Subdirectly irreducible Rees matrix semigroups

David E. Zitarelli

Abstract

Minimal congruences on a Rees matrix semigroup S having at least one proper congruence are described. Necessary and sufficient conditions for S to be subdirectly irreducible are given in two cases according to whether the structure group of S is trivial.

1. Introduction

Congruences on a Rees matrix semigroup (or a completely O-simple semigroup) have been described in various ways. The aim of this paper is to show that the recent characterization by Lallement [2] in terms of admissible triples can be used to solve a problem which the other descriptions did not seem to permit. Namely, we will give necessary and sufficient conditions for a Rees matrix semigroup to be subdirectly irreducible; that is, to have the least nontrivial congruence.

Section 2 contains several properties of admissible triples and a restatement of Lallement's Theorem. Our results on subdirect irreducibility are contained in Section 3. Obviously every congruence-free semigroup is subdirectly irreducible, so congruence-free Rees matrix semigroups are described first. Next we list the three possible forms of minimal congruences on a Rees matrix semigroup S which is not congruencefree. Then we determine when S is subdirectly irreducible in terms of the sandwich matrix, when the structure group G is trivial, and in terms of reductivity and the subdirect irreducibility of G when G is nontrivial.

Received 13 December 1976.

All undefined terms and notation can be found in [4].

2. Admissibility

Let $S=M^{0}(I, G, M ; P)$ be a regular Rees matrix semigroup. We will define an admissible triple on S and relate this concept to the reductivity of S and the entries of P.

DEFINITION. Let r be an equivalence relation on I, N be a normal subgroup of G, and π be an equivalence relation on M. Then (r, N, π) is called an admissible triple on S if the following conditions are satisfied:
(A1) if irj then for all $\mu \in M, p_{\mu i} \neq 0$ implies $p_{\mu j} \neq 0$;
(A2) if irj, $p_{\mu i} \neq 0$, and $p_{v i} \neq 0$, then $p_{\mu i} p_{\nu i}^{-1} p_{\nu j} p_{\mu j}^{-1} \in N ;$
(A3) if $\mu \pi v$ then for all $i \in I, p_{\mu i} \neq 0$ implies $p_{\nu i} \neq 0$;
(A4) if $\mu \pi \nu, p_{\mu i} \neq 0$, and $p_{\nu j} \neq 0$, then

$$
p_{\mu i} p_{v i}^{-1} p_{v j} p_{\mu j}^{-1} \in N
$$

For any set A we will denote the identity relation by ε_{A} and the universal relation by ω_{A}. Where no ambiguity exists we will omit the subscripts. Also if $a, b \in A, a \neq b$, we will let $R(a, b)$ denote the equivalence relation whose only nontrivial class is the set $\{a, b\}$.

Our first two results will be fundamental to later considerations. Their proofs follow immediately from the admissibility conditions.

LEMMA 1. Let (r, N, π) be an admissible triple on S. If $r^{\prime} \subseteq r, N \subseteq N^{\prime}$, and $\pi^{\prime} \subseteq \pi$ then $\left(r^{\prime}, N^{\prime}, \pi^{\prime}\right)$ is also admissible.

LEMMA 2. For each normal subgroup N of G the triple ($\varepsilon, N, \varepsilon$) is admissible.

Recall that the i th and j th columns of the sandwich matrix P are right proportional if there exists some element $c \in G$ such that $p_{\mu i}=p_{\mu j} c$ for all $\mu \in M$.

LEMMA 3. If (r, e, ε) is admissible for some $r \neq \varepsilon_{I}$ then two distinct colums of P are right proportional.

Proof. Since $r \neq \varepsilon_{I}$ there exist $i \neq j \in I$ such that $i r j$. We will show that the i th and j th columns of P are right proportional.

Since P is regular, $p_{v i} \neq 0$ for some $v \in M$. Then $p_{v j} \neq 0$ by (Al) so put $c=p_{\nu i}^{-1} p_{\nu j}$. Let $\mu \in M$. If $p_{\mu i} \neq 0$ then (A2) implies that $p_{\mu i} p_{\nu i}^{-1} p_{\nu j} p_{\mu j}^{-1}=e$ whence $p_{\mu i}^{-1} p_{\nu j}=p_{\nu i}^{-1} p_{\nu j}=c$. On the other hand if $p_{\mu i}=0$ then $p_{\nu i}=0$ by (Al). Hence $p_{\mu j}=p_{\mu i}{ }^{c}$ for all $\mu \in M$; so the i th and j th columns have the desired property.

LEMMA 4. If the i th and j th columns of P are right proportional then $(R(i, j), N, \varepsilon)$ is an admissible triple for each normal subgroup N of G.

Proof. By hypothesis there exists some $c \in G$ such that $p_{\mu i}=p_{\mu j}{ }^{c}$ for all $\mu \in M$, so (Al) obviously holds. If $p_{\mu i} \neq 0$ and $p_{\nu i} \neq 0$ then $p_{\mu i} i_{\nu i}^{-1} p_{\nu j} p_{\mu j}^{-1}=\left(p_{\mu j} c\right)\left(p_{\nu j} c^{c}\right)^{-1} p_{\nu j} j_{\mu j}^{-1}=e$, hence (A2) holds. The remaining admissibility conditions are easy to verify.

It is well-known (for example, [4, Theorem V.3.14]) that S is left reductive if and only if no two distinct columns of P are right proportional. Hence

COROLLARY 5. The following conditions are equivalent on S;
(i) S is not left reductive;
(ii) $(R(i, j), e, \varepsilon)$ is admissible for some $i \neq j$;
(iii) the i th and j th colums of P are right proportional for some $i \neq j$.

Denote the lattice of congruences on a semigroup S by $C(S)$. A congruence $\sigma \in C(S)$ is called proper if it is different from the universal relation. Put

$$
C^{\prime}(S)=\{\sigma \in C(S): \sigma \neq \varepsilon \text { and } \sigma \neq \omega\}
$$

We will conclude this section by stating the very basic result of

Lallement [2] linking congruences on S to admissible triples. The notation introduced will be used throughout the remainder of this paper.

THEOREM 6 (Lallement). Let $S=M^{0}(I, G, M ; P)$. If (r, N, π) is an admissible triple on S then the relation $\theta=\theta(r, N, \pi)$ defined on S by

$$
\begin{aligned}
& (i, a, \mu) \theta(j, b, v) \quad i f f a \neq 0, b \neq 0, \quad i r j, \mu \pi v, \text { and } \\
& p_{\alpha i} a p_{\mu k} \equiv p_{\alpha j} b p_{v k}(\bmod N) \text { for some } \alpha \in M, k \in I \text { such that } \\
& p_{\alpha i} \neq 0, p_{\mu k} \neq 0,0 \theta 0,
\end{aligned}
$$

is a proper congruence on S. Conversely every proper congruence on S can be written in the form $\theta(r, N, \pi)$ for some admissible triple (r, N, π).

It can easily be verified that $\theta(r, N, \pi) \subseteq \theta(s, K, \rho)$ if and only if $r \subseteq s, N \subseteq K$, and $\pi \subseteq \rho$. Moreover, using Lemma 2 we see that $\theta_{N}=\theta(\varepsilon, N, \varepsilon) \in C(S)$ for every normal subgroup N of G.

3. Subdirect irreducibility

In this section we make use of Lallement's Theorem to find all subdirectly irreducible Rees matrix semigroups. Recall that a semigroup is congmence-free if $C^{\prime}(S)=\emptyset$. (The term h-simple was used in [5].) We first dispose of those Rees matrix semigroups which are congruence-free since they are always subdirectly irreducible. For those which are not congruence-free we will consider two cases according to whether the structure group is trivial. First we will use the above results to give an alternative proof of a result due to Munn ([3, Theorem 2.1]; see also [6]).

THEOREM 7. A Rees matrix semigroup $S=M^{0}(I, G, M ; P)$ is congruence-free if and only if
(I) G is a simple group and $S \simeq G$ or
(2) G is the trivial group and no two distinct rows or columns of P are identical.

Proof. Let S be congruence-free. It follows from Lemma 2 that $\theta=\theta(\varepsilon, G, \varepsilon) \in C(S)$, so $\theta=\omega$ or $\theta=\varepsilon$. The former case implies
that $|I|=|M|=1$. Since $\theta(\varepsilon, N, \varepsilon) \in C(S)$ for every normal subgroup N of G it follows that G is simple. From the latter case we see immediately that G is the trivial group, and that P is of the desired form follows from Lemma 3.

That such semigroups are congruence-free is obvious.
We will now proceed to describe those subdirectly irreducible Rees matrix semigroups S which are not congruence-free. First we will characterize their minimal congruences.

LEMMA 8. A proper congruence σ on S is minimal if and only if σ has one of the following three forms:
(1) $\sigma=\theta(R(i, j), e, \varepsilon)$ for some $i, j \in I, i \neq j$;
(2) $\sigma=\theta(\varepsilon, e, R(\mu, \nu))$ for some $\mu, \nu \in M, \mu \neq \nu$;
(3) $\sigma=\theta_{N}$ for some minimal normal subgroup N of G.

Proof. Let $\sigma=\theta(r, N, \pi)$ be minimal on S. Since $\theta_{N} \in C(S)$ and $\theta_{N} \subseteq \sigma$ we have either $\sigma=\theta_{N}$ or $N=e$. Thus all minimal congruences on S are of the form $\theta(\varepsilon, N, \varepsilon)$ or $\theta(r, e, \pi)$.

First we show that θ_{N} is minimal if and only if N is minimal. Suppose θ_{N} be minimal. If K is a normal subgroup of G and $K \subseteq N$ then $\theta_{K} \subseteq \theta_{N}$ so minimality implies $\theta_{K}=\varepsilon_{S}$ or $\theta_{K}=\theta_{N}$. Thus $K=e$ or $K=N$, respectively, so N is minimal. Conversely if N is minimal and $\sigma=\theta(r, K, \pi) \subseteq \theta_{N}$ then $r=\pi=\varepsilon$ and $K \subseteq N$. The last inclusion implies that $K=e$ or $K=N$, so $\sigma=\varepsilon_{S}$ or $\sigma=\theta_{N}$ respectively. Hence θ_{N} is minimal.

It remains to determine when $\sigma=\theta(r, e, \pi)$ is minimal. Let σ be minimal and suppose that $r \neq \varepsilon$. Then $\theta(r, e, \varepsilon) \in C^{\prime}(S)$ by Lemma 1 , and $\theta(r, e, \varepsilon) \subseteq \sigma$, so $\pi=\varepsilon$. Further, $i r j$ for some $i \neq j \in I$, so $\theta(R(i, j), e, \varepsilon) \subseteq \theta(r, e, \varepsilon)=\sigma$. But then the minimality of σ implies $R(i, j)=r$. Thus $\sigma=\theta(r(i, j), e, \varepsilon) ;$ similarly $\pi \neq \varepsilon$ implies $\sigma=\theta(\varepsilon, e, R(\mu, \nu))$ for some $\mu \neq \nu \in M$. Since $\sigma \neq \varepsilon$ we must have either $r \neq \varepsilon$ or $\pi \neq \varepsilon$, so σ is of the desired form. That such congruences are minimal is obvious.

The standard way of introducing subdirectly irreducible semigroups is via the direct product (see, for example, [5]). However it suits our purposes here to adopt the definition that a semigroup is subdirectly irreducible if the intersection of any set of nonidentical congruences is nonidentical.

THEOREM 9. The following conditions are equivalent on a Rees matrix semigroup $T=M^{0}(I, e, M ; P)$ over the trivial group:
(i) T is subdirectly irreducible;
(ii) exactly two distinct rows or two distinct columns of P are identical;
(iii) T has precisely one congruence different from ε and ω.

Proof. (i) implies (ii). If T is subdirectly irreducible with least congruence σ, then according to Lemma 8 we can say without loss of generality that $\sigma=\theta(R(i, j), e, \varepsilon)$ for some $i \neq j$. It follows from Corollary 5 that the i th and j th columns of P are identical. Suppose two other columns of P, say the k th and $Z_{t h}$ columns, are also identical. Using Corollary 5 again, put $\rho=\theta(R(k, Z), e, \varepsilon) \in C(T)$. If $\{i, j\} \neq\{k, Z\}$ then $\sigma \cap \rho=\varepsilon_{T}$. But T is subdirectly irreducible and $\sigma \neq \varepsilon_{T}$, so $\rho=\varepsilon_{T}$. This means that $k=2$. A similar approach shows that no other column of P is equal to either the i th or j th column, hence these are the only distinct identical columns of P.

Now suppose that two rows, say the μ th and v th rows, are equal. Then Corollary 5 implies that $\tau=\theta(\varepsilon, e, R(\mu, v)) \in C(T)$. But $\sigma \cap \tau=\varepsilon_{T}$, so $\tau=\varepsilon_{T}$ or $\tau=\sigma$. The first equality implies that $\mu=\nu$ while the latter is impossible since $R(i, j) \neq \varepsilon$. Thus no two distinct rows of P are identical.
(ii) implies ($i_{i} i$). Suppose that the only distinct identical columns are the i th and j th, and that no two distinct rows are identical. According to Corollary 5, $\sigma=\theta(R(i, j)$, e, $\varepsilon) \in C^{\prime}(T)$. Let $\tau=\theta(r, e, \pi) \in C^{\prime}(T)$. If $\pi \neq \varepsilon$ then it follows easily from Lemma 1 that $(\varepsilon, e, R(\mu, \nu))$ is an admissible triple for some $\mu \neq v$. However this implies that the μ th and vth rows of P are identical,
contradicting the hypothesis. Thus $\tau=\theta(r, e, \varepsilon)$, so $r \neq \varepsilon$, which means $k r l$ for some $k \neq l$. But then $(R(k, Z)$, $e, \varepsilon)$ is an admissible triple, so the k th and $\tau t h$ columns are identical by Corollary 5. By hypothesis we conclude that $\{k, l\}=\{i, j\}$, so $\tau=\sigma$. Thus σ is the only congruence on T different from ε and ω.

That (iii) implies (i) is obvious.
For the remainder of this paper let $S=M^{0}(I, G, M ; P)$ where G is a nontrivial group and e denotes the identity of G. Recall that $\theta_{N}=\theta(\varepsilon, N, \varepsilon)$ for each normal subgroup N of G.

PROPOSITION 10. If S is subdirectly irreducible then it is reductive.

Proof. We know from Lemma 2 that $\theta_{G} \in C^{\prime}(S)$. Since S is subdirectly irreducible $\sigma \cap \theta_{G} \neq \varepsilon_{S}$ for all $\sigma \in C^{\prime}(S)$. Thus no triple of the form $(R(i, j), e, \varepsilon)$ or $(\varepsilon, e, R(\mu, \nu))$ can be admissible since each induced congruence intersects θ_{G} nontrivially. That S is reductive now follows from Corollary 5 and its dual.

PROPOSITION 11. If S is subdirectly irreducible then G is a subdirectly irreducible group.

Proof. Let $\sigma=\theta(r, N, \pi)$ be the least congruence on S. It suffices to show that $\sigma=\theta_{N}$. For in such a case if $K \neq e$ is a normal subgroup of G then $\theta_{K} \in C^{\prime}(S)$ by Lemma 2. But the minimality of σ implies that $\theta_{N} \subseteq \theta_{K}$, whence $N \subseteq K$. Thus N is the least normal subgroup of G, so G is subdirectly irreducible.

Now we will show that $\sigma=\theta_{N}$. First, suppose that $N=e$; that is, $\sigma=\theta(r, e, \pi)$. If $r \neq \varepsilon$ then $R(i, j) \subseteq r$ for some $i \neq j$, so $(R(i, j), e, \varepsilon)$ is an admissible triple by Lemma 1 . It follows from Corollary 5 that S is not left reductive and from Proposition 10 that S is not subdirectly irreducible, contradicting the hypothesis. The assumption $\pi \neq E$ will lead analogously to the same contradiction. Since $\sigma \neq \varepsilon_{S}$ it follows that $N \neq e$, so that $\sigma=\theta_{N}$.

THEOREM 12. A Rees matrix semigroup S over a nontrivial group G
is subdirectly irreducible if and only if S is reductive and G is subdirectly irreducible.

Proof. In view of Propositions 10 and 11 it suffices to prove the necessity. So let S be reductive and G be subdirectly irreducible with least normal subgroup K. We will show that θ_{K} is the least nonidentical congruence on S.

Suppose that (r, e, π) is an admissible triple. If $r \neq \varepsilon_{I}$ then $R(i, j) \subseteq r$ for some $i \neq j$, so $\left(R(i, j), e, \varepsilon_{M}\right)$ is admissible by Lemma 1. But Corollary 5 indicates that S is not right reductive, which contradicts the hypothesis. Hence $r=\varepsilon_{I} ;$ similarly $\pi=\varepsilon_{M}$. Therefore no nonidentical congruence on S has the trivial subgroup for its middle entry.

Now let $\sigma \in C^{\prime}(S), \sigma=\theta(r, N, \pi)$. We have seen above that $N \neq e$, so the minimality of K implies that $K \subseteq N$. It is clear that $\theta_{K} \subseteq \sigma$. Finally, Lemma 2 insures that $\theta_{K} \neq \varepsilon_{S}$, so θ_{K} is a nonidentical congruence which is contained in every such congruence.

We might point out that the proofs of the last two results indicate that the least congruence on S is θ_{K} where K is the least normal subgroup of G. Moreover if $\theta(r, N, \pi) \in C^{\prime}(S)$ then $N \neq e$.

References

[1] Gérard Lallement, "Demi-groupes réguliers", Ann. Mat. Pura Appl. 77 (1967), 47-129.
[2] Gerard Lallement, "A note on congruences on Rees matrix semigroups", Semigroup Forum 8 (1974), 89-92.
[3] Walter Douglas Munn, "Embedding semigroups in congruence-free semigroups", Semigroup Forum 4 (1972), 46-60.
[4] Mario Petrich, Introduction to semigroups (Charles E. Merrill, Columbus, Ohio, 1973).
[5] B.M. Schein [צ̌aīn], "Homomorphisms and subdirect decompositions of semigroups", Pacific J. Math. 17 (1966), 529-547.
[9] P.G. Trotter, "Congruence-free inverse semigroups", Semigroup Fomm 9 (1974/1975), 109-116.

Department of Mathematics,
Temple University,
Philadelphia,
Pennsylvania,
USA.

