Crystal Growth Mode Changes during Pulsed Laser Induced Rapid Solidification in Nanoscale Thin Films of Al-Cu Eutectic

Kai Zweiacker1, Can Liu1, Joseph T. McKeown2, Thomas LaGrange2, Bryan W. Reed2, Geoffrey H. Campbell2 and Jörg M.K. Wiezorek1

1. Department of Mechanical Engineering and Materials Science, University of Pittsburgh, Pittsburgh, PA 15261
2. Condensed Matter and Materials Division, Lawrence Livermore National Laboratory, Livermore, CA 94556

Pulsed laser induced rapid solidification is a promising processing method to produce unique microstructures and micro-constituents in metallic thin films at the nano-scale [1]. Recent in-situ dynamical transmission electron microscopy (DTEM) studies on the rapid solidification of hypo-eutectic Al-Cu alloys have identified various growth mode changes with modulation of the microstructural features [2]. Elucidating crystallographic orientation changes during growth mode transition are of fundamental importance in understanding rapid solidification processes [3-5]. Due to the nano-crystalline nature of the resulting microstructure, acquiring statistically significant and representative data sets is rather difficult with electron backscatter pattern based orientation image mapping (OIM) by scanning electron microscopy. With the recent development of transmission electron microscopy (TEM) based OIM, which relies on automated acquisition and indexing of precession electron diffraction (PED) patterns, changes in crystal orientation and crystal structure can be detected with nanometer spatial resolution [6-8].

Here we present and discuss results analytical TEM/STEM studies of Al-16at.% Cu eutectic alloy thin films after pulsed laser induced rapidly solidification. Figure 1 illustrates morphological changes associated growth mode transitions, including from a regular lamellar eutectic growth mode to irregular eutectic cell growth followed by finally growth at rates above the velocity of absolute stability, implying an increasing solidification rate. Figure 2 documents a crystallographic orientation change during rapid solidification identified by PED OIM, e.g. marked in the (001) inverse pole figures. The details of growth mode changes and associated phase, compositional and crystallographic orientation changes will be analyzed and discussed.

References

[9] Work was performed under the auspices of the U.S. Department of Energy by the Lawrence Livermore National Laboratory and supported by the Office of Science, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering, of the U.S. Department of Energy under...
The research activities at the University of Pittsburgh received support from the National Science Foundation, Division of Materials Research, Metals & Metallic Nanostructures program through Grant No. DMR 1105757.

Figure 1. Annular dark field scanning transmission microscope image of the morphologically different zones in rapidly solidified Al-16at.%Cu eutectic thin films.

Figure 2. PED TEM OIM maps of a) area corresponding to the edge region of the melt pool, where a texture change in transition between b) and c) is observed. In d) the starting of columnar solidification is shown, and e) displays the end of the kinetically modified eutectic growth zone.