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FRATTINI CLASSES OF SATURATED FORMATIONS
OF FINITE GROUPS

PETER FORSTER

We study the following question: given any local formation of finite groups, do
there exist maximal local subformations? An answer is given by providing a local
definition of the intersection of all maximal local subformations.

Consider a closure operation A on classes of finite groups (in the sense of [8]). A
class X is called A-maximal in a class y (X <A y), if

X = AX C y = Ay {X <A y) and

In Herzfeld [9] the question of existence of ^-maximal subclasses of an yi-closed class y
has been touched upon in the case that A = QRo (the closure operation for formations)
or A = (QRo, E$) (the closure operation for saturated formations) and for some related
closure operations, taking an approach via the so-called A-Frattini class of an A-closed
class, the class of all "non-generators". More interesting results, attributed to Bryce,
have subsequently appeared in Herzfeld [10 (Appendix), 11, 12]. The main purpose
of the present note is to solve two of the problems raised in [9]. First we show that
a non-trivial formation which is saturated does not have maximal subformations; in
fact we prove a slightly more general result, which will be needed for the intended
application. Then we apply the lemma crucial to the proof of this first result to obtain
a description of the "saturated Frattini class" of a saturated formation, from which one
can deduce that saturated formations defined locally by saturated formations do not
normally possess maximal saturated subformations.

Our notation will be taken from [13, 8, 4, 3]. Moreover, £ and M will denote
the classes of finite and monolithic groups, respectively. In this note we will consider
only finite groups. For some standard results in the theory of saturated formations the
reader is referred to [13, 6, S, 16].
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268 P. Forster [2]

1. T H E RELATIVE A-FRATTINI CLASS OF AN A-CLOSED CLASS

DEFINITION 1.1: Let A denote a closure operation on classes of finite groups and
let y<ZX = AX C£.

(a) The A-Frattini class of X modulo y is defined by

$A{X + y) = {Gex\yczcx = A({G} U Z) => x = AZ}.

(b) The A-Frattini class of X is defined by

Clearly,

-=- Ay)

cx = A{{G} U Z) =>• x = z}.

We are really interested in $A(X) . The reason for defining $A{X -r y) will become
clear in Section 3, where ^i{T) for a saturated formation T is described (as a local
formation) in terms of classes $QH,,( .7> -5- <Pp{^)) with p a prime in the characteristic
of J- and the classes Tp and <pp{F) being certain formations associated with T in a
natural manner. (Recall that QRQ denotes the closure operation for formations, and
that L — (QRo, •£-*) is the closure operation for saturated — equivalently: local —
formations.)

We do not know whether the basic observation 1.3 below holds without the hy-
pothesis that A be finitary, that is to say that A be required to satisfy

G e AX => G e A{Gi, ..., <?„} for suitable n e N, Gj € X (i = 1, . . . , n).

Anyway, our main interest is in the closure operations generated by some of Q (quotient
closure), J?o (subdirect product closure), E$ (Frattini extensions). Since the closure
operations listed here are obviously finitary, it suffices to make the following observation,
a consequence of that fact that

oo

(A1,...,An)X=\J{A1...An)
iX

i=0

for all classes X and all finitary closure operations Ai, ..., An.

REMARK 1.2. If A\, ...,An are finitary closure operations then so is their join

(Alt ..., An).
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[3] Frattini classes 269

PROPOSITION 1 . 3 . If A is a Unitary closure operation then for y and X as
in 1.1 we have:

C £ | y C Z <A X}, if this set is non-empty

otherwise.

In particular, y C $A(X + y) = A$A(X T ^ C ^ .

The proof of this proposition is a routine consequence of the following lemma
(which, in fact, yields a more adequate proof than the one given in [11] for the case
when y = 0).

LEMMA 1 . 4 . If A is Unitary and y <A X = A({G} U y) then there exists a
class Z <A X such that y C Z j( G.

The proof of this lemma is a standard application of Zorn's Lemma, and relies
heavily on A being finitary: |J C is A-closed for any chain C (with respect to C) of
A-closed classes between y and X.

The above proposition can be applied in the following way: if one can show that
$A(X) , the class of all non-generators of the A-closed class X, comprises all groups in
X, then one can conclude that there are no maximal >4-closed subclasses of X. This
is the sort of application we have in mind when studying $A(X) for A — QRQ and
A = {QRQ, Et) in the remainder of this note. In the subsequent sections the above
results will be used without further reference. We conclude this section with some
elementary observations, the proofs of which will be left to the reader. For any closure
operation A and every class X C £ we put

{A - 1)X = {X G X | X e A(X \ {X})}.

REMARK 1.5.

(a) *A(X) Q(A- 1)X for all A-closed classes X.
(b) y H A(A - l)y = (A - l)y {oi any class y.
(c) $A(X) = (A — \)X for every A-closed class X and each unary closure

operation A such that G = H whenever A{G} = A{H}.

(Examples of such closure operations are Q, S, Sn, Sw, QS, QSW, E$.)

EXAMPLE 1.6: For a fixed class ft and all classes y, define

Then X[ft] — X-R.Q is a finitary closure operation satisfying

= X[ft}(ft n (Q - 1){X 0 ft)) whenever X = X[ft)X.

Note that taking X[ft] with ft = £, 71 = M U {1}, and ft = V (the class of all
primitive groups) yields the closure operations for homomorphs, semiformations, and
Schunck classes, respectively.
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270 P. Forster [4]

2. THE Q.RO-FRATTINI CLASS OF A FORMATION

LEMMA 2 . 1 . If T is a formation then so is

Fs = {GeS\G'r^ S(C)} = {G e £ \ G/S(G) e T}.

(Recall that S(G) denotes the socle of G, the product of all minimal normal
subgroups of G. Further, G* is the ^"-residual of G, the smallest normal subgroup N

such that G/N G T)

PROOF: Clearly, QT* — ?s- Therefore R^Ts = Fs will follow from

(*) Mi minimal normal in G, G/Mt G Ts (* = 1, 2), Mx / M2 =• G G ^ s •

Now if Mi £ Gr for some *, then Gr < S(G) is immediate from

G* 9* G^Mi/Mi = (G/Mif < S{G/Mi),

whilst in the case when Mi X M2 ^ GT the same conclusion is obtained by using a
similar argument. U

We can now give a short proof of a result due to Bryce (namely, [12, 3.2]). Inci-
dentally, it is worth observing that 3.1 and 3.6 from the same paper can actually be
obtained as trivial consequences of this result.

PROPOSITION 2 . 2 . For any formation T,

(a) QRo(Q-l){mM)Q*QRo(F);

in particular, for any G G T, we have

(b) G*«*o(y) < S(G) (thai is, T C iq^(T)s), provided only that

PROOF: (a) It suffices to show that X/S(X) G H whenever X G 7 D M and
W <QRo T. If X/S(X) $ 7i for some such X, then X £ Ws, yielding the following
contradiction:

W <QHo Ws D T <<?flo J7;

note that a group in Jr\7i of least order belongs to Tis.

(b) By (a) any monolithic group in T is in $ Q H O ( ^ ) S > SO

D
For later applications we need a generalisation of a result from [12] attributed to

Bryce. Note that [12, 3.7] is a special case of the latter result (namely, [12, 3.3]). We

employ the following notation for any class 7i of groups: x(%) ' s ^ n e se* °f ^ primes
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[5] Frattini classes 271

p such that the group of order p is in W. Further, if p is a prime, the class Ti. is
called p-saturated if G/ ($(G) D Op(G)) € H implies that G e W; in this case we write
H = E#7i. Note that if H is a saturated formation, then it is p-saturated for any
prime p , and H also satisfies the further conditions required in the following corollary.

COROLLARY 2 . 3 . IfH

H = QRo{G enr\M\p£ *"(S(G)) for a prime p with H =

then H

In particular, a saturated formation 7i ^ {1} is contained in the QRo-Frattini
class of any formation containing it.

PROOF: Let G 6 TinM and assume that p € TT(S(G)) for some prime p such that
H = E\Ji. Then G is a proper quotient of the semidirect product G P ( 1 Q ) , where
P ( 1 Q ) denotes the projective cover of the irreducible trivial G.F(p)[G]-module \V

G.
Since S(G), and hence the monolithic group G, acts faithfully on the monolithic module
P(1G) , it is clear that GP(1G) 6 M.. Furthermore, arguing as in the proof of (Schmid's
version of) Lubeseder's Theorem as given in [6], one can prove that p-saturation of the
formation H implies that H contains the group Zp of order p whenever it contains
any group of order divisible by p. Now from the elementary fact that the radical
of a GF(p)[G]-module V lies in the Frattini subgroup of the semidirect product GV
we deduce that GP(l£) £ E%{G x Zp} C H. Thus G £ (Q - l)(^Tl M), and the
preceding proposition, together with our hypothesis on 7i, yields that Ji C $Qflo(^"). Q

From the following remark ([12, 3.8]) it is clear that the inclusion stated in 2.2a
can be proper. (Note that a better proof of 2.4 can be obtained by using 2.2a together
with a well-known result of Barnes and Kegel [1] (namely, [13, VI.7.21]) and the fact
that for any formation T the class p* of all groups G satisfying A/B ^ $(G/S) for
any chief factor A/B of G such that A < GT is also a formation.)

REMARK 2.4. Suppose that G e J7 n M (T= QRQT) satisfies S(G) < $(G). Then

the semidirect product (G/CG(S(G)))S(G) is in *Qfio(Jr).

Recall from [4] that for any chief factor H/K of a group G, the monolithic primitive

group {H/K) * G associated with it is defined by the formula

-I, AutG(H/K)(H/K), if H/K is abelian,
(H/K)*G={ K A ' ^ '

1 Auto (H/K), otherwise.

Following [15] we say that the chief factor H\/K\ of a group G\ is similar to the

chief factor H2/K2 of G2 if (Hi/K^ * Gx = (H2/K2) * G2.
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272 P. Forster [6]

Given a formation T and a class H of monolithic primitive groups, it is straight-
forward from the Jordan-Holder Theorem that the class T-H. of all groups G satisfying

(H/K) * G G H for any chief factor H/K of G such that H < Gr

is also a formation.

COROLLARY 2 . 5 . Let H<QR0T and d£ (7\H)r\M(i = 1,2).

(a)
(b)
(c) If Gi £ QR0{G2}, then there exists a G G H D M such that

PROOF: (a) Observe that (by 2.2a) Gi/S(G<) G $QRO(F) Q H and consider the
formations Hi — H{s(G,).Gj} constructed above. Note that G,- G (.FD Hi)\H. In view
of our hypothesis that H <QR0 T we must have that T = Hi D T C Hi. Consequently,
G3_i G Hi \ 7i, and our claim follows.

(b) is immediate from (a) together with 2.4.

(c) Assume that Gi £ QRo{G2}- As

Gi G T = QRo({G2} UH) = QiZo(/C U H), K = QRo{G2},

we find H G i?o(^ U H) and K < H such that Gi = ff/A". Choose some H of least
order subject to these conditions. Then

Hn n HK = Hn D K = HK n A" = I, but J? w ^ 1 ^ JJ^.

Since H/S(H + K) Z* d / S ( G i ) G W, we conclude that

S(J? -̂ ^ ) = iffn x if.

Similarly, S(JJ -=- A") = ( J ^ n S(J3r 4- A")) x if.

Hence [(HK n S ( ^ -̂ # ) ) x H^/H* *H S(H -=- iif J/if = S(H/K) is a chief factor of

H/Hn G W similar to S ( G 0 . Q

Our next result essentially says that ^QRQ preserves inclusions. An application in
Section 3, however, requires a more general statement:

PROPOSITION 2.6.

(a) If T and H are formations and Q is the formation generated by T and

H — thus Q = QRo(FU 7i) — then
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[7] Frattini classes 273

define mutually inverse bijections between the class of all formations K,
such that T D H C K C T and the class of all formations C such that

ncccg.
(b) UT <c?Ro Q and H <QR0 Q, then either FQH, or else FMi <Qflo T.
(c) If the formations A, B, T,Q satisfy ACBnFandBllfcg, then

PROOF: (a) Let K. and £ be as in the statement of (a). We have to show that

H) and C =

Let F G FC\ QR0[K\J'H), so F S G/N for some G G i?o(£ U H) and some
N < G. We choose such G of least order. As G/N G T 2 AC for Jl = Gr we have
that R^NHG*. Hence, from G € -Ro(£ U W) we infer that

(G/R)K n (G/fi)7* = GKR/RnGnR/R = (GK n Gn)R/R = R/R,

and in view of our minimal choice of G we may assume that R = 1; so G £ T. It
follows that G/Gw e f n H C J C whence GK = GK n G* = 1 and G e K.. Now
X: = T n Qiio(X; U W) is clear.

Now let Le C. As C C £, by definition of {/ there exist G e RQ^UH) and JV <
G such that L = G/N. Again choosing G of minimal order, we can apply an argument
as above to deduce that without loss of generality iVnGw = 1 and hence G € RQC = C.
We conclude that G/GT G ^Tl £ . Consequently, i G <2{G} C QRo([FnC] U W).

(b) is immediate from (a).
(c) We may clearly assume that $QRQ(G -5- B) is the intersection of all W such that

B C 7i <QR0 Q • By (b), any such 7i contains J- or some maximal subformation of T
containing A. If T C H for every such W, then

holds trivially, while otherwise AQ J- C\B implies that

| S C

D
Note that the last part of this proposition is genuinely a statement concerning

Frattini classes rather than maximal subclasses: if "H <QH0 T <QRC G then there need
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274 P. Forster [8]

not exist a K <QR0 G containing W; for example take Q = £p£q for two primes p and
q and note that Q, being a saturated formation, does not have maximal subformations
(compare 2.3), while £p, the class of all p-groups, is evidently a maximal subfonnation
of T = {Q x P | Q elementary abelian g-group, P e £p}.

Moreover, if Ti <QR0 F <QBO G then there need not exist a K <QR<) G such that
Ti = TV\K even under the additional hypothesis that $QA O (^ ) ^ G' indeed, from 2.2a
and 2.5b one obtains the chain

0 <Q«o {!} <Q*o QRo{Zi) <QP<> QMS*} <QR0 QRO{S*}.

We conclude this section by deriving analogues to some results on varieties from
[14]; see also Chapter 5 of [15]. It will be seen that by means of applying our ob-
servations in this section, these results are considerably easier to establish than the
corresponding results on varietes. We begin with a formation-theoretical characterisa-
tion of the monolithic groups, which is analogous to (and actually a special case of)
[14, 1.3].

COROLLARY 2 . 7 . G e M <&G £ QRQ(Q-1){G}.

PROOF: Any non-monolithic group G is clearly in QRo(Q — 1){G}, while for

monolithic groups G, 2.2a gives that QRo(Q - 1){G} C *<?«<,(<?.Ro{G}) ? G. D

Next recall from [2] that a group G is called formation-critical, if

G i QRoUQS - 1){G} D QRo{G}).

The following result is analogous to [14, 1.2].

COROLLARY 2 . 8 . If a monolithic group G is not formation-critical then

G € QR«{Q(S - 1){G} n QRo{G}) Q QRo(S -

PROOF: For any group X,

(QS - 1){X} = Q(S -

Thus (Q - 1){G} C QQRoiQRoiG}) and \(Q - 1){G}\ < oo yield that

QRo{G} = QRo{[Q(S- 1){G} nQRo{G}) U(Q-

= QRo(Q(S-l){G}nQRo{G}).

D
Our last result in this section, a consequence of the previous one, is a formation-

theoretical version of [14, 1.4].
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[9] Frattini classes 275

COROLLARY 2 . 9 . If a monolithic group G is not formation-critical then

G/S{G) 6 QRo(Q(S - 1){G/S{G)} n QRo{G}).

PROOF: By 2.8, G S H/K where K<H G Ro(Q{S - 1){G} f~> QRo{G}). Let H
be chosen of least order with respect to these properties and consider normal subgroups
Ki of H (i = 1 , . . . ,n) such that H/Ki S Xi/Yi € Q/2o{C?} D .M where Xt < G and

fi Jfc = 1. Also assume that fl K{ ^ 1 for j = 1, . . . , n. Put L = f| S(H/Ki)

and observe that £ = S(H). Since H/Kj is monolithic, the subgroup 57- = S(H/Kj)n
( n \

I Q A"j I is minimal normal in JJ, and hence, by minimality of H, is not contained

in K. Therefore

S(H/K) S H Ss S H S(H/Ki) for j = 1, . . . , n.

It foUows that either Xj n S(G) = y,- n S(G) or else SiXj/Yj) = S(G)Yj/Yj. In either
case,

Xi/S{Xi/Yi) 6 Q(5 - 1){C?/S(G)} for j = 1, . . . , n :

note that Xi < G implies that X,S(G) < G, as S(G) ^ $(G) for a not formation-
critical monolithic group G. Now the assertion is immediate from

L = S(H) < S(H/K).

3. THE X-FRATTINI CLASS OF A LOCAL FORMATION

In what follows the closure operation (QRo, E$) for saturated formations will be
denoted by L. By the Gaschutz-Lubeseder Theorem (compare [13, VI.7.5] and [6]),
T = LT if, and only if, T = LF(f) for some formation function / (that is, a function
/ which associates to each prime p a formation /(p)): recall that LF(f), the local
formation defined by / , is the class of all G £ £ such that Auto {H/K) £ /(p) for
each chief factor H/K of G and any p £ ir(H/K). The reader is referred to Section
3 of [5] and Section 2 of [7] for the relevant terminology (but should note that in the
present paper "local" is used instead of "A'o-local"). It will be convenient to employ
the following notation: !FP and F* are, respectively, the minimal and the full and
integrated p-local definitions of the saturated formation T\ compare [7, 2.1]. It is well
known that for p £

= QRo{AutG {H/K) | G e 7, H/K chief factor of G, p £ n{H/K)}

= Q{G/Op,v{G) | G € T}, and

= Q{G/Op,{G) | G G F}t
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276 P. Forster [10]

where £p denotes the class of all p-groups. Finally the reader should recall that any
formation function / subject to the conditions that

•?> Q /(p) ^ F* f°r e a c h P 6 x(F) &nd f(p) = 0 for every other prime p

is a local definition of T (that is, T = LF(f)).

To state our main result, we need the following definition:

<f>v{T) = QRoVpiF), where

Vp{F) = {AutG (H/K) | G G .F, D A4 for some q G x(^) \ {?} ,

H/K chief factor of G with the properties that

p 6 *(H/K) and [{p, g} C »(S(G)) =* K * I]}.

Furthermore, we put

Fi x T2 = {Fx xF2\Fi£Fi(i = 1, 2)},

provided that for some set n of primes T\ consists of ir-groups, while T* consists of
Tr'-groups; and we use //, £* to denote, respectively, the classes of nilpotent and of
7r-groups (TT a set of primes).

THEOREM 3 . 1 . For any local formation T and any prime p,

C *QBo{Tr -f *,{?)) C

hence $L(J-) = LF(g) where the formation function g is defined by

g(p) = QQRoiF, -i- <PP{F)) for all primes p.

In particular,

= {Pe x{F) I vp(?) ±%or?p± {l}} c
and ^QHo^p) ^ *i(-^)P 2 VP(^") for ^ primes p.

PROOF: We will proceed in several steps.

(1) X ( * L ( ^ ) ) C X ( ^ ) :

Since both ^(.T7) and ̂  are local formations (see 1.3), this is trivial.

(2) For all p G x{F), the following implication holds:

D M C
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[11] Frattini classes 277

If $£,(•?% £ {1} then $L(F)P = QRo($L(F)P H M\, and this implication holds

trivially. In the case when ^ ( . F ) Q {1}, the implication could fail to hold only if

$ L ( ^ ) p = {1} and $<jHo(J> -f y p ( ^ ) ) = 0, which would require that ifijKjF) = 0 and

Fp = {1}. From the latter we would see that T C £piSp, yet F $£ £p#, while the former

would give that TT C £y for all r G x(F) \ {p}. These conditions, however, are easily

seen to require that

Obviously, for each T admitting such a decomposition, we must have that

FTl £pi <L .F, from which the contradiction that $ L ( . F ) C £y (that is, $L(T)P = 0)

emerges.

For reference in a subsequent proof we record that the above argument actually

establishes the following for an arbitrary local formation T:

(3) *L{7), C $O f l o(Fp •*• ^ ( ^ ) ) for all p G
By (2), it will suffice to show that G G ^QRo^p-rVp^)) for aU monolithic

groups G in $ i (F ' ) J ( . The (first) description of Tv stated before the theorem, applied
to $ L ( - F ) P instead of Tp, shows that without loss of generality we may assume that
OP(G) = 1: Recall that Op(Autz (X/Y)) = 1 whenever X/Y is a chief factor of a
group Z and p a prime dividing |JT/y| , and note that any group Aut# (X/Y) with this
property is a subdirect product of monolithic groups enjoying the same property. By
way of contradiction, assume that <pp(T) C Q <QflQ Tp, yet G £ Q. Put H = LF(h),

where

h(r) — I
^ JFT, otherwise.

As Hp C h(p) = Q C Tp and 7i , C h(q) C J7, for all primes g ^ p , we must have that
H C T. Moreover, £pQ C LF(h) = H follows from the definition of h together with
the inclusions Q C Tv C T.

Since G is monolithic and OP(G) = 1, there exists an irreducible and faith-
ful G-module V over GF(p). The semidirect product Go of G and V lies in
^ P M J 7 ) , , £ $ i ( ^ ) - Consider the local formation K = I ({G 0 }UW) C F .
If K = F" then ^ = L({G0} U W) = H (contradicting our choice of H) follows from
the fact that Go G $t(F") . Thus, arguing by way of contradiction, it remains to verify
that K = T.

First we claim:

(**) K? = T9, and hence K.p = Tp.

Indeed, / ? C p follows from K Q T. The reverse inclusion, however, also holds, as

SpG C H C K (that is, SPQ C Kv) and G = AutG o (V) for the p-chief factor V of
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Go £ K (that is G £ Kp and thus £p{G} C £*) , while G i Q < Q B 0 TV (that is,
T* = SrTv = SpQRo({G} U Q) C £ ' ) .

We have assumed that K. C T, which implies that AC, C J7, for at least one
q in x(.F), where j ^ p by (**). By means of the argument at the beginning of
this part of the proof, and observing that (as a consequence of the definition of h)
{1} = Hq C Kq C Tq in the case when Tq = {1} , we find a group

F e ( 7 , \ / C , ) n M such that Oq(F) = 1.

As 1 ^ F G .F, \ £ , C Tq \ Hq, whereas h(r) = TT for all r ^ p, there must exist a
chief factor A/B of .F such that p € n(A/B) and

A u t F

If all chief factors of F of order divisible by p are ^-central, then, as q ^ p, all chief
factors of the semidirect product FW of the .F-group .F with an irreducible and faithful
.F-module W over GF(q) are fe-central, that is to say, FW is in LF{h) - H, and
the contradiction that F S FFT/W = FWr/CFvr(W') G W, against the choice of F
emerges.

Now, by definition of \Pj,(.F), and as A/B is a chief factor of F 6 TqC\M satisfying
g j t p g T T ( A / B ) , the just established fact that AutF(A/B) $ *p(^") requires the
following conditions to hold:

{p, q} C TT(S(F)) , B = 1 and A = S(i^).

So F £ J is a monolithic primitive group with non-abelian minimal normal subgroup
S ( F ) . From the fact that p G TT(S(F)) , and using (**), we infer that F G Tv = Kp.
Now F G /C and, being a monolithic primitive group with non-abelian socle satisfying
q G TT(S(.F)), it must also belong to fCq. This contradicts the choice of F.

(4) VrWQWF),.

Consider G G Tq D M for some 9 G x(F) \ { P } » a11*1 l e t ^ / ^ °e a chief factor of
G such that p I |-ff/iif| and K ^ 1 in the case when {p, g} C n(H/K). Putting

G* = (H/K) * G,

we shall show that G* G * L ( ^ ) . Suppose that H = LH Q T = X({G'}UH) . We
shall check that T = H. To begin with, observe that

7q = QR<>({G/Oq,q(G)}UHq) where G = AutG(H/K).
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The assumption that (?/(>,/, (G) ^ G would require that G = A u t o (H/K) and
O,», (G) = 1 = CQ(H/K) ; in particular, K = 1 and G would be a monolithic primitive
group with non-abelian socle such that {p, q} C ir(S(G)). This contradicts the condi-
tions imposed on G and H/K. Therefore we must have that G/O,/ , (G) € (Q - 1){G}
and may apply 2.2a to G ( € / , f l .M) to get that G/O,»,(G) G *QHo(-^j)- The above
description of Tq allows us to conclude that G G Tq = W, C W. Using the Barnes-
Kegel result quoted previously, we deduce that G* G H and 7 = L({G*} U H) = W.

(5) * W ^ P "5- M ^ ) ) C * L ( J T , for all p 6

It suffices to verify the following inclusion:

(•••) G € *QHO(*; * V P ( ^ ) ) n (>W u {l}) =• G e

As # L ( ^ ) P is a formation containing £P^L{!FY , without loss of generality
Op(G) = 1. Thus there exists an irreducible and faithful G-module V over GF(p).
We aim at showing that the semidirect product Go = GV belongs to ^L(^) , which
will clearly imply that G e $L(F)P Q *L(F)P • So, assuming that T = L({G0} U H)
for some local formation H, we have to deduce that T = Ti. By 1.4, we may also
assume that H <L T. Now, as G = AutGo (V), we see that TT = QRo{{G} U Tip).

If <pp(F) C Hp then Tv = Hp is obvious, for G e $<?«<, (•?> -5- VpC-?7)) and ^ , =
QRo{{G}U?ip). In particular, G € Wp and Go = GV G £̂ ,Hp C W, yielding that
F=L({G0}UH)=H.

Now we may assume that there is some F G fp(^) \ Wp. By definition of
y)p(J') as QRoVp{F) such F can be chosen in QVp(T) D (M U {1}) and subject
to the condition that OP(F) = 1. Consider an irreducible and faithful module W
for F over GF(p) and form the semidirect product Fo = FW. Without loss of
generality, G G QRo{{F} WHp): otherwise the inclusion Hp C QRo({F}{JHp) C
QRo({G}l)7ip) = Tp would give that H C JC C T with /C = I ( { F , } U « ) , which
contradicts our assumption that H <L T — note that Kv — QRQ({F} U Tip) and
W, C Kq C ^ , for all g ̂  p . Putting L = L{{F0} U H), we have that

G G *•„ = Q/io({G} U Tip) C g i lo ({^} U Wp) = £ p .

Consequently, Go G C. Since W C £ C ^ and Go ^ W <z, J7, it follows that
£ = I ({G 0 } UW) = 7 . This, in turn, shows that T = C = L({F0} UH)=H, for from
(4) we know that Fo = FW £ SP^L{T)V C * L ( . F ) . This proves (*•*), and hence (5).

The theorem now follows from (1), (3) and (5). D

In order to determine $ L ( . F ) for local formations T with saturated local defini-
tions, we need the following simple observation.

LEMMA 3 . 2 . Let T = LF(f) tor a formation function / with the property that
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/ (p ) = Eif(p) for some p € x(.F). Then

(i) T* = EpiJ7 n / (p) ) is saturated; and

(ii) Tp is q-saturated for any prime q ̂  p.

COROLLARY 3 . 3 . Let T = LF(f) ^ {1}.

(a) Assume that / (p ) = E*f(p) for some p e x{?)- Then

I 0, otherwise.

Moreover, if <pp{T) = 0 and Tp = {1}, then Jr=£px{TPi £y) .
(b) Assume that f(p) = Etf(p) for all p <

T = {p € X(^) I <P,{F) ±%orTv± {1}} and p =

Tien

and tAe "H. <L F are precisely the classes H = Tn £pi for some p 6 p.

PROOF: (a) First suppose that J-p / {1}. Then in view of statement (ii) in 3.2,

we can apply 2.3 to deduce that

F, = QR9{GzF9nM\ S(C) * OP(G)} C

Consequently, Tv = *Qfio(^>). so from 3.1 we infer that

This shows that * L ( J " ) P = T* and $ L ( J : ) I > = Tp.

Finally, let Tp — {1}. In the case when yP(.F) / I we obtain that

+ <PP(F)) = $QRO{{1} * {1}) = {1}. and from 3.1 it is immediate that

p = W = •?>• T l l u s w e m a y a180 assume that y>,(^) = 0. This situation,

however, was dealt with in statement (*) from the proof of 3.1, where it was shown that

this requires that

T = £p x {? n £pl) and * L ( ^ ) P = 0-

(b) is easily derived from (a). D
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For our next result, recall that M denotes the class of all nilpotent groups.

COROLLARY 3 . 4 . Let T = LT c MM. Then for all p e x(F)> w e nave

= f {1},

* \ *Q«o(-?>)» otherwise.

PROOF: Since T C MM, we have that Tv C £pi, and so it is clear from 3.1 that
p = ^QRoi^p "J" fp(F))- Now the result follows, using arguments as above, and

taking into account that <pp{T) = ^p(F) Q {1} follows from the inclusion Tq Q M for
all primes q. U

COROLLARY 3.5. itT = LFcg = ig then $t(T) c *L(g).

PROOF: First observe that *p(J7) C * p ( ^ ) for all p E x(F)- T h e n apply 3.1

together with 2.6c. D

COROLLARY 3 . 6 . Let T = LT and G e J> n M, p e x(F) • Tien

provided that one of the following three conditions holds:

1, S(G) is abelian, or p \ |S(G)|.

PROOF: From 2.2a and 3.1 we get that G/S(G) G $Qflo(-7>) Q
Consequently, if $(G) ^ 1 then G G E$$L(F) = $L{?)-

Now we may assume that $(G) = 1. If S(G) is non-abelian then by hypothesis
p £ TT(S(G)) . Hence for any prime q dividing |S(G)| we have that G = Aut G (S(G)) G
V,(Jr) Q $L(F)9 Q $L{F)- Finally, let S(G) be an abelian g-groupfor some q G x{?)-

Without loss of generality, q ̂  p: otherwise, as G/S(G) G *QRo(J>) C * L ( J " ) I > , we
get that G G £J,$L(F)P = $L{F)V Q *L{F)- Taking into account that in this case
G/S(G) S Aut G (S(G)), we infer that

G G q V q { ) , ( ) ( T ( ^

D
REMARK 3.7. Combining the preceding corollary with 1.6, it is easily deduced that for
any local formation T,

where V, Vi denote, respectively, the classes of primitive groups and of primitive
groups with an abelian minimal normal subgroup.

https://doi.org/10.1017/S0004972700028422 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700028422


282 P. Forster [16]

Clearly, for classes K. consisting of soluble groups only, the closure operator Csch =
X-pQ — X[V] (which associates to each class the smallest Schunck class containing it)
associates to K the same class as X[Pj] = X-pjQ; so for local formations T of soluble
groups we obtain from the last observation:

(It is worthwhile to note that for local formations T of soluble groups the last condi-
tion in the definition of ^P{J-) always holds, simplifying that definition considerably.
Incidentally, it is also easy to see that for all local formations T of arbitrary finite
groups

2 U {(H/K) * (G/K) \GeFqnMfoisomeqe X(JF) \ {p} ,
pep

H/K chief factor of G with p 6 ir(H/K)} .)

Furthermore, note that on the other hand $L( .F ) C T = ^QR^i^) by 2.2a for all
local formations T.

In 2.2b we have obtained the inclusion T C $QR O ( .F) S for all formations T other
than {1}. A weak version of this statement is:

T C

where Xo denotes the class of all simple groups. Our last corollary will provide an
analogue to this assertion for L instead of QRQ •

COROLLARY 3 . 8 . T C (LX0)$L(T) for any local formation T ^ {1}.

PROOF: By the main result of [16], {LXQ)$L{F) is a local formation, and as such
it is a Schunck class. To establish the inclusion T C (iA^o)$r,(^), it therefore suffices
to show that every monolithic primitive group G G T belongs to (LXQ^L^T).

First assume that S(G) is non-abelian. By 2.2a G/S(G) G *gflo(^>) for any
prime p dividing |S(G)|, for in this case ffg^,. Now 3.1 yields that

G/S(G) € 9L{fY C * L ( ^ ,

and as S(G) € DQX0 C LXO holds trivially, in this case we are done.
For the remainder of the proof we may therefore assume that S(G) is an elementary

abelian p-group for some p G x(F)- Then G* = G/S(G) S Auto(S(G)) 6 Tr.
Furthermore, without loss of generality, G* £ M. (where the trivial case when G* = 1
is being ignored):
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In fact, we aim at showing that either

G* 6

or else there exists some 5* < G* with 1 / S* < S(G*), G'/S* € $L(F) and p | |T*|
for every minimal normal subgroup T* of G* contained in S*; yet it suffices to prove
this for a set {G*/Nf, ..., G*/N*} of monolithic quotients G*/N? of G* satisfying

n
p| N* = 1, provided only we choose this set such that none of the Nf is redundant, for

i=i
in that case S(G*/JV,*) is a minimal normal subgroup of G* (to within (^'-isomorphism)
— more precisely,

^iv;)n f] N;

Here it has to be noted that the groups G*/Nf are also of the form Aut^. (S(G,))
for suitable monolithic primitive groups G< (for example, take the semidirect product
of G*/N? with an irreducible and faithful G*/JVf-module over GF(p)): the case that
Op{G*/N?) ^ 1 is excluded by the minimal choice of the set {G*/Nf, ..., G*/N*},
for G* = G/S(G) Si AutG (S(G)).

Now that G* G Tv D M, we may apply 3.6 to get that G* € Qitf), except,
perhaps, when ($(G*) = 1 and) {p} C TT(S(G*)). In the latter case, however, in the
second paragraph of this proof we have seen that G*/S(G*) G ^L{^)I S O it remains
to note that, in view of G* £ M, {p} C TT(S(G*)) and S(G) G Sp, here we have that
S(G-rS(G))G£#0. D

Finally, we show how to calculate more easily than in [12] the JD-Frattini class of
some specific local formations by applying 3.1. The point here, of course, is that 3.1
describes a local definition of that Frattini class, as opposed to the "lower and upper
bounds" obtained in [12].

EXAMPLES 3.9: (1) For T = L{S4} one checks that

T2 = QRo{St}, Ts = QRo{Z2}, Tv = § for all primes p £ {2, 3},

and <p2(F) = {1}, Vl{F) = .Fs;

so 3.1 gives that

* W ^ 2 -5- **{?)) = *QRO{QRO{S>}) = QR0{z2y D * L ( : F ) 2 = {1} = 92{r),

in particular *L(F)2 = £2 D QRo{Z2) = SQHOOFZ -f ^ 2 ^ ) ) ,

= {1}.
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(Note that here $L{F)V = <PP(F) for all primes p.) It follows that

(2) 3.4 applies to 7 = L{Sa}, with

73 = QRo{Z2}> <pi{T) = 0, yet $L(.F)3 = *QRo(r3) = {1},

and *L(F)2 = {1}, so *L(7) = S2 X S3.

So in general <pp(F) C *L(7)P and ic(F) C $t(.F) for C G {
observe that (by 1.6) ^c(7) = £2 • It is also interesting to note that

L{S4/S{S<)} = L{S3} =

whereas I{5j/S(53)} = i {Z 2 } = £2 C *L(£{53}) <L I{5S} .

(3) The minimal local definition of the formation AfA is given by

(AfA)p = Api for all primes p.

Since it is evident from 2.2a that $QR(, (\>) — Ap>, 3.4 yields that

so *L{MA) = MA.

(4) The minimal local definition of the formation U of supersoluble groups is given

by
Uv = {G 6 A I exp (G) I p - 1} for all primes p.

For odd primes p, let p<, t = 1, . . . , np denote the primes dividing p — 1. As any
formation of abelian groups is generated by the cyclic groups contained in it, it is clear
that the formations

UVti = {G G A I exp (G) I (p - l ) /p , } , i = 1, . . . , np,

are precisely the maximal subfonnations of Up. Hence

*Qflo (Up) = {G G A I exp (G) I (p - 1 ) / P l . . .p n p } .

By 3.4, it follows that

= {1} and * L ( W ) P = $Q f l o (Wy), p ^ 2;

in particular $L (WJ < L W.
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(5) Let T = L{E} where E is any non-abelian simple group. Then obviously
Tv = QRo{E} = D0{E} and <pp(T) = 0 for all p 6 x{?) = *(£)• As Tr = D0{E},
we see that $(?«<,(.?>) = {1} , whence

and thus * L ( ^ ) P = {1} for all p G

Consequently

Note that E e l f) •?> I \ $L{T): this shows that the hypotheses imposed on

S(G) in 3.6 are not redundant.

(6) Let Ti = AfGi where ft = QRoQi Q M, i = 1, 2. Then ( . F ^ = ft D £y for
all primes p. Choosing the ft and ft such that {1} C ft C ft C £p am
ft = *<?Ro(ft) yields local formations Ti with ^ C T2, but $ L ( J 7

2 ) = T\ =
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