

Similarly, we have

(19) x G # , x < Ax => a; < x*.

Since the interval in a T-complete Riesz space of Banach type is bounded, from (18),

(19) we see that the Theorem holds. |

THEOREM 5. Consider the integral equation

(20) \x{t)=
jRn

where X > 0, Rn is an n -dimensional Euclidean space. If

(i) ai,/3i>0 and sup< a< = supj/?j = a > 1 ;

(ii) ki(£,s) (i = l , 2 j are nonnegative measureable functions on R2n, and (.here exist

constants m, M (0 < m < M) such that

/ ki(e, a)d.s ^ M, i = 1,2, Vt G Rn;

(iii) a.i(s) , bi(s) are nonnegative measurable functions on Rn and there exist constants

fi, ©i (i = 1,2;, 0 < ©i < T< suci that

oo

t = l

then equation (20) has a unique continuous solution x\(t) satisfying the condition

0 < inf xA(t) ̂  sup xx(t) < +oo.

PROOF: The proof is an easy application of Theorem 1.
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