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ABSTRACT

The distribution of the sum of n mutuality independent random variables
with a common distribution f(x) plays an important role in many insurance
problems. The paper presents alternative methods of deriving the distribu-
tion of the sum of n random variables when/(#) is a mixed density and mass
function. The methods are illustrated and compared.

i. INTRODUCTION

The sum of n mutually independent random variables x% plays an
important role in many insurance problems. Of particular interest
however, is the case where the n mutually independent random
variables have a common piece-wise continuous density function
j{%i). The density function of the sum Xn = Xi + • • • + xn is the
w-fold convolution of f(xi) with itself and is denoted byfn*(Xn) [3].
There exist however situations where the n random variables have
a common mixed density and mass function. Typical examples
relate to insurance contracts with a provision for deductibles and/or
insurance limits [4, 8]. The problem arises also in the derivation of
the distribution of aggregate claims when a pooling limit is applied
to each certificate [7]. The density of the sum of the n random
variables is then the «-fold convolution of the mixed density and
mass function with itself. Clearly, for large values of n this density
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0.2 N-FOLD CONVOLUTION

can be approximated by the normal distribution. For smaller
values of n, however, the density function must be derived in a
different way.

The purpose of this paper is to present alternative methods of
deriving the density function of the sum of n independent random
variables with a common mixed density and mass function.

2 FORMULATION OF ALTERNATIVE METHODS

In this section, three methods are described which may be used to
derive the w-fold convolution of a mixed density and mass function.
The methods are referred to as

1) Analytic Method
2) Numeric Method
3) Method of Moments.

In order to illustrate the methods, the following mixed density
and mass function has been chosen 1).

_ \^~Xx + A-${x — D) foro<#<.D
•^ d o otherwise

where

A = / le-^dx = e~XD

D +

and

(lim (i/AX) for D — (Ax/2) < * < D + (Ax/2)
8 (%—£>) = 'A*-*°

( 0 otherwise.

8{x — D), known as the Dirac delta function, may be thought of
as the height of a unit impulse, centered on x = D, as the width
tends to zero 2).

1) This situation represents the distribution of the retention cost x for a
given loss to the insurance consumer with an insurance policy having a
deductible D. Under such a deductible arrangement the insured has to
absorb the entire loss if the loss is less than or equal to D and has to carry an
amount equal to D if the loss exceeds D.

2) For discussion of the Dirac delta function, see Lighthill, M. J., Intro-
duction to Fourier Analysis and Generalized Functions, Cambridge Univer-
sity Press, 1958 [5].
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Figure i illustrates the function.

Density

nnnnnnn

Figure I

i. Analytic Method
The analytic method is based on Laplace Transform theory [i]

which states

L[ J g(x) h(Z - *)] dx = L[g(x)-\ • L[h(y)] (3)

with g(x) = o for x < o and h(y) = o for y < o.
For the special case of the sum, Xn, of n random variables x with

an identical distribution f(x) the density function of Xn is the
w-fold convolution of f(x) with itself and is denoted by fn*(Xn)
[2]. Thus

L[f**(Xn) = {![/(*)]}«. (4)
For a. piece-wise continuous function, (4) may be rewritten as

0

Inversion of the right hand side of (5) results in the desired
fn*(Xn).

Illustration
The above concept will now be applied to the mixed density and

mass function described by (2).
The Laplace Transform of (2) is given by (6)

L[f(x)] = J o-e~sxdx D)

(6)
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Raising (6) to the power of n results in (7).

L[fn*{XJ] = S S(—1){ {%)$) A'c-i),n-k+i[e->-<De-
i -01-0

The inversion of the right hand side of (7) results in (8).

(7)

where r = n -\- i

U(Xn—kD) =

i for r — k

o for r 7̂  k

o for — oo < Xn •

1/2 for Xn = kD

for o < Xn

[KRONECKER DELTA]

[UNIT STEP]

1 for kD < Xn <; 00

Thus (8) represents the desired fn*(Xn)
 3)

2. Numeric Method

Using the numeric method, the domain of the random variable x
is divided into M + 1 discrete intervals. Let a and 6 represent the
lower and upper limit of the domain. A discrete probability dis-

3) It is interesting to note that for D -> 00 (i.e. exponential distribution)
the only term that contributes to the convolution in the finite region is the
term with k = i = o. Thus for this case, (8) reduces to

which is a gamma distribution. This finding is consistant with the results
given in [9].
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tribution for x and Xn may be found using the following rela-
tionships 4)

M M
b-a

2.W

J f(x) dx for j = o
a

(b-a) (nf + l)

b-a)

J f(x) dx for; = I, 2, a . . M — I (9)

J /(*) dx for j = M

j - a

m(b — a)
w ) - a -

j(b - a)
M

i-x

a)\

where a =

for w = o, 1, 2, . . . nM

ioxm ^(n—i)M

m — (n — i)M iorm>(n—i)M

(10)

m f or m ^ M

M for m > M.

Illustration

The above procedure is now applied to the mixed density and
mass function described by (2) with a = o and b = D. Thus, (9) and
(10) become

4) It is recognized that the handling of the first (j = O) and the last
(y = M) interval in (9) is one of various possibilities.
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P
jD
M

\e AXdx for j = o

D(2)

J \e-'lxdx f o r ; = i , 2, . . . M — i ( n )

for; =

and pn*
ImD

\~M M TF- M

Clearly, M plays an important role on how accurately the discrete
approximation (n) portrays the mixed density and mass function
f(x) as given in (2). To obtain an indication of the closeness one may
compute the mean, standard deviation, moment coefficients of
skewness and kurtosis for various values of M. Table 1 represents
these results for X = 0.007 and D = 100.

TABLE 1

m

i

5
I O

25
- 5 0
1 0 0

2 5 0
5 0 0
0 0 5

mean

70.4688
7I-8577
71.9017-
71.9140
71.9158
71.9162
71.9164
71.9164
71.9164

Standard deviation

45-6183
34-9885
34-5922
34-4803
344643
34-46O3
34-4592
34-459O
34-459O

Skewness

-0.8974
-0.7876
-0.7638
-0.7567
-O-7557
-O-7554
-O-7553
-O-7553
-O-7553

Kurtosis

1-8053
2.0877
2.0157
1-9931
1.9898
1.9889
1.9887
1.9887
1.9887

5 For M = 00 the value of the descriptive measures may be obtained from
the following expressions:
Mean = { I / X [ I — e-

Skewness = {1/X3

Kurtosis = {1/X4 e~>-D — (i2J92X2
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The descriptive measures of (n) should be compared to those of
the mixed density and mass function (2) since some may be close
while others deviate substantially. For example with a symmetric
distribution it is conceivable for a given value of M that the mean
and skewness could be close while the standard deviation and
kurtosis could deviate significantly.

As can be seen from Table 1, all of the descriptive measures
converge to those obtained for M = 00 as M increases 6). On the
other hand, as M increases the number of calculations and storage
requirements increase drastically. Thus the value of M must be
chosen in light of these trade-offs.

3. Method of Moments

With the method of moments an approximation to the n-fold
convolution is obtained in a two step process. First the mean and
the second, third and fourth moments about the mean for fn*(Xn)
are determined. In the second step, a density function consistent
with these descriptive measures is derived.

As shown in [3] the mean and the second moment about the mean
of the sum of n mutually independent random variables with a
common distribution (with a finite mean of \x and a finite variance
of a2), \xn and Q2

n, are

V-n = nV- (13)

Ql = < = na\ (14)

As shown in Appendix A, the third and fourth moments about the
mean of the sum of n mutually independent random variables with
a common distribution, 6^ and 6 ,̂ are given by (15) and (16)
respectively

0 3 ~-e8 (15)n

e4
B = »84 + 3(»s-»)(<T2)a. (16)

As a second step a density function has to be determined which is
consistent with the descriptive measures calculated in (13) through
(16). In light of the independence assumption, the normal distri-

6) The rate of convergence depends on X and D.
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bution seems to be a logical choice when n is large 7). In cases where
the test for normality [2] fails, the beta distribution may be used
successfully 8.

Illustration

The four descriptive measures [x, 62, 83 and 04 for the function
given by (2) can be determined by evaluating the expressions
within the brackets {} in footnote 5. Various examples of the
resulting density function for fn*(Xn) using the beta distribution
are shown in Figure 2.

3 COMPARISON OF ALTERNATIVE METHODS

The usefulness of the alternative methods of deriving the dis-
tribution of the sum of n independent random variables with a
common mixed density and mass function in the context of (2) can
best be analysed on a comparative basis.

Analytic versus Numeric

The density function derived by the analytic method has to be
integrated to obtain a discrete probability distribution which then
can be compared to that derived by the numeric method. Table 2
represents the results for n = X, 5 = 0.007 andD = 100. As can be ob-
served from the errors, the accuracy of the numeric method improves
significantly as M increases from 10 to 50. Thus, in the context of
(2) there exists a trade-off between the achieved accuracy and the
computational effort. For problems where a high degree of ac-
curacy is necessary, the numeric method requires a large value of
M thereby making the analytic method the more efficient procedure.

7) Note that
lim

_
3

which are necessary but not sufficient conditions for normality.
8) A procedure for obtaining the beta distribution consistent with the four

descriptive measures is outlined in [6].
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X

o- 5
5- 15
15- 25
25- 35
35- 45
45- 55
55- 65
65- 75
75- 85
85- 95
95-1°5
105-115

"5-125
125-135
I35-H5
145-155
155-165
165-175
175-185
185-195
195-205
205-215
215-225
225-235

235-245
245-255
255-265
265-275

275-285
285-295

295-3O5
3O5-3I5
315-325
325-335
335-345
345-355
355-365
365-375
375-385
385-395
395-4O5
405-415

415-425
425-435
435-445
445-455
455-465
465-475
475-485
485-495
495-500

Analytic

0.000000
0.000000
O.OOOOOI
0.000005
0.000014
0.000031
0.000060
0.000104
0.000165
0.000246
0.000349
0.000487
0.000698
0.001017
0.001462
0.002045
0.002765
0.003616
0.004589
0.005668
0.006853
0.008478
0.010725
0.013379
0.016251
0.019194
0.022089
0.024848
0.027404
0.029710
0.032440
0.038405

0043154
0.046237

0.047953
0.048555
0.048263
0.047262
0.045712
0.043746
0.051219
0.053628
0.045630
0.038687
0.032672
0.027473
0.022990
0.019133
0.015825
0.012996
0.035767

TABLE

Probability

2

Numeric

M = 10

0.000000
0.000000
0.000002
0.000007
0.000017
0.000036
0.000066
O.OOOIII
0.000173
0.000255
0.000363
0.000513
0.000734
0.001060
0.001509
0.002093
0.002812
0.003661
0.004630
0.005705
0.006962
0.008625
0.010820
0.013431
0.016271
0.019186
0.022061
0.024805
0.027349
0.029646
0.032969
0.038070
0.042877
0.046011
0.047769
0.048407
0.048146
0.047172
0.045644
0.043697
0-050534

O-O53774
0.045756
0.038797
0.032768
0.027556
0.023062
0.019195
0.015878
0.013042

O-O35973

M = 50

0.000000
0.000000
O.OOOOOI
0.000005
0.000014
0.000032
0.000061
0.000104
0.000165
0.000246
0.000349
0.000488
0.000700
0.001018
0.001464
0.002047
0.002767
0.003618
0.004590
0.005669
0.006858
0.008484
0.010729
0.013381
0.016252
0.019194
0.022088
0.024847
0.027402
0.029707
0.032461
0.038391

0.043143
0.046228

0.047945
0.048549
0.048258
0.047259
0.045709
0.043744
0.051192
0.053634

0.045635
0.038691
0.032676
0.027476
0.022993
0.019136
0.015827
0.012998

0.035775

Error

M = 10

0.000000
0.000000
-O.OOOOOI
-0.000002
-O.OO0OO2
-0.000005
-0.000005
-0.000006
-0.000008
-0.000009
-0.000013
-0.000025
-0.000035
-0.000043
-0.000046
-0.000047
-0.000047
-0.000045
-0.000040
-0.000037
-0.000109
-0.000146
-0.000095
-0.000052
-0.000020
0.000008
0.000027
0.000043
0.000055
0.000064
-0.000528
0.000335
0.000276
0.000226
0.000183
0.000147
0.000117
0.000090
0.000068
0.000048
0.000684

-0.000146
-0.000126

-0.OOOI10

-0.000096
-0.000082
-0.000071
-0.000062
-0.000052
-0.000045
-0.000206

M = 50

0.000000
0.000000
0.000000
0.000000
0.000000
—O.OOOOOI
—O.OOOOOI
0.000000
0.000000
0.000000
0.000000
—O.OOOOOI
—0.000002
—O.OOOOOI
—0.000002
—0.000002
—0.000002
—0.000002
—0.000000
—O.OOOOOI
—0.000005
-0.000005
—0.000004
—0.000002
—O.OOOOOI
0.000000
0.000000
O.OOOOOI
0.000002
0.000002
-0.000020
0.000013
0.000010
0.000009
0.000008
0.000005
0.000004
0.000003
0.000002
O.OOOOOI
0.000027

-0.000005
-0.000005
-0.000004
-0.000004
-0.000002
-0.000002
—0.000002
-O.OOOOOI
-0.000002
-0.000008
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Analytic versus Moment

The comparison is based on the density functions derived by
both methods to facilitate graphical representation of the results.
Figure 2 illustrates the results for various values of n and X with
D = 100. With the method of moments it is not possible to trace
the existing discontinuities in the n-iold convolution of the mixed
density and mass function. However, the discontinuities become less
pronounced as n increases, thus making the approximation more
accurate 9). Furthermore, it can be seen that the approximation,
for a given n, improves as X increases. Furthermore, the mass of
D can be decreased by increasing D thus reducing the discon-
tinuities and improving the approximation. This observation is due
to the fact that the mass at D decreases as X increases. For problems
with minor discontinuities the method of moments is clearly the
more efficient procedure 10).

4. CONCLUSION

The purpose of this paper was to describe alternative methods
which can be used to derive the n-fold convolution of a mixed
density and mass function. The methods have been applied to the
mixed density and mass function given in (2). The illustrations and
the comparative analysis is therefore restricted to the specific
situation. The methods, however, can be used for functions other
than the one given in (2) although it must be realized that the
analytic method may not be applicable.
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APPENDIX A

For the derivation of the third and fourth moments about the
mean of a n-iold convolution, first consider the case of the con-
volution of two piece-wise continuous density functions, g(x) and
h(y), both having finite means, \LX and \Ly, and finite variances,
GX — Q2(x) and a2

y — 02(y). Let the third moment about the mean be
represented by Q3(x) and 63(y) and the fourth moment about the
mean be denoted by 64(#) and 64(y).

The third moment about the mean of the sum of x and y, Q3(x -f y)
can be written as

93(* + Y)= } J g(x) • h(y) (x + y-(lix + ^ ) ) 3 dydx. (17)

By letting a = x — \xx and b = y — p (17) may be evaluated as
follows.

6 V + y)= 1 1 g(x) h{y) {a + b)3 dydx

= J g(x)as J h(y) dydx + 3 • J g(x)a2 J h(y)b dydx

+ 3 - J Hy)b2 J g(x)adxdy+ J h(y) b3 J g(x) dxdy

= 6 » + 63(y). " " (18)

Correspondingly, the fourth moment about the mean of the sum
of x and y, 64(# -j- y), can be written as
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64(x + y)= } J g(x) h(y) {a + b)4 dydx
— TO - 00

= J g(x) a* ] h{y) dydx + 4 • J g{x) a3 J h{y) b dydx

+ 6 - J g(x) a2 J h[y) b2 dydx + 4 • J A(y) 62 J g(«)

+ J Hy) b4 J g(x) dxdy

= e4(^) + 6 • 02(*) • 62(y) + 03(y). (19)

Let Ĝ  represent the kib moment about the mean of the sum of n
random variables with a common distribution and 6f = Gfc denote
the ktb moment about the mean of the common distribution.
Defining

e£ = e*(* + y)

6fc = Gfc(y) for A = 2, 3, and 4

and substituting into (18) leads to

e« = e3n-i + e3- (20)

From (20) it follows that

K = «93- (21)

Correspondingly, (19) becomes

e4
B = e4

n_1 + 6e 2
B _ 1 e a + e4. (22)

From (22) it follows that

e 4 =n0 4 + 3(»8-»)(6a)a. (23)
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