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Abstract

We supply some relations that establish intertwining from duality and give a probabilistic
interpretation. This is carried out in the context of discrete Markov chains, fixing up the
background of previous relations established for monotone chains and their Siegmund
duals. We revisit the duality for birth-and-death chains and the nonneutral Moran model,
and we also explore the duality relations in an ultrametric-type dual that extends the
Siegmund kernel. Finally, we discuss the sharp dual, following closely the Diaconis–Fill
study.
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1. Introduction

Our work is devoted to the study of duality and intertwining relations between Markov chain
kernels. These concepts can be established only as relations between matrices, as we introduce
them in the next section, but their analysis has probabilistic consequences that are part of this
study.

This study is devoted to the problems of forming a duality relationship between substochastic
kernels. Indeed, once the duality is established, then several properties can be deduced when the
starting chain is irreducible and positive recurrent: one of these properties is an intertwining
relation. We make these properties explicit in Theorems 1 and 2. In Theorem 1 results are
stated for countable matrices and in Theorem 2 the same results and objects are detailed for
finite state spaces. Both theorems can be viewed as a generalization of Theorem 5.5 of [4],
where some relations involving the Siegmund dual and the Doob transform with respect to the
cumulative function of the stationary measure of a monotone stochastic kernel are stated. This
generalization is possible because there is a pivotal object, the function ϕ, defined in Theorem 1,
resulting from the application of the duality function to the stationary measure. In Theorem 2(i)
and (iii), ϕ is described in probabilistic terms for the finite case. As we note in Corollary 1(ii),
the cumulative function in [4] plays the role of ϕ for the Siegmund dual of a monotone process.
We also prove in Theorem 1 an intertwining relation derived from the stochasticity of the link
matrix � defined in Definition 2. This is a simple fact, but its importance is based on the rich
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438 T. HUILLET AND S. MARTINEZ

probabilistic constructions that have been made around intertwining, which can be found in
[2], [4], [5], and [6].

The well-known case of the Siegmund kernel for monotone chains [16] and the duality
results for this case are summarized in Corollary 1, and, for monotone birth-and-death chains,
they are given in Corollary 2. In Proposition 5 we show that the nonneutral Moran model is
monotone when its bias mechanism is nondecreasing.

We find additional examples where duality relations between substochastic kernels can be
established. We introduce the generalized ultrametric kernel as a case containing the Siegmund
kernel. In this general case, the conditions for the existence of a dual kernel are given in
Proposition 6. This result summarizes our exploration of potential matrices as duality functions.

Section 5 follows closely the ideas on sharp stationary times and duals developed in [1],
[4], and [5]. In Proposition 8 we give a proof of a sharpness result alluded to in Remark 2.39
of [4] and in Theorem 2.1 of [5]. There, we interpret and summarize the hypotheses stated in
Remark 2.39 in the unique condition (37). In Proposition 9 we state the condition for sharpness
in terms of the duality function. This applies to the intertwining of a monotone chain under the
Siegmund dual; in this case both chains can start from the state 0.

In some examples it appears that the duality function has a constant column, for instance,
the Siegmund and the Vandermonde kernels. Also, this condition appears in relation with sharp
duals; see Sections 5 and 6. This is why we devote Proposition 2 to this case. In Proposition 3,
we give a partial answer why some duality functions, namely in the Siegmund case, have
constant rows.

Even if duality and intertwining can be set for Markov chains acting on general state spaces
and/or with continuous time, we restrict ourselves to the discrete time and space in order to
be able to present quickly our main results and avoid introducing additional, overburdened
notation.

2. Duality and intertwining

2.1. Notation

Let I be a countable set. We denote by 1 the unit function defined on I . A nonnegative
matrix P = (P (x, y) : x, y ∈ I ) is called a kernel on I . Sometimes we will emphasize the
nonnegativity by saying a nonnegative kernel. A kernel is substochastic if P 1 ≤ 1, stochastic
if the equality P 1 = 1 holds, and strictly substochastic if it is substochastic and there exists
some x ∈ I such that P 1(x) < 1.

The kernel P is irreducible when, for any pair x, y ∈ I , there exists n > 0 such that
P n(x, y) > 0. A point x0 ∈ I is an absorbing point of the kernel P when P(x0, y) = δy,x0 for
all y ∈ I .

When P is a substochastic kernel, there exists a uniquely defined (in distribution) Markov
chain X = (Xn : n < T X) taking values in the countable set I , with lifetime T X and with
transition kernel P . Let ∂ be a point not belonging to I ; we define Xn = ∂ for all n ≥ T X.

The substochastic kernel P acts on the set of bounded real functions and in the set of
nonnegative functions, that is, for all x ∈ I ,

Pf (x) = E(f (X1) 1(T X > 1)),

and it generates the semigroup (P n : n ≥ 1) that satisfies, for all n ≥ 1 and x ∈ I ,

P nf (x) = E(f (Xn) 1(T X > n)).
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We will denote by T X
J = inf{n ≥ 0 : Xn ∈ J } the hitting time of a subset J ⊆ I by the chain X,

where, as usual, we put+∞ = inf ∅. When J = {a} is a singleton, we write T X
a instead of T X{a}.

In the sequel, we will introduce three kernels, denoted by P , P̂ , and P̃ ; they will be defined
on the countable sets I , Î , and Ĩ , respectively. When these kernels are substochastic, the
associated Markov chains will be respectively denoted by X, X̂, and X̃, and the lifetimes of
these chains will be T , T̂ , and T̃ , respectively. To simplify the notation, for the Markov chains
X, X̂, and X̃, the hitting times are respectively denoted by TJ = T X

J , T̂J = T X̂
J , and T̃J = T X̃

J

(when J is a subset of I , Î , and Ĩ , respectively).

2.2. Definitions

We recall the duality and the intertwining relations. As is usual, we denote the transpose of
the matrix M by M�, that is, M�(x, y) = M(y, x) for all x, y ∈ I .

Definition 1. Let P and P̂ be two kernels defined on the countable sets I and Î , and let
H = (H(x, y) : x ∈ I, y ∈ Î ) be a matrix. Then P̂ is said to be an H -dual of P if it satisfies

HP̂� = PH. (1)

We call H a duality function between (P, P̂ ).

In this work we will consider only nonnegative duality functions H , so we assume that
H(x, y) ≥ 0 for all x ∈ I and y ∈ Î . We note that some studies consider duality kernels taking
negative values; see, for instance, [17]. However, we will restrict ourselves to nonnegative
duality kernels mainly because the conditions for the existence of dual kernels are easier to
work with and also for probabilistic interpretations.

Note that, for a kernel P , the H -dual P̂ exists when (1) holds and P̂ ≥ 0. When |I | = |Î |
is finite and H is nonsingular, we obtain

P̂� = H−1PH,

and so P̂� and P are similar matrices; thus, they share the same spectrum.
Duality is a symmetric notion between kernels, because if P̂ is an H -dual of P then P is a

H�-dual of P̂ .
We will assume that no row and no column of H vanishes completely. On the other hand,

we note that if H is a duality function between (P, P̂ ) then, for all c > 0, cH is also a duality
function between these matrices. Then, when it is necessary, we can always multiply all the
coefficients of H by a strictly positive constant.

This notion of duality (1) coincides with that between Markov processes that can be found
in [4], [11], and [14], among others. Indeed, let P and P̂ be substochastic, and let X and X̂

be Markov chains with kernels P and P̂ , respectively. Then, if P̂ is an H -dual of P , X̂ is an
H -dual of X, which means that, for all x ∈ I , y ∈ Î , and n ≥ 0,

Ex(H(Xn, y)) = Ey(H(x, X̂n)), (2)

where we have extended H to (I∪{∂})×(Î∪{∂}) by setting H(x, ∂) = H(∂, y) = H(∂, ∂) = 0
for all x ∈ I and y ∈ Î . Let us now introduce intertwining.

Definition 2. Let P and P̃ be two kernels defined on the countable sets I and Ĩ , and let
� = (�(y, x) : y ∈ Ĩ , x ∈ I ) be a stochastic matrix. We say that P̃ is a �-intertwining of P

if it satisfies
P̃� = �P. (3)

We call � a link between (P, P̃ ).
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When |I | = |Ĩ | is finite and � is nonsingular, we obtain

P̃ = �P�−1,

and so P and P̃ are similar matrices; thus, they share the same spectrum.
Let P and P̃ be substochastic, and denote by X and X̃ the associated Markov chains. If P̃

is a �-intertwining of P , we say that X̃ is a �-intertwining of X. Obviously, the intertwining
is not a symmetric relation because �� is not necessarily stochastic. But, when � is doubly
stochastic, P̃ is a �-intertwining of P implies that P is a ��-intertwining of P̃ .

3. Relations between duality and intertwining

Let us first introduce some additional notation. By ea we denote a column vector with a 1 in
the ath entry and 0s elsewhere. When P is an irreducible positive recurrent stochastic kernel,
we denote by π = (π(x) : x ∈ I ) its stationary distribution and we write it as a column vector.
So π�P = π�, where π� is the transposed row vector of π .

Now we give a result on intertwining that we will often use.

Proposition 1. Let P be an irreducible positive recurrent stochastic kernel, and let π be its
stationary distribution. Assume that P̃ is a kernel that is �-intertwined with P , i.e. P̃� = �P .
If ã is an absorbing state for P̃ then

π� = e�ã �. (4)

Proof. Since the chain P is positive recurrent with stationary distribution π and � is
stochastic, we obtain limk→∞(1/k)

∑k−1
n=0(�P n)(x, y) = π(y); in particular,

lim
k→∞

1

k

k−1∑
n=0

(�P n)(ã, y) = π(y). (5)

On the other hand, from our assumption, we obtain P̃ n(ã, y) = δy,ã and then

(P̃ n�)(ã, y) = �(ã, y) for all n ≥ 0, y ∈ I. (6)

From (3) we have P̃ n� = �P n for all n ≥ 1, and so from (5) and (6) we deduce that
�(ã, y) = π(y), which is equivalent to (e�

ã
�)(y) = π(y). Then (4) is shown.

For a vector ρ ∈ R
I , we will denote by Dρ the diagonal matrix with diagonal entries

(Dρ)(x, x) = ρ(x), x ∈ I .
Let P be an irreducible positive recurrent stochastic kernel with stationary distribution π .

By irreducibility we have π > 0. Denote by
←−
P the transition kernel of the reversed chain of

X, so
←−
P (x, y) = π(x)−1P(y, x)π(y) or, equivalently,

←−
P � = DπPD−1

π . (7)

Then,
←−
P is in duality with P via H = D−1

π . Note that
←−
P is also irreducible and positive

recurrent with stationary distribution π and that P� = Dπ
←−
P D−1

π , so we can exchange the
roles of P and

←−
P . In the reversible case,

←−
P = P , relation (7) expresses a self-duality property.

Below we state two of our main results, Theorems 1 and 2.
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Theorem 1. Let P be an irreducible positive recurrent stochastic kernel, and let π be its
stationary distribution. Assume that P̂ is a (nonnegative) kernel and that it is an H -dual of P ,
i.e. HP̂� = PH , where H is such that none of its rows or columns vanishes completely. Then
the following assertions hold.

(i) P̂H�Dπ = H�Dπ
←−
P .

(ii) The vector ϕ := H�π is strictly positive and satisfies

P̂ ϕ = ϕ.

(iii) P̃ = D−1
ϕ P̂Dϕ is a stochastic kernel and the matrix � := D−1

ϕ H�Dπ is stochastic.
Moreover, P̃ is a �-intertwining of

←−
P . Hence, it holds that

P̃� = �
←−
P satisfying P̃ 1 = 1 = � 1 .

Moreover, we have the duality relation

KP̃� = PK with K := HD−1
ϕ .

Proof. From HP̂� = PH we find that

P̂H� = H�Dπ
←−
P D−1

π .

By multiplying the right-hand side by Dπ we obtain (i). Part (iii) follows directly in the finite
nonsingular case.

Since Dπ 1 = π , we obtain P̂H�π = H�Dπ
←−
P 1. Since

←−
P is stochastic, we obtain

P̂H�π = H�Dπ 1 = H�π . Let ϕ = H�π . Since π > 0 and at each row of H there exists
a strictly positive element, then ϕ > 0. Thus, (ii) holds. Now define

P̃ = D−1
ϕ P̂Dϕ.

Using (i), we obtain

P̃D−1
ϕ H�Dπ = D−1

ϕ P̂H�Dπ = D−1
ϕ H�Dπ

←−
P .

Then the relation P̃� = �
←−
P holds in (iii); moreover,

P̃ 1 = D−1
ϕ P̂Dϕ 1 = D−1

ϕ P̂ ϕ = D−1
ρ ϕ = 1,

� 1 = D−1
ϕ H�Dπ 1 = D−1

ϕ H�π = D−1
ϕ ϕ = 1 .

Then P̃ and � are Markov kernels. Finally, from the equality

HD−1
ϕ P̃�Dϕ = HP̂� = PH,

the relation KP̃� = PK is straightforward. Hence, (iii) is satisfied.

In the next result, we examine the finite case under the same hypotheses as Theorem 1. For
this purpose, it is useful to recall the structure of a nonirreducible substochastic finite kernel P .
The set I can be partitioned into classes as

I =
�⋃

l=1

Il with � > 1,

where, for all l = 1, . . . , �, the submatrix PIl×Il
:= (P (x, y : x, y ∈ Il)) is irreducible, and the
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order of the indices of the classes (I1, . . . , Il) is chosen such that (see [7, Section 8.3]), for all
x ∈ Il and y ∈ Il� ,

P(x, y) > 0 �⇒ l ≤ l�.

This will be the standard order of the indices of the irreducible classes that we will use in this
section—mainly in the statements contained in Theorem 2.

If P is stochastic then the last of these submatrices PI�×I�
is stochastic, that is, PI�×I�

1I�
=

1I�
, and there could be other stochastic submatrices. If P is strictly substochastic then none or

some of these submatrices PIl×Il
, l = 1, . . . , �, could be stochastic. We set

St(P ) = {Il : PIl×Il
is stochastic, l ∈ {1, . . . , �}}.

Then, when P is stochastic, St(P ) 
= ∅, and if P is strictly substochastic then St(P ) could
be empty or not. When St(P ) 
= ∅, it could contain a unique class or not, and by a simple
reordering of the indices of the classes we can always assume that it contains I� (this reordering
is not needed when P is stochastic).

In the next result, we investigate some additional properties of duality, when, besides the
hypotheses of Theorem 1, we assume that the spaces are finite. We recall that in the finite case
the positive recurrence property of a stochastic kernel P follows from its irreducibility.

Theorem 2. Let I and Î be finite sets. Let P be a finite irreducible stochastic kernel, let π be
its stationary distribution, and assume that P̂ is a substochastic kernel which is an H -dual of
P , i.e. HP̂� = PH , where H is such that none of its rows or columns vanishes completely.
Let ϕ = H�π . Then the following assertions hold.

(i) If P̂ is substochastic and irreducible, then it is stochastic.

(ii) When P̂ is stochastic and irreducible, ϕ = c 1 for some c > 0, and P̃ = P̂ .

(iii) If P̂ is nonirreducible then St(P̂ ) 
= ∅ and there exist some constants cl > 0 for
Îl ∈ St(P̂ ) such that

ϕ(x) =
∑

Îl∈St(P̂ )

cl Px(there exists an N such that, for all n ≥ N, X̂n ∈ Îl )

=
∑

Îl∈St(P̂ )

cl Px(T̂Îl
< T̂ ). (8)

(iv) If P̂ has a unique stochastic class Î� then

ϕ(x)

ϕ(y)
= Px(T̂Î�

< T̂ ) for any y ∈ Î�, (9)

and the intertwined Markov chain X̃ is given by the Doob transform

Px(X̃1 = y1, . . . , X̃k = yk) = Px(X̂1 = y1, . . . , X̂k = yk | T̂Î�
< T̂ ). (10)

(v) If â is an absorbing state for P̂ then â is an absorbing state for P̃ and relation (4), i.e.
π� = e�

â
�, is satisfied. Moreover, the sets of absorbing points in P̂ and P̃ coincide.

(vi) If |I | = |Î | is finite and H is nonsingular, then P̂ = H�Dπ
←−
P D−1

π H−1� and P̃ =
�
←−
P �−1. Hence, P̂ ,

←−
P , P̃ , and P are similar matrices.
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Proof. Since I is finite, if P̂ is an irreducible strictly substochastic kernel then its spectral
radius is necessarily strictly smaller than 1, which contradicts the equality P̂ ϕ = ϕ, because
ϕ > 0. In the case when P̂ is stochastic and irreducible, the equation P̂ ϕ = ϕ, ϕ > 0, implies
that ϕ = c 1 for some constant c > 0. So (i) and (ii) follow.

Now assume that the matrix P̂ is substochastic and nonirreducible. Let Î =⋃�
l=1 Îl be the

partition in irreducible components P̂
Îl×Îl

such that x ∈ Îl , y ∈ Îl� , and P̂ (x, y) > 0 implies
that l� ≥ l. The last submatrix P̂

Î�×Î�
satisfies

P̂
Î�×Î�

ϕ|
Î�
= ϕ|

Î�
,

where ϕ|
Î�

denotes the restriction of ϕ to the set Î�. Then P̂
Î�×Î�

is an irreducible substochastic
matrix whose Perron–Frobenius eigenvalue is 1, so we deduce that P̂

Î�×Î�
is stochastic and

ϕ|
Î�
= c� 1

Î�
for some constant c� > 0; thus, St(P̂ ) 
= ∅. The same argument applies to all

the irreducible stochastic classes (Îl ∈ St(P̂ )) and we obtain ϕ|
Îl
= cl 1

Îl
for some quantity

cl > 0.
Let X̂ = (X̂t : t < T̂ ) be the Markov chain with kernel P̂ . It is known that all the trajectories

that are not killed are attracted by
⋃

Îl∈St(P̂ )
Îl , that is,

Px

(
there exists an N such that, for all n ≥ N, X̂n ∈

⋃
Îl∈St(P̂ )

Îl

∣∣∣∣ T̂ = ∞
)
= 1.

On the other hand the equality P̂ ϕ = ϕ expresses that ϕ is a harmonic function for the chain X̂.
Hence, for all n ≥ 0, it is satisfied that

ϕ(x) = Ex(ϕ(X̂n), T̂ > n)

=
∑

Îl∈St(P̂ )

Ex(ϕ(X̂n), T̂ > n, T̂
Îl

< T̂ )

+ Ex(ϕ(X̂n), T̂ > n, T̂ < min{T̂
Îl
: Îl ∈ St(P̂ )}).

Then, by taking n→∞ in the above expression and since limn→∞ Px(min{T̂
Îl
: Îl ∈ St(P̂ )} >

T̂ > n) = 0, we obtain relation (8), i.e.

ϕ(x) =
∑

Îl∈St(P̂ )

cl Px(T̂Îl
< T̂ ).

Let us prove part (iv). Since there is a unique stochastic class, equality (9) follows straight-
forwardly. Then the transition probabilities of P̃ are given by the Doob h-transform

P̃ (x, y) = Px(T̂Î�
< T̂ )−1P̂ (x, y) Py(T̂Î�

< T̂ )

= Px(X̂1 = y | T̂
Î�

< T̂ ) for all x, y ∈ Î .

The Markov property gives the formula for every cylinder.
Finally, let us show part (v). Since the chain

←−
P is positive recurrent with stationary distri-

bution π , it suffices to show that â is an absorbing state for P̃ . This follows straightforwardly
from the equality P̃ = D−1

ϕ P̂Dϕ . Indeed, it implies that P̃ (â, y) = P̂ (â, y)ϕ(y)/ϕ(â) = δy,â .
Also, this proves the equality of the set of absorbing points for both kernels P̂ and P̃ .
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Remark 1. We can exchange the roles of P and
←−
P in the irreducible and positive recurrent

case. Thus, in the hypotheses of Theorems 1 and 2 we can take
←−
P instead of P , so P̂ is an

H -dual of
←−
P , i.e. HP̂� = ←−P H , and in all the statements of both theorems we must change

P to
←−
P .

Remark 2. A probabilistic explanation of the result ϕ := H�π > 0 can be given when P̂ is
substochastic and H is bounded. In this case the duality relation HP̂� = PH is equivalent to
(2), i.e. for all x ∈ I, y ∈ Î , and n ≥ 0,

Ex(H(Xn, y)) = Ey(H(x, X̂n)).

Since, by hypothesis, X is an irreducible and positive recurrent Markov chain, then ϕ appears
as the following limit on the left-hand side:

lim
k→∞

1

k

∑
n≤k

Ex(H(Xn, y)) =
∑
u∈I

π(u)H(u, y) = ϕ(y).

Remark 3. We have

�(x, y) = 1

ϕ(x)
H(y, x)π(y),

in particular, �(x, y) = 0 if and only if H(y, x) = 0.

Remark 4. The formulae inTheorem 1 state that�, P̂ , and P̃ are invariant whenH is multiplied
by a strictly positive constant. Then, we can fit c > 0 and take cH in order to have ϕ(x) = 1
for all x ∈ Îl in Theorem 2 . This is equivalent to setting cl = 1 for some fixed stochastic class
Îl ∈ St(P̂ ).

Remark 5. When the starting equality between stochastic kernels is the intertwining relation
P̃� = �

←−
P , then we have the duality relation HP̂� = PH with H = D−1

π �� and P̂ = P̃ .
In this case ϕ = 1.

We note the equality Î = Ĩ of the sets, where the kernels P̂ and P̃ are defined in Theorem 1.
In the next result we study what happens when the duality function H has a constant column,

a case which appears as a condition in the study of sharp duals; see Proposition 9 of Section 5.

Proposition 2. Assume that H is nonsingular and has a constant column which is strictly
positive, that is, there exists an â ∈ Î such that Heâ = c 1 for some c > 0. Then

(i) â is an absorbing state for P̂ (so {â} is a stochastic class);

(ii) under the hypotheses of Theorem 2, π� = e�
â
� holds and if P̂ is strictly substochastic

and {â} is the unique stochastic class, then Py(T̂â < T̂ ) = ϕ(y)/ϕ(â) and relation (10)
is satisfied.

Proof. (i) From Heâ = c 1 we obtain

e�
â
P̂ = e�

â
H�Dπ

←−
P D−1

π H−1�

= (Heâ)
�Dπ
←−
P D−1

π H−1�

= cπ�←−P D−1
π H−1�

= (H−1c 1)�

= e�
â
.

https://doi.org/10.1239/aap/1308662487 Published online by Cambridge University Press

https://doi.org/10.1239/aap/1308662487


Duality and intertwining 445

Then

P̂ (â, y) = (e�
â
P̂ )(y) = e�

â
(y) = δâ,y .

So â is an absorbing state for P̂ .
(ii) From Theorem 2(v), â is an absorbing state of P̃ and π� = e�

â
�. The proof of the rest

of this part follows straightforwardly.

When P does not satisfy positive recurrence, let us consider only the following special case
where we explain why in some duality functions there appear constant rows (as is the case of
the Siegmund kernel).

Proposition 3. Let x0 ∈ I be an absorbing point of the kernel P , and let P̂ be a substochastic
kernel that is an H -dual of P , i.e. HP̂� = PH . Then h(y) := H(x0, y), y ∈ Î , is a
nonnegative P̂ -harmonic function. When H is bounded and P̂ is a stochastic recurrent kernel,
the x0 row, H(x0, ·), is constant.

Proof. It suffices to show that the function h is P̂ -harmonic. Since P(x0, z) = δz,x0 for all
z ∈ I , we obtain (PH)(x0, y) = H(x0, y). Therefore, if P̂ satisfies the duality equality (1),
we obtain (HP̂�)(x0, y) = H(x0, y) = h(y). Then

(P̂ h)(y) =
∑
z∈Î

P̂ (y, z)H(x0, z) =
∑
z∈Î

H (x0, z)P̂
�(z, y) = (HP̂�)(x0, y) = h(y),

and the result is shown.

4. Classes of dual matrices

We consider the finite set case. We assume that I = Î = Ĩ = {0, . . . , N}, so the kernels
are nonnegative I × I matrices and, when they are substochastic, the associated Markov chains
take values in I .

We will study some classes of nonnegative matrices H for which there exist substochastic
kernels P and P̂ in duality relation (1). So, in these cases we would be able to apply the results
established in Theorems 1 and 2, and in Proposition 2.

The Siegmund kernel is an example of a dual function that is a potential matrix. We will
explore below other examples of potential matrices as dual functions, such as the generalized
ultrametric matrices (see Subsection 4.5). Let us state an elementary weak condition on potential
matrices H ensuring the existence of substochastic kernels that are H -duals. Let R be a strictly
substochastic kernel with no stochastic classes. Then it has a well-defined finite potential

H = (Id − R)−1 =
∑
n≥0

Rn ≥ 0.

So H−1 = Id − R. (In particular, no column or row of H vanishes.) Let P be a substochastic
kernel. Define

P̂� = H−1PH = (Id − R)P (Id − R)−1.

Assume that the transpose matrix R� is substochastic. Then, P̂ 1 ≥ 0 and there exists a
stochastic kernel P for which P̂ ≥ 0 holds. Indeed, the constant stochastic kernel P =
(1/(N + 1))11� fulfills the property.
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4.1. The Siegmund kernel

A well-known case of a kernel H arising as a potential of a strict substochastic kernel
R as above is the Siegmund kernel. Let R(x, y) = 1(x + 1 = y), so it is strictly sub-
stochastic (because the N th row vanishes) and has no stochastic classes. Its transposed matrix
R�(x, y) = 1(x = y + 1) is also substochastic.

By direct computation we find that HS = (Id − R)−1 satisfies

HS(x, y) = 1(x ≤ y),

so it is the Siegmund kernel [16]. We have H−1
S = Id − R. Then H−1

S (x, y) = 1(x =
y)− 1(x + 1 = y).

The Siegmund kernel has been widely studied, a relevant reference is [16], where the
equivalence between absorbing and reflecting barrier problems for stochastically monotone
chains was proved. The main tools are equalities (18) and (19), below, which will be exploited
in Subsection 4.3.

The Siegmund kernel was studied in detail in [4, Section 5]. Let us summarize some well-
known relations. We have (HSP̂�)(x, y) =∑

z≥x P̂ (y, z) and (PHS)(x, y) =∑
z≤y P (x, z).

Then, the equation HSP̂� = PHS gives

P̂ (y, x) =
∑
z≥x

P̂ (y, z)−
∑
z>x

P̂ (y, z) =
∑
z≤y

(P (x, z)− P(x + 1, z)). (11)

In particular, P̂ ≥ 0 requires the monotonicity of P : for all y ∈ I ,
∑
z≤y

P (x, z) decreases in x ∈ I. (12)

From P̂ (N, x) =∑
z≤N(P (x, z)−P(x+1, z)), it follows that if P is stochastic then P̂ (N, x) =

δx,N , that is, N is an absorbing state for P̂ . Also, from (11) we obtain

P̂ (N − 1, N) =
∑

z≤N−1

P(N, z) = 1− P(N, N). (13)

From ∑
x≤N

P̂ (y, x) =
∑
z≤y

P (0, z),

it follows that P̂ is substochastic and also
∑

x≤N P̂ (0, x) = P(0, 0). Then, when P(0, 0) = 1,
the matrix P̂ is stochastic, and if P(0, 0) < 1 then

∑
x≤N P̂ (0, x) < 1. This last case occurs

for any irreducible stochastic kernel P with N ≥ 1. Also, we find that P(0, 0)+ P(0, 1) = 1
implies that P̂ does not lose mass through {1, . . . , N}. When the finite matrix P is irreducible,
we can apply Theorem 2, and in this case

ϕ(x) = (H�S π)(x) =
∑
y∈I

1(y ≤ x)π(y) =
∑
y≤x

π(y) =: πc(x),

where πc is the cumulative distribution of π . The cumulative distribution is not constant because
π > 0.

From (11), we deduce that the irreducibility of P implies that N is the unique absorbing
state of P̂ . We obtain the following result, within which we assume that N ≥ 1 in order to
avoid the trivial case when N = 0 and P(0, 0) = 1.
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Corollary 1. Let HS be the Siegmund kernel, and let P be a monotone finite irreducible
stochastic kernel with stationary distribution π . Let HSP̂� = PHS with P̂ ≥ 0. Then
the following assertions hold.

(i) P̂ is a strictly substochastic kernel that loses mass through 0, and Theorem 2(ii) and (iii)
are satisfied.

(ii) ϕ = πc and the stochastic intertwining kernel � satisfies

�(x, y) = 1(x ≥ y)
π(y)

πc(x)
. (14)

The intertwining matrix P̃ of
←−
P is given by

P̃ (x, y) = P̂ (x, y)
πc(y)

πc(x)
, x, y ∈ I.

(iii) N is the unique absorbing state for P̂ , and Theorem 2(iv) and (v) are satisfied with
Î� = {N} and â = N . In particular, π� = e�N� holds.

(iv) It holds that
�eN = π(N)eN . (15)

Proof. The first three parts are direct consequences of Theorems 1 and 2, and the above
relations. Finally, (15) is a direct computation from (14) and ϕ(N) = 1.

4.2. Duality for finite state space birth-and-death chains

Recall that I = Î = Ĩ = {0, . . . , N}. Let X = (Xn : n ≥ 0) be a discrete birth-and-death
(BD) chain with transition Markov kernel P = (P (x, y) : x, y ∈ I ). Then P(x, y) = 0 if
|x − y| > 1 and

P(x, x + 1) = px, P (x, x − 1) = qx, P (x, x) = rx, x ∈ I,

with qx + rx + px = 1 for all x ∈ I and boundary conditions q0 = pN = 0.
We always take

qx, px > 0, x ∈ {1, . . . , N − 1}.
We will consider the irreducible case, which in this case is equivalent to the conditions that

p0 > 0, qN > 0. (16)

(A unique exception will be given in Subsection 4.3, where we will explicitly assume that
(16) is not satisfied.) The stationary distribution π = (π(x) : x ∈ I ) satisfies π(y) =
π(0)

∏
z<y pz/(qz+1) > 0, y ∈ {1, . . . , N}, where π(0) is such that

∑
y∈I π(y) = 1.

The matrix P satisfies π(x)P (x, y) = π(y)P (y, x) for all x, y. So, P = ←−P , where
←−
P =

D−1
π P�Dπ is the transition matrix of the time-reversed process and P has real eigenvalues.
The unique constraint in (11) to obtain P̂ ≥ 0 is the condition P̂ (x, x) ≥ 0. It reads

px + qx+1 ≤ 1 for all x ∈ {0, . . . , N − 1}. (17)

This is the monotonicity condition (12) for BD chains. So, P is monotone when (17) is satisfied.
In this case, the Siegmund dual P̂ exists and it is a BD kernel with

P̂ (x, x − 1) = px, P̂ (x, x) = 1− (px + qx+1), P̂ (x, x + 1) = qx+1.
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Note that P̂ (0, 0) = 1 − (p0 + q1) and P̂ (0, 1) = q1. Then the Markov chain X̂ loses mass
through the state 0 if and only if p0 = 0. On the other hand, P̂ (N, N) = 1− (pN +qN+1) = 1
(because pN = qN+1 = 0). From this analysis, Corollary 1, and the reversibility relation
P =←−P , we obtain (see also Subsection 4.3 of [4]) the following result.

Corollary 2. Let HS be the Siegmund kernel, and let P be a finite irreducible stochastic BD
chain with monotone kernel P with transition parameters px and qx . Let π be the stationary
distribution of P . Then, the dual matrix P̂ defined by P̂� = H−1

S PHS is a strictly substochastic
kernel that loses mass through the state 0. Moreover, the following assertions hold.

(i) ϕ = πc, and Theorem 2(ii) and (iii) are satisfied.

(ii) N is an absorbing state of P̂ and {N} is the unique stochastic class of P̂ , all the other
states in I are transient, and Theorem 2(iv) is satisfied with Î� = {N}.

(iii) Let � be the stochastic kernel given by (14). Then, the �-intertwining matrix P̃ of P is
a BD stochastic matrix with entries given by

P̃ (x, x − 1) = px

πc(x − 1)

πc(x)
, P̃ (x, x) = 1− (px + qx+1),

P̃ (x, x + 1) = qx+1
πc(x + 1)

πc(x)
.

4.3. Absorbing points for the BD kernels

Let us modify the BD kernel P by taking 0 as an absorbing state. That is, instead of the
irreducibility conditions (16) we take p0 = 0 and no restriction on qN , it could be 0 or greater
than 0. Assume that P is monotone, so (17) holds. Then the BD kernel P̂ is stochastic and N

is the unique absorbing state for P̂ .
Let us describe what happens by exploiting the special form of the Siegmund dual. By

evaluating (2) at y = 0 we obtain

Px(Xn ≤ 0) = P0(x ≤ X̂n), (18)

and by evaluating (2) at x = N we obtain

PN(Xn > y) = Py(X̂n < N). (19)

Now there are two cases to consider.
Case (i). If qN > 0 then 0 is the unique absorbing state for P . By (13) we obtain P̂ (N − 1,

N) = qN > 0, so N is an absorbing state that attracts all the trajectories of the chain,
Px(limn→∞Xn = N) = 1 for x ∈ I .

Case (ii). If qN = 0 then 0 and N are absorbing states for P . From (13) we obtain
P̂ (N − 1, N) = qN = 0, so N , besides being an absorbing state for P̂ , is an isolated state for
P̂ (that is, P̂ (y, N) = 0 for all y < N ). Therefore, it does not attract any of the trajectories
starting from a state different from N . Hence, (19) is simply the equality 1=1 when y < N .

Let us summarize the picture for case (ii): P has 0 and N as absorbing states that attract all
the trajectories of its associated Markov chain X, P̂ is stochastic, N is a P̂ -absorbing isolated
state, and P̂ |I\{N}×I\{N} is stochastic and irreducible. Let π̂∗ = (π̂∗(z) : z ∈ I \ {N}) be the
stationary distribution of the submatrix P̂ |I\{N}×I\{N}.

Let φ(x) = Px(limn→∞Xn = 0) be the absorption probability at 0 of the chain X starting
from x. We have the following result.
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Proposition 4. If p0 = 0 and qN = 0, then 0 and N are absorbing states for P , and
P̂ |I\{N}×I\{N} is stochastic and has 0 as an absorbing point. Let φ(x) = Px(limn→∞Xn = 0),
and let π̂∗ = (π̂∗(z) : z ∈ I \ {N}) be the stationary distribution of P̂ |I\{N}×I\{N}. Then

φ(x) = 1− η(x)

η(N)
= 1− π̂ c∗(x + 1),

where π̂ c∗ is the cumulative distribution of π̂∗ and η(x) :=∑x−1
y=0

∏y
z=1 qz/pz is the scale

function of P .

Proof. The first equality follows from the fact that η is a martingale and η(0) = 0. For the
second relation, we take x < N and, letting n→∞ in (18) gives

φ(x) =
∑
z≥x

π̂∗(z) = 1− π̂ c∗(x + 1).

4.4. Conditions for monotonicity in the nonneutral Moran model

Let us introduce the 2-allele Moran model with bias mechanism p. Let p : [0, 1] → [0, 1]
be continuous with 0 ≤ p(0) and p(1) ≤ 1. Define q(u) := 1 − p(u). The Moran model
is a BD Markov chain X characterized by the quadratic transition probabilities px, rx , and
qx, x ∈ I = {0, . . . , N}, where

qx = x

N
q

(
x

N

)
, rx = x

N
p

(
x

N

)
+

(
1− x

N

)
q

(
x

N

)
, px =

(
1− x

N

)
p

(
x

N

)
.

We assume that p0 = p(0) > 0, qN = 1−p(1) > 0, and py > 0, qy > 0 for all y ∈ {1, . . . , N},
so the BD chain is irreducible.

Proposition 5. Assume that in the Moran model the bias p is nondecreasing. Then the BD
chain is monotone, that is, condition (17), px + qx+1 ≤ 1, is fulfilled (and so the Siegmund
dual exists).

Proof. First, since pN = qN+1 = 0, we have nothing to check for x = N . Let us see what
happens with x = 0. We need to guarantee that 1 − p0 − q1 ≥ 0, but this is true because
p(1/N) ≥ p(0) ≥ Np(0)− (N − 1). Let us consider the case x ∈ {1, . . . , N − 1}. We have
the following relations, where in the first inequality we use the fact that p is nondecreasing:

px + qx+1 = p

(
x

N

)
− x

N
p

(
x

N

)
+

(
x + 1

N

)
−

(
x + 1

N

)
p

(
x + 1

N

)

≤ p

(
x

N

)(
1− x

N
−

(
x + 1

N

))
+

(
x + 1

N

)

= 1

N

(
p

(
x

N

)
((N − 1− 2x)+ (x + 1))

)

≤ 1. (20)

Now, the last inequality in (20) is fulfilled because if x = (N−1)/2, it reduces to (x+1)/N ≤ 1;
if x < (N − 1)/2, it reduces to p(x/N) ≤ (N − x − 1)/(N − 1 − 2x), and this is satisfied
because the right-hand side of this expression is greater than 1; if (N − 1)/2 < x ≤ N − 1, it
is satisfied because N − 1− x ≥ 0 and N − 1− 2x < 0.
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4.5. Generalized ultrametric case

We will examine another triangular matrix H which is a potential matrix, and which
generalizes the Siegmund kernel. It belongs to the class of generalized ultrametric matrices
(see [13] and [15]), a class that contains the ultrametric matrices introduced in [12]. We will
search conditions on a kernel P in order that it has an H -dual.

Let C be a nonempty set strictly contained in I = {0, . . . , N}. Define C′ = I \ C. We set
C(x) = C when x ∈ C and C(x) = C′ otherwise. Take α, β ≥ 0, and set γ (x) = α if x ∈ C

and γ (x) = β otherwise. Now, define the matrix Hα,β by

Hα,β(x, y) = 1(x ≤ y)+ γ (x) 1(x ≤ y) 1(C(x) = C(y)),

which is a clear generalization of the Siegmund dual because H0,0 = HS . It is straightforward
to check that Hα,β belongs to the class of potential matrices; indeed, Hα,β = (Id − R)−1 with

R(x, y) = 1(x = y)− 1

1+ γ (x)
1(x = y)+ 1

1+ γ (x)
1(x + 1 = y).

As is easily checked, R is an irreducible strictly substochastic matrix that loses mass through
the state N . Then H−1

α,β = Id − R, so

H−1
α,β(x, y) = 1

1+ γ (x)
1(x = y)− 1

1+ γ (x)
1(x + 1 = y).

In this case we are able to compute the inverse matrix H−1
α,β ; the description of the inverse of any

generalized ultrametric matrices can be found in [3]. We point out that R� is substochastic only
when α ≥ β and in this case it is an irreducible strictly substochastic matrix that loses mass
through the state 0. In the rest of this subsection, we will set H = Hα,β to avoid overburdened
notation. We have

(HP̂�)(x, y) =
∑
z≥x

H(x, z)P̂ (y, z) =
∑
z≥x

P̂ (y, z)+ γ (x)
∑

z≥x, z∈C(x)

P̂ (y, z),

(PH)(x, y) =
∑
z≤y

P (x, z)H(z, y) =
∑
z≤y

P (x, z)+ γ (y)
∑

z≤y, z∈C(y)

P (x, z).

By permuting I we can always assume that C is an interval, that is, C = {1, . . . , k} for some
0 ≤ k < N , and so C′ = {k + 1, . . . , N}. With this choice, each x /∈ {k, N} satisfies
C(x) = C(x + 1) and so γ (x) = γ (x + 1).

Case (i): let x 
= k. From the above equalities we find that

(HP̂�)(x, y)− (HP̂�)(x + 1, y) = (1+ γ (x))P̂ (y, x).

(the case x = N follows from (HP̂�)(N+1, y) = 0). Then the equality HP̂� = PH implies
that

(1+ γ (x))P̂ (y, x) =
∑
z≤y

(P (x, z)− P(x + 1, z))+ γ (y)
∑

z≤y, z∈C(y)

(P (x, z)− P(x + 1, z)).

Subcase (i.1): let x 
= k and y ≤ k. In this case we have γ (y) = α, and z ≤ y implies that
z ∈ C(y). So, we find that

(1+ γ (x))P̂ (y, x) = (1+ α)
∑
z≤y

(P (x, z)− P(x + 1, z)).

https://doi.org/10.1239/aap/1308662487 Published online by Cambridge University Press

https://doi.org/10.1239/aap/1308662487


Duality and intertwining 451

Then, a necessary and sufficient condition for P̂ (y, x) ≥ 0 is that

∑
z≤y

P (x + 1, z) ≤
∑
z≤y

P (x, z), (21)

and we obtain

P̂ (y, x) = 1+ α

1+ γ (x)

∑
z≤y

(P (x, z)− P(x + 1, z)). (22)

Subcase (i.2): let x 
= k and y > k. In this case we have γ (y) = β, and C(z) = C(y) if
and only if z > k. Then,

(1+ γ (x))P̂ (y, x) =
∑
z≤y

(P (x, z)− P(x + 1, z))+ β
∑

k<z≤y

(P (x, z)− P(x + 1, z)),

and so

P̂ (y, x) = 1

1+ γ (x)

∑
z≤k

(P (x, z)− P(x + 1, z))+ 1+ β

1+ γ (x)

∑
k<z≤y

(P (x, z)− P(x + 1, z)).

(23)
Then, a necessary and sufficient condition to ensure that P̂ (y, x) ≥ 0 for x 
= k is

∑
z≤k

P (x + 1, z)+ (1+ β)
∑

k<z≤y

P (x + 1, z) ≤
∑
z≤k

P (x, z)+ (1+ β)
∑

k<z≤y

P (x, z). (24)

We can summarize subcases (i.1) and (i.2) as, for all x 
= k,

P̂ (y, x) = 1+ γ (y)

1+ γ (x)

∑
z≤y

(P (x, z)− P(x + 1, z))

− 1(y > k)
β

1+ γ (x)

∑
z≤k

(P (x, z)− P(x + 1, z)).

The necessary and sufficient condition to ensure that P̂ (y, x) ≥ 0 for x 
= k is constituted by
(21) and (24).

Case (ii): assume that x = k. Recall that γ (k) = α and γ (k + 1) = β, so

(HP̂�)(k, y) =
∑
z≥k

P̂ (y, z)+ α
∑

z≥k, z∈C(k)

P̂ (y, z) =
∑
z>k

P̂ (y, z)+ (1+ α)P̂ (y, k),

(HP̂�)(k + 1, y) =
∑
z>k

P̂ (y, z)+ β
∑

z>k, z∈C(x)

P̂ (y, z) = (1+ β)
∑
z>k

P̂ (y, z).

Then, using HP̂� = PH ,

(1+ α)P̂ (y, k) = (HP̂�)(k, y)− (HP̂�)(k + 1, y)+ β
∑
z>k

P̂ (y, z)

= (PH)(k, y)− 1

1+ β
(PH)(k + 1, y),
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and so

(1+ α)P̂ (y, k) =
∑
z≤y

(
P(k, z)− 1

1+ β
P (k + 1, z)

)

+ γ (y)
∑

z≤y, z∈C(y)

(
P(k, z)− 1

1+ β
P (k + 1, z)

)
. (25)

From (25) we deduce that

P̂ (y, k) =
∑
z≤y

(
P(k, z)− 1

1+ β
P (k + 1, z)

)
, y ≤ k, (26)

and

P̂ (y, k) = 1

1+ α

∑
z≤k

(
P(k, z)− 1

1+ β
P (k + 1, z)

)

+ 1+ β

1+ α

∑
k<z≤y

(
P(k, z)− 1

1+ β
P (k + 1, z)

)
, y > k. (27)

Hence, (21) and (24) imply that P̂ (y, k) ≥ 0 for all y, and so they are necessary and sufficient
for P̂ ≥ 0.

From (22) we find that, for all y ≤ k,

∑
x<k

P̂ (y, x) =
∑
z≤y

(P (0, z)− P(k, z)),
∑
x>k

P̂ (y, x) = 1+ α

1+ β

∑
z≤y

P (k + 1, z).

So, using (26), we obtain, for all y ≤ k,

∑
x≤N

P̂ (y, x) =
∑
z≤y

P (0, z)+ α

1+ β

∑
z≤y

P (k + 1, z). (28)

On the other hand, from (23) we obtain, for all y > k,

∑
x<k

P̂ (y, x) = 1

1+ α

∑
z≤k

(P (0, z)− P(k, z))+ 1+ β

1+ α

∑
k<z≤y

(P (0, z)− P(k, z)),

∑
x>k

P̂ (y, x) = 1

1+ β

∑
z≤k

P (k + 1, z)+
∑

k<z≤y

P (k + 1, z).

Using (27), we obtain, for all y > k,

∑
x≤N

P̂ (y, x) = 1

1+ α

∑
z≤k

P (0, z)+ 1+ β

1+ α

∑
k<z≤y

P (0, z)+ α

(1+ α)(1+ β)

∑
z≤k

P (k + 1, z)

+ α

1+ α

∑
k<z≤y

P (k + 1, z). (29)
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Proposition 6. Let P be a stochastic kernel, and let P̂ be an Hα,β -dual of P . Then, a sufficient
condition to ensure that P̂ ≥ 0 is the following. There exists a δ ∈ (0, 1) such that, for all
x ∈ {0, . . . , N}, ∑

z≤k

P (x, z) = δ, (30)

where, for all y ≤ k, ∑
z≤y

P (x, z) decreases in x ∈ {1, . . . , k} (31)

and, for all y > k,

∑
k<z≤y

P (x, z) decreases in x ∈ {k + 1, . . . , N}. (32)

Moreover, under conditions (30), (31), and (32), P̂ is substochastic if and only if δ = (1 +
β)/(1+ α + β). In this case P̂ is conservative at sites k and N .

Proof. Relations (30), (31), and (32), are sufficient for P̂ ≥ 0 because they imply conditions
(21) and (24). Now set

L(y) =
∑
x≤N

P̂ (y, x).

From (28) we find that {L(y) : y ≤ k} attains its maximum at y = k and, by using (30), this
maximum becomes L(k) = δ + αδ/(1 + β). So, this last quantity must be at most 1 in order
that P̂ is substochastic. On the other hand, from (29), it follows that {L(y) : y > k} attains its
maximum at y = N and that this maximum is

L(N) = δ

1+ α
+ (1+ β)(1− δ)

1+ α
+ αδ

(1+ α)(1+ β)
+ α(1− δ)

1+ α
.

By straightforward computations, it follows that

L(N) = 1

1+ α
(1+ α + β(1− L(k))).

Then, by using L(k) ≤ 1 we deduce that L(N) ≤ 1 if and only if L(k) = 1, in which case
L(N) = 1. This completes the proof.

If the ultrametric dual is seen as a perturbation of the Siegmund dual then there is a rigidity
result for the BD chains.

Proposition 7. Let P be the stochastic kernel of an irreducible BD chain on I = {0, . . . , N}.
Assume that there exists a substochastic kernel P̂ that is an Hα,β -dual of P , i.e. Hα,βP̂� =
PHα,β .

Then we necessarily have β = 0 and the monotone property (17) holds. Moreover, if k ≥ 1
then α = β = 0 and Hα,β = H0,0 = HS is the Siegmund dual.

If k = 0 then α ≤ p0/q1. If α = p0/q1, the kernel P̂ is stochastic, and when α < p0/q1,
the kernel P̂ is substochastic and it only loses mass through {0}.

https://doi.org/10.1239/aap/1308662487 Published online by Cambridge University Press

https://doi.org/10.1239/aap/1308662487


454 T. HUILLET AND S. MARTINEZ

Proof. From (23) we have

P̂ (k + 2, k − 1) = 1

1+ α

∑
z≤k

(P (k − 1, z)− P(k, z))

+ 1+ β

1+ α

∑
k<z≤k+2

(P (k − 1, z)− P(k, z))

= 1

1+ α
(1− (1− P(k, k + 1)))− 1+ β

1+ α
P (k, k + 1).

So P̂ (k + 2, k − 1) = −P(k, k + 1)(β/(1+ α)), and we must necessarily have β = 0.
Since β = 0, it follows from relations (21) and (24) that the condition to ensure that P̂ ≥ 0

is (17), that is, px + qx+1 ≤ 1 for all x ∈ {0, . . . , N − 1}.
On the other hand, if k ≥ 1, from (28) we obtain, for y = k,

∑
x≤N

P̂ (k, x) =
∑
z≤k

P (0, z)+ = α

1+ β

∑
z≤k

P (k + 1, z) = 1+ α

1+ β
P (k + 1, k).

So, we must necessarily have α = 0.
In the k = 0 case, it follows from relation (29) that

∑
y∈I P̂ (x, y) = 1 for all y > 0. The only

case we must examine is (28) for k = 0, where the condition
∑

y∈I P̂ (0, y) = (1−p0)+αq1 ≤ 1
implies that α ≤ p0/q1.

5. Strong stationary times

Let P be an irreducible positive recurrent stochastic kernel on the countable set I , and let
X = (Xn : n ≥ 0) be a Markov chain with kernel P . Let π be the stationary probability
measure of X. We denote by π0 the initial distribution of X and by πn the distribution of Xn,
πn(·) = Pπ0(Xn = ·). It satisfies π�n = π�0 P n.

A random time T is called a strong stationary time for X, if XT has distribution π and it is
independent of T ; see [1]. The separation discrepancy is defined by

sep(πn, π) := sup
y∈I

[
1− πn(y)

π(y)

]
.

The separation discrepancy satisfies sep(πn, π) ≥ ‖πn − π‖TV, where

‖πn − π‖TV = 1

2

∑
y∈I
|πn(y)− π(y)|

is the total variation distance between πn and π ; see [1] and [4]. In Proposition 2.10 of [1] it
was proved that every stationary time T satisfies

sep(πn, π) ≤ Pπ0(T > n) for all n ≥ 0. (33)

Based on this result, the strong stationary time T is called sharp when there is equality in (33),
that is, when

sep(πn, π) = Pπ0(T > n) for all n ≥ 0.

In Proposition 3.2 of [1] it was shown that a sharp strong stationary time always exists.
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Let P̃ be a stochastic kernel on the countable set Ĩ such that P̃ is a �-intertwining of P ,
where � is a nonsingular stochastic kernel, so P̃� = �P . Let X̃ = (X̃n : n ≥ 0) be the
Markov chain with kernel P̃ .

Recall that when we are in the framework of Theorem 1, we have P̃� = �
←−
P , so P̃ is a

�-intertwining of the reversal kernel
←−
P . Hence, when the intertwining is constructed from a

duality relation,
←−
P and the reversed chain

←−
X will play the role of P and X in the intertwining

relation. In the reversible case
←−
P = P and the notation coincides, that is,

←−
P = P and we can

take
←−
X = X; this occurs, for instance, when P is the kernel of an irreducible BD chain.

The initial probability distributions of the chains X and X̃ will be respectively π0 and π̃0,
that is, X0

d∼ π0 and X̃0
d∼ π̃0. We assume that the initial distributions are linked, that is,

π�0 = π̃�0 �. (34)

When this relation holds, we say that π�0 and π0 form an admissible condition. Let πn and π̃n

be the distributions of Xn and X̃n. By the intertwining relation P̃ n� = �P n for all n ≥ 1, and
the initial condition (34), we obtain

π�n = π̃�n � for all n ≥ 0.

5.1. The coupling

Consider the following stochastic kernel P̄ defined on I × Ĩ , which was introduced in [4]:

P̄ ((x, x̃), (y, ỹ)) = P(x, y)P̃ (x̃, ỹ)�(ỹ, y)

(�P )(x̃, y)
1((�P )(x̃, y) > 0).

Let X̄ = (X̄n : n ≥ 0) be the chain taking values in I × Ĩ , evolving with the kernel P̄ and
having as initial distribution the vector (π0, π̃0), where π�0 = π̃�0 �. In [4] it was proved that
X̄ is a coupling of the chains X and X̃. Then, in the sequel we will write X and X̃ for the
components of X̄, so X̄n = (Xn, X̃n) for all n ≥ 0. In the above construction it can be also
checked that

�(x̃, x) = P(Xn = x | X̃n = x̃) for all n ≥ 0. (35)

(For this equality, see also [2].) In [4] this coupling was characterized as the unique coupling
that satisfies (35) and three other properties on conditional independence. These properties
imply that the coupling also satisfies

�(x̃n, xn) = P(Xn = xn | X̃0 = x̃0, . . . , X̃n = x̃n) for all n ≥ 0.

The following concept was introduced in [4].

Definition 3. The Markov chain X̃ will be called a strong stationary dual of the Markov chain
X if X̃ has an absorbing state ∂̃ that satisfies

π(x) = P(Xn = x | X̃0 = x̃0, . . . , X̃n−1 = x̃n−1, X̃n = ∂̃) for all x ∈ I, n ≥ 0, (36)

and where x̃0, . . . , x̃n−1 ∈ Ĩ satisfy P(X̃0 = x̃0, . . . , X̃n−1 = x̃n−1, X̃n = ∂̃) > 0.

In Theorem 2.4 of [1] it was shown that when condition (36) holds, then the absorption time
T̃

∂̃
at {∂̃} is a strong stationary time for X. Moreover, Diaconis and Fill [4, Remark 2.8] give a

specific dual process X̃ having an absorbing state ∂̃ and whose absorption time T̃
∂̃

is sharp.
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Assume that ∂̃ is an absorbing state for X̃. From (4) we obtain π� = e�
∂̃
�. When the

initial conditions are linked by relation (34), it follows that T̃
∂̃

is a strong stationary time
for X. Indeed, from �(∂̃, x) = P(Xn = x | X̃0 = x̃0, . . . , X̃n = ∂̃) and π� = e�

∂̃
�, it follows

that π(x) = P(Xn = x | X̃0 = x̃0, . . . , X̃n = ∂̃). Observe that, for the Siegmund dual and
monotone kernels, the absorbing state is ∂̃ = N .

5.2. Choice of the initial conditions

Let ∂̃ be an absorbing state of X̃. Assume (34) holds. Then we are able to perform the
duality construction and find that the absorption time T̃

∂̃
is a strong stationary time for X.

Assume that I = Ĩ . Since � is a stochastic matrix, it has a left probability eigenvector π��
satisfying π�� = π���. So, we can choose X̃0

d∼ X0
d∼ π� because (34) holds. Then, when

X̃ is initially distributed as π�, T̃
∂̃

is a strong stationary time for the chain X starting from
π�. If � is nonirreducible then π� could fail to be strictly positive. This is the case for the
Siegmund kernel because, from (14), it can be checked that e0 is the unique left eigenvector
satisfying e�0 = e�0 � and so π� = e0. Then, for the �-intertwining given by (14), the initial

conditions X̃0
d∼ δ0 and X0

d∼ δ0 are admissible.
When b̃ ∈ Ĩ , b ∈ I , b̃ 
= ∂̃ satisfy e�

b̃
� = e�b , then X̃0

d∼ δ
b̃

and X0
d∼ δb form an admissible

initial condition (for which (34) holds). Then T̃
∂̃

starting from b̃ is a strong stationary time
for X starting from b, and it is strictly positive. In this case, both X̃0 and X0 start at a single
point. We observe that the condition e�

b̃
� = e�b is equivalent to the following condition on the

duality function: He
b̃
= ceb for some c > 0. Indeed, if H satisfies this condition and since

� = DϕH�Dπ (see Theorem 1(iii)), we obtain e�
b̃
� = c′e�b with c′ = cπ(b)/ϕ(b̃) . Since �

is stochastic, we obtain c′ = 1, and so c = ϕ(b̃)/π(b). This gives He
b̃
= ϕ(b̃)eb/π(b), which

is exactly e�
b̃
� = e�b .

For the Siegmund kernel and monotone P , � is given by (14). Condition (34) requires
that π0(x)/π(x) decreases with x ∈ I and in this case π̃0(x) = πc(x)(π0(x)/π(x)− π0(x +
1)/π(x + 1)). These statements are respectively condition (4.7) and Formula (4.10) of [4].

We recall that every monotone kernel P satisfies the condition that π� = e�N� (see (4)). The
�-intertwining P̃ is that of

←−
P , and in this case

←−
X and X̃ denote the Markov chains associated

to
←−
P and P̃ , respectively.

5.3. Conditions for sharpness

We now give a proof of the sharpness result alluded to in Remark 2.39 of [4] and in
Theorem 2.1 of [5]. The hypotheses stated in Remark 2.39 are understood as condition (37)
below and we give a complete proof. Owing to the deep consequences of the result that X̃ is a
sharp dual, in Proposition 9 we also write it in terms of conditions on the duality function H .

Proposition 8. Let X be an irreducible positive recurrent Markov chain, and let X̃ be a
�-intertwining of X having ∂̃ as an absorbing state. Assume that there exists d ∈ I such
that

�ed = π(d)e
∂̃
. (37)

Then X̃ is a sharp dual to X, that is, for X̃0
d∼ π̃0 and X0

d∼ π0 with π�0 = π̃�0 �, we have

sep(πn, π) = Pπ̃0(T̃∂̃
> n) for all n ≥ 0. (38)

Proof. From the condition that �ed = π(d)e
∂̃

we obtain

πn(d) = π�n ed = π̃�n �ed = π(d)π̃n(∂̃). (39)
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Since π > 0, the above equalities imply that

πn(d) > 0 ⇐⇒ π̃n(∂̃) > 0. (40)

On the other hand, the condition that π� = e�
∂̃
� means that the ∂̃-row of � satisfies �(∂̃, ·) =

π�(·) > 0. Then, if, for some n, we have π̃n(∂̃) > 0, from π�n = π̃�n � we deduce that πn > 0.
Moreover,

πn(x) =
∑
x̃∈Ĩ

π̃ (x̃)�(x̃, x) ≥ π̃(∂̃)�(∂̃, x) = π̃(∂̃)π(x).

Therefore, from (39) we obtain

min
x∈I

πn(x)

π(x)
= π̃(∂̃) = πn(d)

π(d)
.

Then, sep(πn, π) = 1−π̃(∂̃). Since ∂̃ is an absorption state implies that π̃n(∂̃) = Pπ̃0(T̃∂̃
≤ n),

we obtain the desired relation:

sep(πn, π) = Pπ̃0(T̃∂̃
> n) for all n ≥ n+, with n+ = inf{n ≥ 0 : π̃n(∂̃) > 0}.

Let us show that relation (38) holds for n < n+. First, we note that in this case π̃n(∂̃) = 0,
which, by (40), implies that πn(d) = 0. Then sep(πn, π) = 1 and so the equality sep(πn, π) =
Pπ̃0(T̃∂̃

> n) = 1 holds. We have proved that X̃ is a sharp dual to X.

Proposition 9. (i) Assume that the hypotheses of Theorem 2 are satisfied and that P̂ is a
substochastic kernel having â as an absorbing state in P̂ . Then, if there exists some d ∈ I such
that

e�d H = ce�
â

for some c > 0 (41)

then â is an absorbing state for X̃ and X̃ is a sharp dual to
←−
X . That is, when π�0 = π̃�0 �,

relation (38) holds.

(ii) Assume that the hypotheses of Theorem 2 are satisfied and that P̂ is a substochastic kernel
for which there exist â ∈ Î and d ∈ I such that, for some constants c′ > 0 and c > 0, we have

Heâ = c′ 1 and e�d H = ce�
â
. (42)

Then part (i) holds, and X̃ is a sharp dual to
←−
X .

Proof. (i) From Theorem 2(v), it follows that â is an absorbing state for P̃ . From Propo-
sition 8, it suffices to show that d satisfies (37): �ed = π(d)eâ . Since the hypothesis is
H(d, y) = cδy,â for some c > 0 and all y ∈ Ĩ , Remark 3 implies that �(x, d) = c′′δx,â for
some c′′ > 0. Now, from Theorem 2(v) and (4), we have π(d) = �(â, d), and we deduce that
c′′ = π(d). Therefore, �(x, d) = π(d)δx,â , which is equivalent to (37).

(ii) From Proposition 2, the first relation in (42) guarantees that â is an absorbing state for P̂ .
So, we are under the hypotheses of part (i) and the result follows.

Corollary 3. (i) For a monotone irreducible stochastic kernel P , the �-intertwining Markov
chain X̃ has N as an absorbing state and it is a sharp dual of

←−
X . Moreover, both chains

←−
X

and X̃ can start at the state 0.

(ii) For a monotone irreducible stochastic BD kernel P , the BD chain X̃ is a sharp dual to X.
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Proof. For part (i), the properties required for the sharpness for the Siegmund intertwining
of BD chains follow straightforwardly because the N th row of HS satisfies (41) with d = N .
Also, relation (15) in Corollary 1 is exactly (37). The fact that the state 0 is admissible for both
X and X̃ is a consequence of e�0 = e�0 �. In part (ii) the only novelty is that, for BD chains,
P =←−P .

We note that, by definition, for an absorbing point â, there is a unique state d satisfying (41),
as it occurs for the Siegmund kernel.

When d satisfies property (40), we say that d is a witness state in X that X̃ hits ∂̃ . It reflects the
following more general situation. Assume that � fulfills the equivalence �(x, y) > 0⇔ x ≥ y.
Then, from π� = π̃�� we obtain

π̃0(x) > 0 �⇒ π0(y) > 0 for all y ≤ x.

Then if N is an absorbing state of P̃ , and P(y, y + 1) > 0 and P̃ (y, y + 1) > 0 for all
y ∈ {0, . . . , N − 1}, the equivalence πn(N) > 0⇔ π̃n(N) > 0 is satisfied, and so N will be a
witness state in X that X̃ hits the state N .

From Proposition 9, for the BD chains, the random time T̃N starting from the state 0 gives
information on the speed of convergence to its invariant measure of the original BD chain X.
Let T̃N;0 be a random variable distributed as the hitting time T̃N when starting from 0. We
denote its variance by var(T̃N;0).

For BD chains absorbed at N , the probability generating function of T̃N;0 can be written in
terms of the eigenvalues of both P̃ and P ; see [5] and [10]. Then, when these eigenvalues are
known explicitly, it is possible to compute E(T̃N;0) and var(T̃N;0). But, in general, the whole
set of eigenvalues are not known. Then, below we give an elementary computation of the mean
and the variance of the absorption time T̃N;0 for BD chains, in terms of the coefficients of the
transition matrix P̃ . Let us consider the sequence independent random variables:

(Sy : y = 0, . . . , N − 1) with law P(Sy = n) = Py(T̃y+1 = n) for all n ≥ 0.

Assume that the sequence (Sy : y = 0, . . . , N − 1) is independent of the Markov chain X̃. We
have

∑N−1
y=0 Sy

d= T̃N;0. Using this classical observation, we easily obtain the mean absorption
time as

E(T̃N;0) =
N−1∑
y=0

E(Sy) =
N−1∑
y=0

( y∑
z=0

1

p̃y

y∏
r=z+1

q̃r

p̃r

)
.

We also obtain the variance of the hitting time of N starting from 0 in the form

var(T̃N;0) =
N−1∑
y=0

var(Sy) =
N−1∑
y=0

( y∑
z=0

Az

y∏
x=z+1

q̃x

p̃x

)
,

where the coefficients Az are given by

Az = p̃z − 1

p̃2
z

+ 2(1− p̃z)

p̃z

E(Sz)+ 2q̃z(p̃z − 1)

p̃2
z

E(Sz−1)+ 2q̃z

p̃z

E(Sz−1) E(Sz)

− q̃z(q̃z − p̃z)

p̃2
z

E(Sz−1)
2.

Remark 6. The above expressions of the mean and the variance are difficult to handle in terms
of the transition probabilities of P̃ , and often they cannot be used to describe the behavior of
the mean and the variance when N grows large.
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6. The hypergeometric dual

For I = {0, . . . , N}, let us suggest other potentially interesting examples of nonsingular
duality functions H for which there exists a column of H which is constant so that Proposition 2
can be applied. For these examples, H−1 is known explicitly, which turns out to be useful to
decide whether for a given irreducible stochastic kernel the H -dual defines a substochastic
matrix. If this occurs, the problem of interpreting the intertwining chain given by Theorem 1
remains a challenging problem for each specific case.

The Vandermonde dual and the hypergeometric duals were first introduced in [14] in the
context of neutral population genetics. In this context and also in nonneutral situations, the
hypergeometric kernel plays a central role.

Vandermonde dual: H(x, y) = (x/N)y . In this case the 0th column is constant.

Hypergeometric dual: H(x, y) = (
N−x

y

)
/
(
N
y

)
. In this case H = H�, H is upper-left triangu-

lar, and (42) is fulfilled with â = 0 and d = N , that is,

He0 = 1 and e�NH = e�0 . (43)

Let us comment on the hypergeometric dual H .
Assume that P is given by the reversible Moran model with nonneutrality bias mechanism p.

Assume that q = 1− p is completely monotone, that is,

(−1)kq(k)(u) ≥ 0 for all k ≥ 0 and u ∈ (0, 1).

In particular, p is nondecreasing. Then the H -dual kernel P̂ exists and can be interpreted in
terms of a multisex backward process. As shown in [9], for the Moran model with bias p

satisfying p(0) ∈ (0, 1), we have P̂ 1(0) = 1 and 0 < P̂ 1(x) = 1 − (x/N)p(0) < 1 for all
x 
= 0. From p(0) 
= 0, all the states but a = 0 of P̂ are mass-defective. The intertwining
matrix P̃ is the transition kernel of a skip-free-to-the-left BD chain that can be easily obtained
from [9], and 0 is the unique absorbing state for X̃. Relation (43) fulfills the hypotheses of
Proposition 9 with d = N ; then in the above Moran model the sharpness property is satisfied.

On the other hand, the link matrix � is upper-left triangular, stochastic, and irreducible.
Then there exists a probability vector π� that satisfies π��� = π�� , so π0 = π̃0 = π� is an
admissible initial condition for X and X̃. Also, from e�N� = e�0 we obtain another admissible
initial condition, π0 = δ0 and π̃0 = δN . We can summarize this discussion in the following
result.

Corollary 4. Let X be the nonneutral Moran chain with transition matrix P fulfilling the above
monotonicity conditions on q = 1− p. Then, the construction of the intertwining kernel P̃ in
Theorem 1 starting from the hypergeometric dual H can be achieved and the Markov chain X̃

is well defined. The absorbing state of X̃ is 0, the process X̃ is a sharp dual of X, and X̃ can
be started at N while X starts at 0.

Hence, the time T̃0;N that X̃ reaches 0 when it starts from N is the stochastically smallest

time at which X
T̃0;N

d∼ π given X0 = 0 and X̃0 = N . We point out that the latter time T̃0;N
that X̃ needs to reach 0 when it starts from N is distributed like the time T̃N;0 to reach N

starting from 0 for the Siegmund intertwined BD chain to the same Moran model. This is
in accordance with Theorem 1.2 of [6], which states that, for a skip-free-to-the-right Markov
chain absorbed at N , the law of the time it takes to hit N starting from 0 is equal to the law
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of T̃N;0 for the BD chain. This result can be transferred to our skip-free-to-the-left BD chain
case, while exchanging the boundaries {0, N}.

Let us finally consider the Wright–Fisher transition matrix P given by

P(x, y) =
(

N

y

)
p

(
x

N

)y(
1− p

(
x

N

))N−y

,

whose bias p(u) is such that q = 1 − p is again a completely monotone function, satisfying
p(0) > 0. This process is not reversible, nor is it in the BD class. However, using the
hypergeometric duality function it was shown in [8] that the H -dual P̂ to P in (1) defines a
substochastic matrix. From Theorem 1 we conclude that the corresponding P̃ is �-linked to

←−
P .
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