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A series of experiments on stratified Taylor–Couette flow in short aspect ratio
wide-gap annuli found an intriguing and not-well-understood dynamics: nonlinear
coherent structures appearing and disappearing periodically, along with density layering
reminiscent of staircase profiles. A detailed numerical study is presented of the nonlinear
dynamics near onset of instability in this setting, which explains most of the characteristics
found in the experiments. The simulations show that centrifugal instability of the boundary
layer on the inner rotating cylinder produces jets of angular momentum forming Taylor
cells that are compressed axially due to the strong stratification. These cells are not
axisymmetric from the onset, but are in fact two sets of Taylor cells displaced axially
that meet in localized azimuthal defect regions where the cells are patched together; the
whole structure is a rotating wave with azimuthal wavenumber m = 1. The presence of
endwalls in this short aspect ratio annulus is critical for the understanding of the dynamics.
Their impact cannot be accounted for in idealized axially periodic models. Another key
ingredient is the role played by the symmetries of the system. Although the axial reflection
symmetry is weakly broken by centrifugal buoyancy effects, following instability there are
various branches of solutions corresponding to the different ways the system’s symmetries
may be broken.

Key words: Taylor–Couette flow, pattern formation

1. Introduction

Interests in stratified Taylor–Couette flows have ranged from understanding the
fundamentals of the dynamics in a realizable laboratory flow, its relevance as a canonical
example of the interplay between rotation, stable density stratification, velocity shear and
horizontal boundaries (all common ingredients of large-scale geophysical flows in oceans
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and the atmosphere), to its potential in providing insight into accretion disks (Hua, Moore
& Le Gentil 1997b; Yavneh, McWilliams & Molemaker 2001; Shalybkov & Rüdiger
2005). Unstratified Taylor–Couette flows have been extensively studied (Tagg 1994;
Grossmann, Lohse & Sun 2015). In comparison, the literature on stratified Taylor–Couette
flows is more limited.

The richness of the dynamics of Taylor–Couette flow in part stems from the large set
of governing parameters. There are three length scales characterizing the geometry: the
radii of the inner and outer cylinders, Ri and Ro, and their height H; these provide two
governing parameters, the radius ratio η = Ri/Ro and the aspect ratio γ = H/ΔR, where
ΔR = Ro − Ri is the annular gap. The rotation rates of the cylinders and the top and
bottom endwalls, in general, are independent. Typically, the inner cylinder rotation rate Ω
is used to define a Reynolds number Re = ΩRiΔR/ν, where ν is the kinematic viscosity,
and a ratio of outer-to-inner cylinder rotation rates, μ, is introduced. Most commonly,
a stationary outer cylinder is considered (with μ = 0), but the richness associated with
μ /= 0 is extensive (Coles 1965; Andereck, Liu & Swinney 1986). The endwalls are
usually either co-rotating with one of the cylinders or are both stationary. However, their
differential rotation introduces a different dynamics due to the resulting global meridional
circulation (Lopez, Marques & Shen 2004). Endwalls are often viewed as a nuisance and
are often ignored in theoretical and numerical models, and various experimental strategies
have been tried to mitigate their impacts on the dynamics (Burin et al. 2006; Avila
2012; Leclercq et al. 2016c). Stratification introduces additional parameters, principally the
Brunt–Väisälä buoyancy frequency, N, and the diffusivity of the stratifying agent, κ . The
ratio of the inner cylinder rotation rate and the buoyancy frequency is the Froude number,
Fr = Ω/N, and the ratio of the kinetic viscosity and the diffusivity is the Prandtl number
Pr = ν/κ if the stratifying agent is temperature. If stratification is due to a dissolved
concentration, such as salt, this ratio is called the Schmidt number, Sc (although the two
names are used for either case in the literature). The nature of the stratifying agent has
important implications for the boundary conditions. For salt stratification, all boundaries
are of zero-flux Neumann type, whereas with temperature stratification, some are zero flux
and others are fixed temperature Dirichlet type.

Early theoretical considerations of stratified Taylor–Couette flow date back to Thorpe
(1966), who determined from highly idealized model equations that stratification resulted
in a higher critical inner cylinder rotation rate for instability with a reduced axial
wavelength. The analysis only considered flows with a stationary outer cylinder, and
the idealizations included restricting the linear stability analysis to only allowing
axisymmetric and axially periodic modes. Withjack & Chen (1974) conducted some of
the first experiments in vertically stratified Taylor–Couette flows. Their annulus had a
radius ratio η = 0.2, various cylinder rotation ratios and linear density gradients. With
increasing density gradient, instability was inhibited, with onset occurring at larger inner
cylinder rotation rates, and the mode of instability broke the axisymmetry of the basic
state, resulting in rotating waves, with a cellular-like structure of significantly shorter axial
extent than the Taylor cells typically found in unstratified experiments (see their figures 5
and 6). Their subsequent attempt to explain their experimental observations using linear
stability analysis came up short due to various idealization used (Withjack & Chen 1975);
in particular, their analysis was restricted to axisymmetric flow that is periodic in the
axial direction. Nevertheless, the general experimental observations that the linear density
gradient inhibits onset and that the axial scale of the instability cells is diminished were
borne out.

In a series of experiments, linear stability analyses and nonlinear simulations, Boubnov,
Gledzer & Hopfinger (1995), Boubnov et al. (1996), Hua, Le Gentil & Orlandi (1997a)
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and Caton, Janiaud & Hopfinger (1999, 2000) explored in detail stratified Taylor–Couette
flows over a wide range of the governing parameters, in annuli with η ∼ 0.8 and γ ∼ 50.
They also found experimentally that linear density gradients tend to inhibit instability,
that the onset of instability is generally non-axisymmetric, unsteady and with a reduced
axial length scale (see figure 6 of Boubnov et al. 1996). They noted that pairs of vortices
originate at the inner cylinder and propagate toward the outer boundary, mixing fluid
between them and that a density interface forms in the central plane of each vortex
pair. The vortex pairs on diametrically opposite sides of the inner cylinder are shifted
vertically by one vortex size or layer height. They also noted that how these join was
not clear and that the whole pattern rotates with a constant velocity less than Ω .
Their modelling efforts were incapable of reproducing these experimental observations
(the experimentally observed instability is oscillatory and non-axisymmetric), primarily
due to the idealizations used to make the analysis tractable. They took as their basic
state the unidirectional circular Couette flow with linear stratification, and only allowed
for axisymmetric and axially periodic instability modes. Hua et al. (1997a) relaxed
the axisymmetric constraint and found primary instabilities to modes with azimuthal
wavenumbers m = 1, 2 or 3, depending on the parameter regime. They found that these
are not spirals, but instead were reminiscent of the experimentally observed structures in
Boubnov et al. (1996). This series of studies suggested that the large Prandtl (or Schmidt)
number limit is approached when Pr � 10. In the more recent experiments on stratified
Taylor–Couette experiments with comparable γ = 43.4 and η = 0.877, Ibanez, Swinney
& Rodenborn (2016) noted that when the outer cylinder was stationary (for Fr = 0.48
and Re = 169), ‘the flow pattern is not interpenetrating spirals, but the flow is spatially
periodic in the axial direction’ and ‘temporally periodic’.

Interested in further investigating the robustness of the density layers found in the
experiments of Boubnov et al. (1995), a series of new experiments were conducted by
Oglethorpe, Caulfield & Woods (2013) using annuli with smaller η and γ , larger Re
and considering both discretely and linearly stratified flows. Those experiments were
followed by additional experiments with more sophisticated data acquisition techniques,
and focused on the linear stratified situation with η ∼ 0.4 and γ ∼ 3 (Leclercq et al.
2016b,d; Partridge et al. 2016); these reported the intermittent nature of the density
interfaces, where the density interface is observed to periodically mix using shadowgraph
visualization. Their linear stability analysis of the unidirectional stratified Couette flow
failed to reconcile the axial distance between the sharp density gradients observed in the
experiment, and their nonlinear simulations assuming periodicity in the axial direction
in an infinitely long annulus showed that the onset of instability breaks axisymmetry,
and the resulting flows structures have much in common with those reported by Hua
et al. (1997a). Leclercq et al. (2016b) note that the lack of endwalls in their nonlinear
simulations may be responsible for the differences between the structures simulated and
those observed experimentally. The experiments of Partridge et al. (2016) suggest that
the distance between the density layers does not depend on the gap width between the
cylinders, but rather depends on the thickness of the rotating inner cylinder boundary
layer. This boundary layer is established by the meridional circulation that is driven by the
vortex line bending into the corners where the rotating inner cylinder meets the stationary
upper and lower endwalls (Avila et al. 2008; Lopez 2016; Lopez & Marques 2020).

The experiments of linearly stratified Taylor–Couette flows in an annulus with η = 0.417
and γ = 3 (Leclercq et al. 2016b,d; Partridge et al. 2016) motive our present nonlinear
numerical study including the effects of endwalls. The experiments used salt as the
stratifying agent, with Sc ∼ 700. All of the experiments cited so far used water with salt as
the stratifying agent. More recent stratified Taylor–Couette experiments have used thermal
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stratification (Rüdiger et al. 2017; Meletti et al. 2021). There are various advantages to
using one or the other stratifying agent; Gellert & Rüdiger (2009) make a compelling
case for using thermal stratification. The numerical investigation of Leclercq et al. (2016b)
with periodicity in the axial direction noted that ‘changing the Schmidt number by a factor
of 100 leads to qualitatively similar pictures at Sc = 7 and Sc = 700’. Leclercq, Nguyen
& Kerswell (2016a) also report minimal differences between Sc = 7 and Sc = 700 for
the few test cases they considered. For our study, we shall consider thermal stratification
with Pr = 6 (corresponding to water nominally at room temperature). Using thermal
stratification has the advantage that the Prandtl number is small enough to avoid the
stiffness in the equations associated with the large Schmidt number of salt stratification,
so that numerical simulations and experiments can be conducted at the same Prandtl
number. More importantly, with salt stratification the physical boundary condition at the
endwalls is zero flux and this means that the linear stratified state is not an equilibrium.
The experiments clearly report the erosion of the stratification at the endwalls, and that
after a very long time the salt is uniform across the entire annulus even in the absence of
flow advection.

In the experimental investigation of salt-stratified Taylor–Couette flow with a very small
radius ratio η ≈ 0.066, Flór et al. (2018) found the onset of instability to consist of spiral
structures confined to the inner rotating cylinder, with the spiral on the bottom being
triggered first. This was a very different regime to that typically studied for stratified
Taylor–Couette flow. In Lopez & Marques (2020), we reproduced these results and found
that endwall effects and centrifugal buoyancy were critical ingredients for understanding
the observed onset of instability and the subsequent dynamics. The rotation of the inner
cylinder induces radial forces: the denser fluid is centrifuged outwards, while the lighter
fluid is centrifuged inwards. These forces are orthogonal to the gravitational buoyancy. The
present study includes both endwall and centrifugal buoyancy effects. Most theoretical
and numerical studies have considered the axial direction to be unbounded and that the
basic state is invariant in the axial and azimuthal directions, and is linearly stratified
(even though linear stratification in an unbounded direction parallel to the gravity vector
is problematic within the Boussinesq approximation which is typically made). Also,
either implicitly or explicitly, a centrifugal approximation is made whereby the angular
acceleration is assumed to be negligibly small compared with gravitational acceleration
(Meletti et al. 2021; Robins, Kersalé & Jones 2020). Shalybkov & Rüdiger (2005) discuss
the possible importance of centrifugal buoyancy, particularly for strong stratification, but
do not explore its consequences as ‘the situation becomes much more complicated’. The
‘complication’ is at least partially due to the fact that even if the infinite axial extent
idealization is made, with centrifugal buoyancy included the system of equations are no
longer axially invariant, the basic state is no longer unidirectional and the usual stability
analysis is no longer valid. Centrifugal buoyancy breaks the up–down reflection symmetry,
the induced flow being more intense near the colder bottom endwall. Without considering
endwalls it is not possible to understand the initial development of the instability, that
propagates from the endwalls to the interior of the cylinders.

The paper is organized as follows. Section 2 describes the governing equations, the
non-dimensional governing parameters, the boundary conditions and how the system is
solved numerically. The symmetry of the problem is described, as is how centrifugal
buoyancy weakly breaks the up–down reflection symmetry. Section 3 describes the steady
axisymmetric basic state in the finite annulus, and contrasts its features with the often
used unidirectional circular Couette flow with linear stratification. Section 4 considers
the instability and nonlinear dynamics confined to the axisymmetric subspace, while
§ 5 removes the axisymmetric constraint and shows that instability sets in at lower Re

930 A2-4

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

89
3 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2021.893


Stratified Taylor–Couette flow: nonlinear dynamics

as rotating waves with azimuthal wavenumber m = 1 whose precession frequency is
approximately one third the inner cylinder rotation rate. At higher Re, a very low frequency
modulation sets in, but the main features of the flow remain those of the rotating waves.
The weakly broken up–down reflection symmetry, induced by the centrifugal buoyancy,
is found to play an important role in understanding the spatio-temporal structure of the
flows. Section 6 discusses how the present results fit in with previous studies of stratified
Taylor–Couette flows in a variety of different parameter regimes.

2. Governing equations

Consider a completely fluid-filled annulus of height H, inner radius Ri and outer radius
Ro. The outer cylinder, top and bottom walls are stationary and the inner cylinder rotates
at constant angular velocity Ω . The top and bottom endwalls are maintained at fixed
temperatures, T∗

0 +�T∗/2 for the top endwall and T∗
0 −�T∗/2 for the bottom endwall,

while both cylinders are insulated. Here, T∗
0 is a reference temperature, and the temperature

difference, �T∗, between the top and bottom endwalls is positive, so that the vertical
temperature gradient is stabilizing. Gravity g points downwards. The kinematic viscosity
of the Newtonian fluid is ν, its thermal diffusivity is κ and its coefficient of volume
expansion is α.

Using the annular gap, ΔR = Ro − Ri, as the length scale, the viscous diffusion time
across the gap, Δ2

R/ν, as the time scale, �T∗ as the temperature scale and employing the
Boussinesq approximation accounting for centrifugal buoyancy (Lopez, Marques & Avila
2013), the non-dimensional governing equations are

∂tu + (u · ∇)u = −∇p + ∇2u + Gr T ẑ + ε T(u · ∇)u, ∇ · u = 0, (2.1)

∂tT + (u · ∇)T = Pr−1∇2T, (2.2)

where u = (u, v,w) is the non-dimensional velocity field in the cylindrical polar
coordinate system (r, θ, z), p is the dynamic pressure and ẑ is the unit vector in the vertical
direction z. The term ε T(u · ∇)u accounts for centrifugal buoyancy effects. The fluid
domain is r ∈ [ri, ro] = [η/(1 − η), 1/(1 − η)], θ ∈ [0, 2π) and z ∈ [−γ /2, γ /2], where
η = Ri/Ro is the radius ratio and γ = H/ΔR is the aspect ratio. We shall fix the annular
geometry to η = 0.417 and γ = 3, motivated by recent experiments using these values
(Leclercq et al. 2016b,d; Partridge et al. 2016) as well as other experiments with similar
values (Woods et al. 2010; Oglethorpe et al. 2013).

The boundary conditions for temperature and velocity are

r = ri : ∂rT = 0, u = w = 0, v = Re, (2.3a)

r = ro : ∂rT = 0, u = w = v = 0, (2.3b)

z = −γ /2 : T = −1/2, u = w = 0, v = Re q(r), (2.3c)

z = γ /2 : T = 1/2, u = w = 0, v = Re q(r), (2.3d)

where the azimuthal velocity at the corners where the rotating inner cylinder meets the
stationary top and bottom endwalls has been regularized by using

q(r) = exp[−c(r − ri)], with c = 100. (2.4)

The radial function q(r) is almost zero everywhere except in a narrow interval (controlled
by c) close to the rotating inner cylinder. In this way the boundary condition on v is
continuous, avoiding Gibbs phenomena associated with discontinuities in the numerical
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simulations, and mimics the gap that exists in any real device with the inner cylinder
rotating and stationary endwalls. The value of c is chosen such that q decreases from 1 to
0.05 over 3 % of the annular gap.

The non-dimensional groups appearing in the governing equations and boundary
conditions are

Prandtl number Pr = ν/κ, (2.5a)

Reynolds number Re = ΩRiΔR/ν, (2.5b)

Grashof number Gr = αg�T∗Δ3
R/ν

2, (2.5c)

relative density variation ε = α�T∗, (2.5d)

radius ratio η = Ri/Ro, (2.5e)

aspect ratio γ = H/ΔR. (2.5f )

The Prandtl number is a ratio of fluid properties and is constant in a given experiment
modelled by the Boussinesq approximation, where small variations in κ and ν due to
temperature variations are neglected. We shall fix the Prandtl number Pr = 6, nominally
corresponding to water at approximately 25 ◦C.

The Grashof number Gr and the relative density variation ε are proportional to the
imposed temperature gradient, and their ratio is the Archimedes number

Ar = Gr/ε = gΔ3
R/ν

2. (2.6)

For a given experimental setting g and ΔR are fixed, and hence Ar is essentially constant
(but for small temperature variations in ν which are typically neglected under the
Boussinesq approximation). So, ε = Gr/Ar is slaved to Gr, and so there are only two
independent dynamical parameters in the problem, Re and Gr. Other non-dimensional
numbers used in this and related studies are the ratio of buoyancy and rotation time scales,
known as the Froude number Fr = Ω/N, where N = √

αg�T∗/H is the Brunt–Väisälä
buoyancy frequency, and RN = NΔ2

R/ν, the non-dimensional buoyancy frequency, which
is the ratio of the viscous and buoyancy time scales. These are related to Re and Gr

Fr = Re
RN

ΔR

Ri
= Re

RN

(1 − η)

η
, RN =

√
Gr
γ
. (2.7a,b)

In some studies, the bulk Richardson number, Ri = N2/Ω2 = 1/Fr2, is used.
With the non-dimensionalization we have used, Re and Gr are the non-dimensional

groups that naturally appear in the governing equations and boundary conditions. We shall
also fix their ratio such that Fr = 0.53. This is motivated by several reasons; this is the
value of Fr used in our very wide-gap study (Lopez & Marques 2020) that reproduced
the experimental observations of Flór et al. (2018). The experiments of Le Bars & Le Gal
(2007), Leclercq et al. (2016b,d) and Partridge et al. (2016) also feature comparable values
of Fr, as do the nonlinear simulations of Gellert & Rüdiger (2009).

Neglecting centrifugal buoyancy corresponds to taking the limit ε → 0 in (2.1). The
Archimedes number corresponding to experiments with water at approximately room
temperature in annuli with a gap width of approximately 10 cm is large, Ar = 1010,
and so ε is small, of order 10−2 for Gr ∼ 108. Fixing Fr = 0.53, Ar = 1010, η = 0.417
and γ = 3 means that, in our study with varying Re, we have Gr = 20.8754Re2 and
ε = 2.08754 × 10−9Re2. The results all have these fixed parameter values, and only Re
is varied.
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The governing equations are solved using a second-order time-splitting method with
consistent boundary conditions for the pressure, as in Lopez & Marques (2014, 2020).
Spatial discretization is via a Galerkin–Fourier expansion in θ and Chebyshev collocation
in r and z. The spatial and temporal resolution used was nr × nz × nθ = 100 × 300 × 64
and δt = 10−7 for Re ∼ 103.

The kinetic energies of the azimuthal Fourier modes of the velocity field,

Em = 1
2

∫ γ /2

−γ /2

∫ ro

ri

um · u∗
m r dr dz, (2.8)

where um is the mth Fourier mode of the velocity field and u∗
m is its complex conjugate,

provide a convenient way to characterize the non-axisymmetric states.
The domain and boundary conditions have a symmetry group generated by arbitrary

rotations Rβ around the annulus axis, and a reflection K about the mid-height plane. Their
actions on the velocity and temperature are

Rβ : [u, v,w, T](r, θ, z, t) 
→ [u, v,w, T](r, θ − β, z, t), (2.9a)

K : [u, v,w, T](r, θ, z, t) 
→ [u, v,−w,−T](r, θ,−z, t), (2.9b)

where β is an arbitrary angle. The rotations Rβ generate the group SO(2), and the
reflection K generates the group Z2 since K2 is the identity; Rβ and K commute
(KRβ = Rβ K), and together they generate the group G = SO(2)× Z2.

The temperature and incompressibility equations (2.2) are equivariant with respect to G.
However, in the Navier–Stokes equations (2.1), the last term is not equivariant; it changes
sign when reflected (applying K). This centrifugal buoyancy term means that the full
system is not reflection symmetric. The denser fluid at the bottom endwall is centrifuged
outwards, while the lighter fluid near the top endwall is centrifuged inwards, generating
a large-scale circulation that breaks K. In summary, if ε = 0 then G is the symmetry
group of the problem, but when ε /= 0 the symmetry group is only SO(2). With the fixed
parameters being used, the symmetry-breaking effects of non-zero ε are negligible for
small Re; nevertheless, we maintain ε /= 0 as the symmetry breaking may be dynamically
important for Re � O(103).

3. Steady axisymmetric basic state

We begin by considering the steady axisymmetric basic state, denoted S0. It is convenient
to consider it in terms of the streamfunction, ψ , azimuthal component of vorticity, ωθ , and
angular momentum, Γ = rv. In terms of these quantities, the velocity and vorticity fields
are

u = (u, v,w) = r−1(−∂zψ,Γ, ∂rψ), (3.1)

∇ × u = (ωr, ωθ , ωz) = r−1(−∂zΓ, r[∂zu − ∂rw], ∂rΓ ). (3.2)

Contours of ψ and Γ in a meridional (r, z)-plane give cross-sections of streamsurfaces
(streamlines) and vortex surfaces (vortex lines). The governing equations, (2.1) and (2.2),
restricted to the axisymmetric subspace (∂θ = 0), are then

∂tΓ + [1 − εT](u∂rΓ + w∂zΓ ) = (∂2
r − r−1∂r + ∂2

z )Γ, (3.3)
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∂tT + (u∂r + w∂z)T = Pr−1(∂2
r − r−1∂r + ∂2

z )T, (3.4)

∂tωθ + [1 − εT](u∂rωθ − r−1uωθ + w∂zωθ − r−3∂zΓ
2)

−ε(u∂ru + w∂zu − r−3Γ )∂zT + ε(u∂rw + w∂zw)∂rT

= −Gr∂rT + (∂2
r + r−1∂r − r−2 + ∂2

z )ωθ . (3.5)

In the idealized situation of an infinitely long annulus without endwalls and ignoring
centrifugal buoyancy by taking ε = 0, the unidirectional linearly stratified circular Couette
flow with Γ = ηRe(r2

o − r2)/(1 + η), ωθ = 0, ψ = 0 and T = z/γ is an equilibrium
solution of (3.3)–(3.5). If ε /= 0, the unidirectional flow is not an equilibrium due to the
term εr−3Γ ∂zT in (3.5), which is a source term for the azimuthal vorticity. It becomes
negligible if ε → 0 i.e. negligible centrifugal buoyancy. Furthermore, once endwalls are
considered, even if they are infinitely far apart and one ignores centrifugal buoyancy, the
unidirectional flow is not a solution. For the situation currently under consideration, with
the inner cylinder rotating and the outer cylinder and endwalls stationary, the vortex lines
are tangential to the stationary endwalls; they all enter and leave the annulus at the corners
where the rotating inner cylinder meets the endwalls. The bending of the vortex lines into
these corners results in a meridional flow via the −r−3∂zΓ

2 = −2r−1v∂zv term in (3.5)
(Lopez 1998), setting up the endwall boundary layers (often called Ekman layers) with
flow nearest the endwalls directed radially in towards the inner cylinder. This meridional
flow advects the isotherms leading to horizontal temperature gradients near the corners
and further contributes to the meridional flow via the ∂rT baroclinic torque term in (3.5).

Figure 1 illustrates the role of the endwalls in driving the meridional flow. The plots
in the figure are oriented such that the rotating inner cylinder is the left boundary and
gravity points downwards. The vortex lines are plotted with levels Γ ∈ [0, riRe]; they
appear to be invariant with Re. Instead of isotherms, we have plotted contours of the
axial temperature gradient ∂zT , which is a constant ∂zT = 1/γ for Re = 0, and it clearly
highlights the deviations from the initially imposed linear temperature stratification for
Re /= 0. These deviations appear near the corners where the rotating inner cylinder meets
the endwalls. For very small Re ∼ 1, ∂zT remains essentially constant and the meridional
flow is solely driven by vortex line bending. When the meridional flow is sufficiently strong
it is able to modify the temperature stratification, resulting in its baroclinic interaction with
the meridional flow. The (r, z)-dependence of ∂zT becomes evident for Re � 100, as the
meridional flow is focused at the corners. Whereas the azimuthal flow scales as v ∼ Re,
the meridional flow scales as (u,w) ∼ Re3/2, and for Re � 10 the meridional flow clearly
forms endwall boundary layers whose thickness scales with Re−1/2, as illustrated by the
streamlines. These layers are of Bödewadt type, as in isothermal Taylor–Couette flows
with stationary endwalls (Avila et al. 2008).

Often, the basic state is taken to be a unidirectional azimuthal z-independent flow whose
r dependence corresponds to the scaled azimuthal velocity of the circular Couette flow
between two infinitely long cylinders, together with a linear (in z) temperature (density)
profile. When the inner cylinder rotates at non-dimensional rate Re and the outer cylinder
is stationary, the circular Couette flow profile is (Taylor 1923)

v(r)
Re

= η

1 − η2

(
ro

r
− r

ro

)
. (3.6)

Figure 2 compares the radial profiles of the scaled azimuthal velocity v/Re at mid-height
z = 0 of the steady axisymmetric state S0 for γ = 3 and Fr = 0.53 (for Re < 500, this
scaled profile at z = 0 is independent of Re), and of the scaled circular Couette flow
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Stratified Taylor–Couette flow: nonlinear dynamics

Re = 1 10 100 300 500

Γ

∂zT

ψ

Figure 1. Contours of Γ , ∂zT and ψ of the steady axisymmetric basic state S0 at Re as indicated. The contour
levels (red positive and yellow negative) are Γ ∈ [0, riRe], ∂zT ∈ [0, 0.33 + 4 × 10−4Re a] and ψ ∈ [−a, a],
where a = 0.005 + 1.3 × 10−5Re3/2. Contours are in a meridional plane, (r, z) ∈ [ri, ro] × [−γ /2, γ /2].

(which is independent of Re), both with radius ratio η = 0.417. For the given geometry
(η and γ ), the two v(r) profiles are very different. For example, the azimuthal velocities
at mid-gap differ by approximately 30 %. This is a well-known consequence of endwall
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0.2 0.4 0.6 0.8 1.00

0.2

0.4

0.6

0.8

1.0

r – ri

v/Re

S0 at z = 0

Circular Couette

Figure 2. Radial profiles of the scaled azimuthal velocity v/Re at mid-height z = 0 of the steady axisymmetric
state S0 for Re ≤ 500, γ = 3 and Fr = 0.53, and of the scaled azimuthal velocity of the unidirectional circular
Couette flow, both for radius ratio η = 0.417.

effects (Coles & van Atta 1966). For much larger aspect ratios, γ ∼ O(10–100), it is
generally expected that the two radial profiles of v are in better agreement, allowing the use
of the unidirectional stratified circular Couette flow in linear stability analysis (Boubnov
et al. 1995, 1996; Caton et al. 2000; Molemaker, McWilliams & Yavneh 2001; Yavneh
et al. 2001; Shalybkov & Rüdiger 2005; Park & Billant 2013; Leclercq et al. 2016a; Robins
et al. 2020). However, for short aspect ratios like that studied here, endwall effects drive
meridional flows and, as with unstratified Taylor–Couette flows in short aspect ratios, the
resulting instabilities can differ significantly (Benjamin & Mullin 1981; Cliffe, Kobine &
Mullin 1992; Lopez & Marques 2003; Abshagen et al. 2005a,b; Lopez & Marques 2005;
Marques & Lopez 2006; Abshagen et al. 2008; Lopez 2016).

From figure 1, it is apparent that the steady axisymmetric basic state S0 is essentially
K symmetric, even though the terms in the governing equations with ε as a factor break
the symmetry. As noted earlier, with the choice of fixed parameters under consideration,
ε ∝ Re2 with a very small constant of proportionality. As a quantitative measure of the K
symmetry breaking in the flow, we introduce the symmetry measure

SK = ‖u − Ku‖2/‖u‖2, (3.7)

where

‖(·)‖2 =
√∫ γ /2

−γ /2

∫ 2π

0

∫ ro

ri

(·)2r dr dθ dz. (3.8)

Figure 3 shows that for small Re, SK ∼ Re4. For Re � 10, SK is essentially machine noise,
and for Re � 100, SK grows faster than Re4, but remains too small for any asymmetry to
be evident in figure 1.

4. Instability of the basic state in the axisymmetric subspace

When the meridional flow is sufficiently large (u,w � 0.025v), S0 loses stability via a
Hopf bifurcation at Re ≈ 575, and a limit cycle state L0 is spawned when the dynamics is
restricted to the axisymmetric subspace. Figure 4(a) shows how the kinetic energy in S0
and L0 varies with Re (for L0 the time-averaged kinetic energy is shown). For S0, E0/Re2 ≈
0.52 whereas for L0 the time-averaged scaled kinetic energy drops with increasing Re.
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Figure 3. Variation of SK with Re for the axisymmetric steady state S0 (blue symbols). For the axisymmetric
limit cycle state L0 (green symbols), the time-averaged SK is shown.
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Figure 4. (a) Kinetic energy of solutions computed in the axisymmetric m = 0 subspace E0, scaled by Re2, vs
Re. The basic state S0 is steady, and L0 is time periodic (for L0 the time average is plotted). (b) The standard
deviation in E0, scaled by Re2, for L0 and (c) the corresponding frequency ω0 scaled by Re, vs Re.

The amplitude of the oscillations in L0 is quantified by the standard deviation in the time
series of the kinetic energy, scaled by Re2; this is shown in figure 4(b). There is near linear
growth in the amplitude with increasing Re, starting from zero amplitude at Re ≈ 590; this
is typical of a supercritical Hopf bifurcation. The frequency of the oscillations, scaled by
Re, only varies slightly with Re; this is also typical of a supercritical Hopf bifurcation.
This frequency, ω0 ≈ 0.36Re, indicates that the flow oscillates at a frequency that is
approximately one third the frequency at which the inner cylinder rotates.

930 A2-11

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

89
3 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2021.893


J.M. Lopez and F. Marques

Re = 600 700 800 900

Γ

∂zT

ψ

Figure 5. Contours of Γ , ∂zT andψ of the time-averaged L0 at Re as indicated. The contour levels (red positive
and yellow negative) are Γ ∈ [0, riRe], ∂zT ∈ [0, a], where (Re, a) = (600, 0.700), (700, 0.627), (800, 0.739),
(900, 1.032) and ψ ∈ [−b, b], where (Re, b) = (600, 0.309), (700, 0.510), (800, 0.604), (900, 0.627).

Figure 5 shows vortex lines, axial temperature gradient contours and streamlines of L0
averaged over one period τ0 = 2π/ω0 at various Re, from near onset at Re = 600 to Re =
900. Near onset, the time-average L̄0 is very similar to the basic state S0 (compare with S0
at Re = 500 shown in figure 1); the main difference being that there are cellular structures
near the inner cylinder that are most intense near the top and bottom endwall corners
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Stratified Taylor–Couette flow: nonlinear dynamics

and diminishing towards the mid-height region. The time-averaged meridional flow and
the deviations away from constant in the time-averaged axial temperature gradients are
concentrated in the endwall boundary layers, and in particular near the corners where the
endwalls meet the inner cylinder. With increasing Re, the mean meridional flow intensifies,
and by Re = 900 there is evidence of cellular structure in the interior between the endwalls.
The deviations in ∂zT̄ are localized near the inner cylinder, whereas the mean meridional
flow extends across the gap between the inner and outer cylinders. This more intense mean
meridional flow results in axial oscillations in the mean axial angular momentum Γ̄ = rv̄.
For all Re, the mean flow L̄0 is essentially K invariant, although very small deviations
from K symmetry are evident, particularly in the streamlines at Re = 800 and 900 near
the mid-height region.

Figure 6(a,b) shows space–time plots of the angular momentum Γ = rv and the axial
temperature gradient ∂zT over four periods of L0 at Re = 600; the oscillation period is
τ0 = 2π/ω0 ≈ 15.93Re. Figure 6(c,d) shows snapshots of Γ and ∂zT at eight equispaced
times in one period, indicated by the vertical dashed blue lines in the space–time plots.
The instantaneous L0 has a well-defined interior cellular structure (see snapshots at t0), but
this cellular structure becomes weaker and almost disappears after a quarter period (see
snapshots at t0 + τ0/4), and reappears again after another quarter period (see snapshots
at t0 + τ0/2), but with the cellular structure being the K-symmetric conjugate of the
cellular structure at t0. This cycle repeats with period τ0. This is the reason why the
number of cellular structures in the time-average L̄0 (figure 5) is twice the number of
cells in L0 (figure 6d): the cells at t0 superimposed with the z-reflected cells at t0 + τ0/2
results in doubling the number of cells in the time average. The space–time plots show
that the cells are formed at the endwalls and move towards the interior, meeting at
the mid-height level. Figure 6 clearly shows that the K symmetry at any given time
is broken. However, there is an almost perfect half-period-flip symmetry: the snapshots
after half a period t + τ0/2 coincide with the K-conjugate snapshots at t (for any t), as
discussed earlier. A Hopf bifurcation caused by a pair of complex conjugate antisymmetric
eigenvectors typically/generically leads to a limit cycle which has this half-period-flip
symmetry. Strictly speaking, since the centrifugal term breaks the K symmetry, there are
slight differences that cannot be appreciated in the figure because the breaking of the K
symmetry at this low Reynolds number (Re = 600) is extremely small (SK ∼ 10−7, as
shown in figure 3).

Figure 7 shows the corresponding plots from figure 6 for L0 at Re = 800. It is
evident that instead of having an approximate half-period-flip symmetry (i.e. setwise K
invariance), the flow at this Re is pointwise-in-time K invariant. This type of switching
between stable limit cycles bifurcating from a basic state with K symmetry to periodic
states that either have pointwise-in-time K symmetry (L0 at Re = 800) or setwise-in-time
(half-period-flip) symmetry (L0 at Re = 600) is commonly observed in K (or related Z2)
symmetric systems (e.g. Marques & Lopez 2015; Yalim, Welfert & Lopez 2019; Grayer
et al. 2020). Strictly speaking, in the present problem the K symmetry is broken due to
the centrifugal buoyancy, as has already been discussed. This symmetry breaking is very
weak, but at Re = 800, a close inspection of some of the snapshots in figure 7(d) near
the mid-height shows clear evidence of the symmetry breaking. The cellular structures at
Re = 800 are more pronounced than at Re = 600 as L0 is further away from onset.

While the snapshots in figures 6 and 7 are instructive, the animations of the fields
(see supplementary movie 1 available at https://doi.org/10.1017/jfm.2021.893) illustrate
the dynamics better. Twice every period, a new cell is formed at each of the corners
where the endwalls meet the inner cylinder. The new cells propagate axially into the
interior, pushing the existing cells further toward the mid-plane z = 0, resulting in the
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t

t0 t0 + 7τ0/8t0 + 3τ0/4t0 + τ0/4t0 + τ0/8 t0 + 3τ0/8 t0 + 5τ0/8t0 + τ0/2

(b)

(a)

(c)

(d )

Figure 6. The limit cycle L0 at Re = 600: space–time (t, z) contour plots of (a) Γ and (b) ∂zT at θ = 0 and
r = ri + 0.1; four periods are shown, where τ0 = 2π/ω0 ≈ 15.92/Re is the period of L0. The corresponding
meridional snapshots at indicated times corresponding to the eight equispaced vertical dashed blue lines in
(a,b) are shown in (c,d). Supplementary movie 1 animates the Γ and ∂zT contours in the meridional plane over
one period.

annihilation of the angular momentum jets and cells. The jets reappear in other places,
with either the same or a different number of cells, depending on the symmetry of L0. Jets
of angular momentum, which are characteristic of the centrifugal instability due to the
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t

t0 t0 + 7τ0/8t0 + 3τ0/4t0 + τ0/4t0 + τ0/8 t0 + 3τ0/8 t0 + 5τ0/8t0 + τ0/2

(b)

(a)

(c)

(d )

Figure 7. The limit cycle L0 at Re = 800: space–time (t, z) contour plots of (a) Γ and (b) ∂zT at θ = 0 and
r = ri + 0.1; four periods are shown, where τ0 = 2π/ω0 ≈ 17.67/Re is the period of L0. The corresponding
meridional snapshots at indicated times corresponding to the eight equispaced vertical dashed blue lines in
(a,b) are shown in (c,d). Supplementary movie 1 animates the Γ and ∂zT contours in the meridional plane over
one period.

inner cylinder rotation, are clearly observed. During a period, these jets intensify, become
weaker, disappear and then reappear with their radial direction inverted, i.e. the outgoing
jets become ingoing jets and vice versa (see, for example, the snapshots in figure 7c at times
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λ
λ

λ

t0 + τ0/4 t0 + 3τ0/4

(a) (e) (g) (h)(b) (c) (d ) ( f )

Figure 8. The limit cycle L0 at Re = 800, showing Γ , ∂zT , ψ and velocity vectors projected onto a meridional
plane at two times, (a,b,c,d) and (h,g, f,e), half a period apart, during which the outgoing radial jets are strongest.

t0 + τ0/4 and t0 + 3τ0/4). There is a pair of counter-rotating Taylor vortices between two
adjacent outgoing jets, forming a Taylor cell, as illustrated in figure 8(d,e), showing the
meridional velocity field of L0 at Re = 800, at the two times t0 + τ0/4 and t0 + 3τ0/4,
when the jets are most intense. Instantaneous streamlines, axial temperature gradient and
angular momentum contours are also shown in the figure, and movie 1 animates these over
one period.

The Taylor cell boundaries (i.e. the outgoing jets) are indicated by red lines in figure 8.
These boundaries are flat, except near the endwalls where the intense Ekman layers with
strong velocities near the corners at the inner cylinder distort the adjacent cell boundaries.
Each Taylor cell consists of a pair of counter-rotating Taylor vortices. The axial wavelength
λ (i.e. the axial height of the Taylor cell relative to the annular gap) is invariant along
the cylinder (except very near the Ekman layers), and it remains unchanged in time,
even following the switching between ingoing and outgoing jets. This wavelength is
much smaller than the wavelength of Taylor cells in unstratified Taylor-vortex flow, which
typically have λTVF ∼ 2 (the Taylor vortices tend to have a square cross-section). Since the
flow is divergence free, the strong radial flows in the cells must have axial components to
complete the circuits, but the stratification tends to inhibit axial flow, and so the axial flow
is constrained to the boundary layers on the inner and outer cylinders. The axial flow on the
inner cylinder, together with the radial flow there, leads to the isotherms being advected
to the borders of the cells such that where the axial flow converges at these borders, the
isotherms are concentrated axially, resulting in a step-like layering. For L0 at Re = 800,
λ ≈ 0.415; the stratification inhibits the axial motions and reduces the axial span of the
cells to approximately 1/5 of λTVF.

The outgoing jets are associated with intense axial temperature gradients, as shown
in figure 8. Figure 7(b) shows a space–time plot of ∂zT; the white ovals are regions
of constant temperature (∂zT = 0), separated by narrow axial regions of large axial
temperature gradients, corresponding to the narrow radial ‘jets’ of ∂zT in figure 8. The
temperature has a ‘staircase’ structure (step-like layering) near the inner cylinder (between
the inner cylinder and the mid-gap), with regions of constant temperature (the Taylor
cells) separated by narrow regions of large axial temperature gradient coinciding with
the centres of the outgoing jets. The stratification changes periodically with time and the
layering appears and disappears periodically in different axial locations. These step-like
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Stratified Taylor–Couette flow: nonlinear dynamics

λ
λ

t0 t0 + τ0/2

(a) (e) (g) (h)(b) (c) (d ) ( f )

Figure 9. The limit cycle L0 at Re = 600 showing Γ , ∂zT , ψ and velocity vectors projected onto a meridional
plane at two times, (a,b,c,d) and (h,g, f,e), half a period apart, during which the outgoing radial jets are strongest.

layers are confined near the cylinder; this is the region where the centrifugal instability
mechanism is most active. The layering does not have time to propagate radially out to the
outer cylinder due to the temporal oscillations of the jets. During the short time intervals
when the angular momentum jets disappear, the temperature stratification becomes mostly
uniform in the axial direction, as shown in figure 7.

The switching between ingoing and outgoing jets results in a different number of Taylor
cells, changing between 5 and 6 cells for L0 at Re = 800. The cell boundaries are indicated
by red lines in figure 8. The axial size of the cells, λ, does not vary during the switching:
the Ekman vortices at the endwalls change size in order to accommodate a different
number of cells. The size of the Ekman vortices is indicated in green in figure 8. When the
Ekman vortex is large, it develops an outgoing jet of angular momentum in its interior that
propagates axially from the endwall, resulting in the switching between different number
of cells.

When the Ekman layer is small (figure 8e) the radial velocity at the endwalls is
inwards. This is what has been called in many studies of Taylor–Couette flow a normal
mode (Benjamin & Mullin 1981; Cliffe et al. 1992; Watanabe, Furukawa & Nakamura
2002; Lopez & Marques 2005; Marques & Lopez 2006). When the Ekman layer is large
(figure 8d) the radial velocity at the endwalls is outwards, as in a so-called anomalous
mode. This switching is typical of many Taylor–Couette flows of finite axial extent. For
L0 at Re = 800, the switching between normal and anomalous mode types occurs twice
every oscillation period. It is worth mentioning that even during the anomalous mode
phase, there is still a small corner vortex near the inner cylinder so that the radial velocity
is locally inwards (figure 8d).

We have described the flow of L0 at Re = 800 in more detail than that of L0 at
Re = 600 because the jets, cellular structures and staircase temperature profiles are much
more evident. In figure 9 for L0 at Re = 600 we observe similar cellular structures, and
jets of angular momentum as at Re = 800. However, due to the different symmetry of
the flow, the behaviour of the Ekman cells is different. In the Re = 800 case, with K
symmetry, both Ekman layers have the same size and when their size changes, the number
of cells also changes. In the Re = 600 case, when one of the Ekman layers grows, the
other shrinks, and as a result the number of cells does not change. The cells become
weaker, disappear, and then reappear with the radial direction of the jets inverted, as in the
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Re = 800 case. For Re = 600, there is just an axial oscillation of the cells, combined with
their formation/vanishing. The wavelength is constant all the time, λ ≈ 0.423. Compared
with the Re = 800 case (λ ≈ 0.415) we see that the cell size does not change very much
with Re, there is a small decrease in λ with increasing Re. Also, for the half-period-flip
symmetric L0 at Re = 600, one Ekman layer is in the normal mode phase while the other is
in the anomalous mode phase. There is still a pair of persistent corner vortices maintaining
the radial flows into the corner on both endwalls.

5. Three-dimensional instability of the basic state

In the previous section, the primary instability of the basic state S0 was explored by
restricting the flow to the axisymmetric subspace. Without making such a restriction, S0
loses stability at a lower Re ≈ 320 via a Hopf bifurcation breaking the SO(2) symmetry,
leading to a rotating wave with azimuthal wavenumber m = 1, denoted R1. Figure 10(a)
shows how the modal kinetic energy in m = 1, scaled by Re2, increases linearly from zero
at onset and saturates nonlinearly by Re ≈ 700. For Re � 1000, the rotating wave has a
low-amplitude long-period irregular modulation (this modulated rotating wave, MR1, is
described below). For MR1, the reported modal energies are time averaged. Figure 10(b)
shows the scaled modal kinetic energy in the axisymmetric component of the flow, E0/Re2.
It is two orders of magnitude larger than E1/Re2. For the rotating waves, E1/Re2 is a
measure of their amplitude, just as the scaled standard deviation in E0 was a measure
of the oscillation amplitude of L0 (figure 4b); these two amplitudes are of comparable
magnitude. Figure 10(c) shows the precession frequency of the rotating wave scaled by
Re, ωp/Re. It decreases slowly with increasing Re, but remains close to one third of the
rotation frequency of the inner cylinder. This is similar to the behaviour of the oscillation
frequency ω0 of L0 (see figure 4c), but ωp is a little smaller than ω0 overall.

For the small Re at which the Hopf bifurcation spawning R1 occurs when Fr ≈ 0.53,
the imperfection in the K symmetry about the axial mid-plane is essentially negligible;
SK = 2.9 × 10−11 for the base state S0 at Re = 340. Along with the SO(2) symmetry,
the K symmetry is also broken at the bifurcation leading to a rotating wave R1 that has
centrosymmetry (albeit imperfect due to ε ≈ 2.4 × 10−4 being small but not zero). The
action of centrosymmetry, C = RπK = KRπ , is

C : [u, v,w, T](r, θ, z, t) 
→ [u, v,−w,−T](r, θ − π,−z, t), (5.1)

and for a rotating wave with azimuthal wavenumber m = 1 and precession frequency ω1,

[u, v,w, T](r, θ − φ, z, t) = [u, v,w, T](r, θ, z, t + φ/ω1). (5.2)

For a rotating wave, the centrosymmetry C is the same as the half-period-flip symmetry
because a rotation of π is the same as advancing half a period in time. As a quantitative
measure of the C centrosymmetry, we introduce the symmetry measure

SC = ‖u − Cu‖2/‖u‖2. (5.3)

Figure 10(d) shows the symmetry measures SK and SC of R1 and MR1. For the rotating
waves at Re ≤ 1000, one or the other symmetry measure is very small (of order 10−6)
while the other grows from near zero to 0.2 with increasing Re. The rotating wave R1
comes in two flavours, one C symmetric and the other K symmetric, and alternates between
the two cases as Re is increased. This is analogous to switching between setwise and
pointwise-in-time K invariance for the axisymmetric limit cycle L0. The C symmetry is the
purely spatial version of the half-period-flip symmetry. It is very likely that the underlying
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Figure 10. Variation with Re of the scaled modal kinetic energies in azimuthal wavenumber (a) m = 1, E1/Re2

and (b) m = 0, E0/Re2, (c) the scaled precession frequency ωp/Re of the rotating wave R1 (red symbols) and
modulated rotating waves MR1 (yellow symbols), all for Fr ≈ 0.53. (d) The symmetry measures SK and SC of
these states, and (e) axial wavelength, λ, measured at r = ri + 0.1 near mid-height z = 0.

mechanisms for the symmetry-type switching with increasing Re in L0 and R0 are the
same, and tied to the underlying K symmetry of the basic state S0.

Figure 10(e) shows the variation of the axial wavelength λ of the Taylor cells. It is
measured as the distance between the peaks of azimuthal temperature gradient ∂zT closest
to mid-height z = 0 (i.e. away from the endwalls and the distorting effects of the Ekman
vortices), near the inner cylinder (at r = ri + 0.1). Figure 8 shows a typical example for L0,
illustrating where λ has been measured. The wavelength λ steadily decreases linearly with
Re for R1 (except for the first point very near the bifurcation Re ≈ 340, where the Taylor
cells are weak and λ is difficult to measure). In contrast, for Re > 1000 the wavelength of
the modulated rotating waves MR1 remains almost independent of Re with λ ∼ 0.4.

Figure 11(a,b) shows space–time plots of Γ and ∂zT along an axial line at (r, θ, z) =
(ri + 0.1, 0, z) over four precession periods of R1 at Re = 500; the precession period
is τp = 2π/ωp ≈ 17.85Re. These space–time plots can also be viewed as (θ, z) plots
because R1 is a rotating wave (the time t ∈ [t0, t0 + 4τp] being replaced with θ ∈ [0, 8π]).
The figure shows the same features as in the space–time plots for L0: there are regions
of constant temperature (white regions in figure 11a) bounded in z by regions of large
axial temperature gradient – the staircase temperature profiles described earlier for L0.
Figure 11(c,d) shows snapshots, in the meridional plane θ = 0, of Γ and ∂zT at eight
equispaced times over one period (or equivalently, in eight equispaced meridional planes
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Figure 11. The rotating wave R1 at Re = 500: space–time (t, z) contour plots of (a) Γ and (b) ∂zT at θ = 0
and r = ri + 0.1; four precession periods are shown, where τp = 2π/ωp ≈ 17.85/Re is the precession period of
R1. The corresponding meridional snapshots at indicated times corresponding to the eight equispaced vertical
dashed blue lines in (a,b) are shown in (c,d).

with θ ∈ [0, 2π], all at the same instant in time), indicated by the vertical dashed blue
lines in the space–time plots. The rotating wave R1 at Re = 500 is essentially C symmetric
(SC = 4.14 × 10−6 ≈ 0 and SK = 0.105 /= 0). The outgoing jets of angular momentum,
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coinciding with the regions of large axial temperature variation, are clearly evident. Over
one period in a particular meridional plane, these jets become weaker, disappear and
then reappear with the direction of their radial velocity reversed. However, for R1 these
structures remain invariant in time and simply rotate continuously in azimuth. In contrast,
for L0 the formation and destruction of the jets and sharp axial temperature gradients
occurs globally in azimuth and periodically in time. The R1 jets are essentially θ -invariant
for θ0 � θ � θ0 + π and for θ0 + π � θ � θ0 + 2π , but displaced axially by λ/2 in the
two azimuthal halves, with narrow bands of ‘defects’ connecting the jets in the two
halves.

Figure 12(a,b) shows space–time plots of Γ and ∂zT over four precession periods of
R1 at Re = 800; the precession period is τp = 2π/ωp ≈ 18.65Re. Figure 12(c,d) shows
snapshots of Γ and ∂zT at eight equispaced times in one period, indicated by the vertical
dashed blue lines in the space–time plots. The value of R1 at Re = 800 is essentially
K symmetric (SK = 2.14 × 10−5 ≈ 0 and SC = 0.163 /= 0). The same considerations as
for R1 at Re = 500 apply here, the only difference being the different symmetry of the
solution. Figure 13 shows snapshots of Γ and ∂zT isosurface, one quarter period apart,
illustrating the three-dimensional structure of R1 at Re = 500 and 800. Supplementary
movie 2 shows animations of these over one precession period; these animations provide
clearer insights into the flow structures.

Figure 14 shows vortex lines, axial temperature gradient contours and streamlines of
R1 averaged over one period τ0 = 2π/ω0 (or equivalently, averaged with respect to θ ) at
various Re, from near onset at Re = 340 to Re = 1000. The plots are very similar to those
in figure 5 for the time-averaged L0. The only significant difference is that the cellular
structures are more intense and the jets of angular momentum (and the associated staircase
structures in the temperature) penetrate radially further in from the inner cylinder for R1
than they do for L0.

For Re > 1000, centrifugal buoyancy effects are stronger, leading to greater asymmetry
between the two rotating waves associated with the upper and lower corners. They now
have slightly different precession frequencies, resulting in a quasiperiodic modulated
rotating wave, MR1. The modulation is a very low frequency beating on the underlying
rotating wave. Figure 15 shows time series of the modal kinetic energy E1 scaled by
Re2 and the corresponding power spectral densities for R1 at Re = 1000 and MR1 at a
selection of larger Re. They clearly show the appearance of a very low frequency ω2.
More importantly, the primary peak is associated with the precession frequency of the
underlying rotating wave, ωp ≈ 0.32 with a very small decrease with increasing Re; the
power in this primary peak is almost two orders of magnitude larger than the power in
the very low frequency modulation peak. As such, the modulations are weak and manifest
over hundreds of inner cylinder rotations.

Figure 16 shows space–time plots of Γ and ∂zT over four precession periods for R1 at
Re = 1000 and MR1 at a selection of larger Re. The main feature of these spatio-temporal
structures is the presence of the staircase structures, with very narrow regions of fast
variation of temperature, separated by regions of almost constant temperature, as shown
in the second column of figure 16. These structures, and the associated outgoing jets of
angular momentum, are distorted with increasing Re, and the C and K symmetries are
completely broken. The propagation towards the interior of the perturbations generated at
each endwall is clearly evident. Some of the plots show that the waves propagating from
the top endwall fill most of the interior (as in figure 16b for Re = 1250), and others show
the opposite (as in figure 16c for Re = 1500). In fact, the dominance of one or other of
the endwalls changes very slowly in time, corresponding to the very low frequency ω2
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Figure 12. The rotating wave R1 at Re = 800: space–time (t, z) contour plots of (a) Γ and (b) ∂zT at θ = 0
and r = ri + 0.1; four precession periods are shown, where τp = 2π/ωp ≈ 18.65/Re is the period of R1. The
corresponding meridional snapshots at indicated times corresponding to the eight equispaced vertical dashed
blue lines in (a,b) are shown in (c,d).

of MR1. This is due to the detuning between the oscillation frequencies of the Ekman
vortices at the endwalls. This type of behaviour was also observed in Lopez & Marques
(2020), with smaller radius ratio and larger stratification. The spatio-temporal plots in
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Figure 13. Isosurfaces of Γ and ∂zT of R1 at Re = 500 and 800, at two different times a quarter precession
period apart. The isolevels are Γ = 0.4riRe and ∂zT = 0.493 (which is 30 % of the maximum axial temperature
gradient) for Re = 500 and ∂zT = 0.625 (which is 22 % of the maximum axial temperature gradient) for Re =
800. Supplementary movie 2 includes an animation of these over one precession period.

figure 16 are also very similar to those reported from experiments using salt stratification
in a Taylor–Couette apparatus with very similar radius and aspect ratios (Partridge et al.
2016), as well as in experiments using temperature stratification with oil and quite larger
radius ratio η ≈ 0.52 and aspect ratio γ ≈ 10 (Meletti et al. 2021). This suggests that the
Prandtl number (which varies from approximately 700 for salt stratification, approximately
57 for the oil, to approximately 6 for temperature stratification in water) does not play a
critical role in the layering pattern selection process.

Figure 17 illustrates the changes in flow structure associated with the very low frequency
ω2 ≈ ωp/20 for MR1 at Re = 1250. It includes time series of the axial velocity w at three
points in a meridional plane, θ = 0, very close to the inner cylinder, r = ri + 0.01, at
three heights, z = 0 and z = ±0.5γ , as well as time series of the symmetry measures SC
and SK. The time series are shown over one viscous time, which is approximately three
times 2π/ω2. Over most of each 2π/ω2 period, the flow has a regular almost periodic
behaviour during which it is approximately K-symmetric (SK ≈ 0). As a consequence,
the axial velocity w at z = 0 is approximately zero and w|z=0.5γ ≈ −w|z=−0.5γ . This
regular, nearly K-symmetric phase is followed by an irregular shorter phase during which
the reflection symmetry measure SK increases to be approximately a fifth of SC ; SC also
increases ever so slightly during this phase. The yellow symbols in the time series in
figure 17 are strobed with the precession frequency ωp, and the isosurfaces of ∂zT at these
strobed times are shown in supplementary movie 3. Fifteen equispaced snapshots (five
per period 2π/ω2) are shown in figure 17( f ). The first three snapshots in each row (each
row covers one 2π/ω2 period) show very little variation, corresponding to the regular
phase of MR1, with almost ωp-periodic behaviour. The last two snapshots correspond to
the irregular phase, with rapid changes in the flow. The (strobed) position of the defect at
mid-height remains constant during the regular phase, while it experiences a jump during
the irregular phase; this jump coincides with K-symmetry breaking. This behaviour is a
‘snapping’ of the defect; it was also observed in very wide-gap stratified Taylor–Couette
flow (Lopez & Marques 2020), in which both curvature and centrifugal buoyancy effects
were much stronger than in the present problem. There, the ‘snapping’ was related to the
detuning of the frequencies associated with the centrifugal instabilities near the endwalls.
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Re = 340 400 500 600 700 800 1000

Γ

∂zT

ψ

Figure 14. Contours of Γ , ∂zT and ψ of the time-averaged R1 at Re as indicated. The contour levels (red
positive and yellow negative) are Γ ∈ [0, riRe], ∂zT ∈ [0, 0.2 + 7.5 × 10−4Re] and ψ ∈ [−b, b], where b =
−0.09 + 2.3 × 10−5Re3/2.

This effect was large in that study, and affected the first instability of the flow. In the
present problem, centrifugal buoyancy effects begin to manifest well beyond the onset of
instability (for Re > 1000 compared with onset at Re ≈ 320), and result in the transition
to modulated rotating waves MR1. Further increases in Re above Re ≈ 2000 results in
complex spatio-temporal behaviour, as the time series and power spectral densities in
figure 15 indicate.

6. Discussion and conclusions

We have presented a detailed study of the onset of instability of stratified Taylor–Couette
flow in an annulus with medium radius ratio, η = 0.417, and short aspect ratio, γ = 3,
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Figure 15. Time series (a) of the modal kinetic energy E1/Re2, and (b) power spectral density (PSD) of the
azimuthal component of velocity at a point (r, θ, z) = (ri + 0.1, 0, 0.25γ ), for Fr ≈ 0.53 and Re as indicated.

inspired by a series of experiments (Oglethorpe et al. 2013; Leclercq et al. 2016b,d;
Partridge et al. 2016). This is a very different geometry to that usually studied, where
the aspect ratio is large to minimize endwall effects and the radius ratio is large (η ∼ 1) to
minimize curvature effects (e.g. Boubnov et al. 1995; Le Bars & Le Gal 2007; Ibanez et al.
2016). As in unstratified Taylor–Couette flow in a finite annulus, the instability initiates at
the corners where the inner rotating cylinder meets the stationary endwalls. From there,
it propagates axially into the interior along the inner cylinder. This process is (up-down)
K symmetric in the absence of stratification. However, with stratification the centrifugal
buoyancy breaks the K symmetry, albeit weakly near onset of instability for the parameter
regimes considered in this study.

In similar stratified Taylor–Couette flows with smaller radius ratio, η ≈ 0.07, and
stronger stratification (Flór et al. 2018; Lopez & Marques 2020), the corner vortices emit
spiral waves with small inclination towards the interior. The frequencies of these spiral
waves emitted from the top and bottom endwalls are slightly different due to the imperfect

930 A2-25

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

89
3 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2021.893


J.M. Lopez and F. Marques

MR1 at Re = 2500

MR1 at Re = 2000

MR1 at Re = 1750

MR1 at Re = 1500

MR1 at Re = 1250

R1 at Re = 1000

(e)

(b)

(a)

(c)

(d )

( f )

Figure 16. Space–time contour plots (t, z) of Γ (left) and ∂zT (right) at θ = 0 and r = ri + 0.1 over four
precession periods for R1 and MR1 at Re as indicated. Three (eight) contour levels between 0 and the maximum
value for ∂zT (Γ ).

K symmetry, although the frequencies lock near the bifurcation point resulting is single
frequency periodic flow. In the present problem, with larger η = 0.417, the spiral waves
are not present, and the instability takes the form of what may loosely be described as flat
Taylor vortices with small axial wavelength that are not axisymmetric; they are broken
in half azimuthally and the halves are axially displaced approximately half a wavelength
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Figure 17. The modulated rotating wave MR1 at Re = 1250: (a–c) time series of the axial velocity w at (r, θ) =
(ri + 0.05, 0) and z as indicated, over one viscous time covering three periods of ω2; (d,e) time series of the
symmetry measures SC and SK. The yellow symbols are strobed at the precession frequency ωp, and correspond
to the frames in movie 3. ( f ) Frames selected from movie 3, showing isosurfaces of ∂zT at times indicated by
red symbols in (a) to (e).
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(this is reminiscent of the experimental observations by Boubnov et al. (1996)). So, like
the helical waves in the small η flows, they have azimuthal wavenumber m = 1, but they
are not smooth helical waves.

In both the small η study (Lopez & Marques 2020) and the present medium η study, the
ratio of rotation to buoyancy frequency was Fr = 0.53. However, in the much smaller η
case the helical waves from the instability remain localized to the rotating inner cylinder,
and their onset is at Re ∼ 6 × 103. This critical Re is twenty times larger than for the
medium η = 0.417 studied here. As a consequence, the effects of centrifugal buoyancy
near onset are much weaker in the present study. In the small η experiments (Flór et al.
2018) and numerical simulations (Lopez & Marques 2020), centrifugal buoyancy leads
to the lower corner losing stability at a lower Re than the top corner, and these localized
perturbations have slightly different frequencies. However, in the present medium η study,
it appears that due to viscous effects together with the small value of ε ∼ 10−4 (quantifying
the strength of the centrifugal buoyancy), the two instability wave frequencies lock and
the whole flow is a single frequency periodic flow (a rotating wave) over a wide range
of Re, from onset at Re ≈ 340 up to Re = 1000. In laboratory experiments, which often
use salt stratification in an annulus with a no-slip bottom and an open top, the up–down
K symmetry is further broken. The details of how the symmetry is broken lead to a
very complicated dynamics in a very small neighbourhood of the onset of instability,
but further beyond onset the symmetry-broken dynamics becomes less dependent on the
details (Pacheco, Lopez & Marques 2011; Marques et al. 2013).

Perhaps more important than accounting for centrifugal buoyancy effects is to account
for the presence of endwalls in the short aspect ratio, γ = 3, flows. Endwalls are ignored
when studying the linear stability so that a basic unidirectional basic state can be
considered; we have shown how different the basic state is in the short finite length
annulus. When considering the nonlinear dynamics ignoring endwalls, nonlinear flows
are assumed to be axially periodic (with the axial period often being assigned to be the
wavelength of the most unstable mode or some integer multiple of that wavelength).
The axially periodic system has SO(2)× O(2) symmetry, where SO(2) corresponds to
invariance to rotations about the axis and O(2) = SO(2)� Z2 corresponds to arbitrary
axial translations, SO(2), and reflections about any axial level, Z2. In the finite annulus,
ignoring centrifugal buoyancy, the system has SO(2)× Z2 symmetry, with Z2 being the
mid-height reflection. With the idealized O(2) symmetry, the primary non-axisymmetric
instability in stratified Taylor–Couette flows is to spiral waves of opposite chirality, called
ribbons, or if the axial symmetry is broken then mixed-ribbons or cross-spirals result
(Leclercq et al. 2016b). Without endwalls, these nonlinear states can have a non-zero net
axial mass flux. The presence of endwalls (or even if the top surface is open) enforces
a zero net axial mass flux. For very large aspect ratios, this can be enforced numerically
by allowing a finite axial pressure gradient which recovers the correct global recirculation
in the capped annulus (Marques & Lopez 1997), but for short aspect ratio annuli, it is
easier and more correct to directly model the endwalls, as is done in the present study.
Furthermore, stratified flow in an axially infinite annulus is conceptually problematic,
particularly within the Boussinesq approximation.

One of the more spectacular features of the stratified Taylor–Couette flows studied
here is the formation of layers immediately following the onset of instability. These
layers – regions of uniform density separated by much thinner regions of large axial
density gradient – are observed in many stratified shear flows, but there is no general
consensus on how they come about nor on how their length scales are set (see Thorpe
(2016), for a discussion of various candidate mechanisms). There continues to be great
interest in addressing these open questions (Caulfield 2020, 2021), as is reflected in a

930 A2-28

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

89
3 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2021.893


Stratified Taylor–Couette flow: nonlinear dynamics

recent research program (Diamond et al. 2021), where the η = 0.417, γ = 3 stratified
Taylor–Couette flow was held up as an example laboratory experiment in which this
layering is observed. There remain open questions, such as whether linear instability
sets the layering scales. The results of our simulations of this flow at least establish
that the primary instability – resulting from the competition between a Rayleigh unstable
angular momentum distribution, stable stratification inhibiting axial variations and viscous
damping – does account for the spatio-temporal layered structures. The large density
gradients occur precisely where the strong radial jets of angular momentum leaving the
inner cylinder boundary layer form. Near onset, the axial spacing between these jets is
λ ≈ 0.6, corresponding to five jets in the η = 0.417, γ = 3 annulus, and the number of
jets increase with Re. The jets are not axisymmetric, they have azimuthal wavenumber
m = 1 but are not smooth in azimuth. They precess in azimuth at approximately one third
the rotation rate of the inner cylinder, with this precession rate a slowly decreasing function
of Re.

Supplementary movies. Supplementary movies are available at https://doi.org/10.1017/jfm.2021.893.
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