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Abstract. For a derivation δ of a commutative Noetherian �-algebra A, a
homeomorphism is established between the prime spectrum of the Ore extension
A[z; δ] and the Poisson prime spectrum of the polynomial algebra A[z] endowed with
the Poisson bracket such that {A, A} = 0 and {z, a} = δ(a) for all a ∈ A.
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1. Introduction. The best known example of a simple Poisson algebra is the
coordinate ring of the symplectic plane, that is, the polynomial algebra �[z, x] with
{z, x} = 1. This corresponds to the best known example of a simple Ore extension
A[z; δ], namely the Weyl algebra A1(�), generated by x and z subject to the relation
zx − xz = 1. Here A = �[x] and δ = d/dx. The first known example of a Poisson
bracket on �[x, y, z] for which �[x, y, z] is a simple Poisson algebra, due to Farkas
[6, Example following Lemma 15], is such that {x, y} = 0 and the Hamiltonian {z,−}
acts on �[x, y] as the derivation δ = ∂x + (1 − xy)∂y, where ∂x and ∂y are the partial
derivatives. In the first known example, due to Bergman, see [3], of a derivation δ for
which the Ore extension �[x, y][z; δ] is simple, the derivation δ is ∂x + (1 + xy)∂y. The
proofs of simplicity in both [6] and [3] remain valid for the common generalization
where δ = ∂x + (1 + λxy)∂y for some λ ∈ �∗, giving rise to corresponding families of
simple Poisson algebras and simple Ore extensions. Unlike the case of the symplectic
plane and the Weyl algebra, this correspondence does not appear to have been
noted. These examples of simple Poisson algebras with corresponding simple Ore
extensions are special cases of a general situation. Given any non-zero derivation δ

of a commutative �-algebra A, there is a Poisson bracket on the polynomial algebra
A[z] such that {A, A} = 0 and {z, a} = δ(a) for all a ∈ A. We shall show that if A is
Noetherian then the Poisson prime spectrum of A[z] is homeomorphic to the prime
spectrum of A[z; δ]. This fits into the philosophy of [9], in that A[z] is the commutative
fibre version of the semi-classical limit of the family of non-commutative algebras
Rα := A[h][z; hδ]/(h − α)A[h][z; hδ], where α ∈ �∗ and the derivation δ is extended to
the polynomial algebra A[h] by setting δ(h) = 0. Note that Rα � A[z; αδ].

In addition to Bergman’s example, there are many known examples of simple
derivations of �[x, y], for example see [2, 3, 4, 12, 16, 21, 22]. All such examples give rise
to Poisson brackets for which �[x, y, z] is a simple Poisson algebra. In [10], Goodearl
and Warfield illustrated their study of Krull dimension in Ore extensions with some
non-simple Ore extensions of �[x, y] with interesting prime spectra. In the final section
we shall transfer these and some other known examples to the Poisson setting and also
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answer a question from [10] on Ore extensions by constructing an accessible example
of a derivation of �[x, y] giving rise to a Poisson bracket on B := �[x, y, z] for which
the height two prime ideal yB + zB is Poisson but no height one prime ideal is Poisson.

2. Background on Poisson algebras. Our base field will always be �, although
the results are valid over any field of characteristic 0. In Remark 3.7 algebraic closure
is pertinent. We denote the prime spectrum of a not-necessarily commutative ring by
Spec R.

DEFINITION 2.1. A Poisson algebra is �-algebra A with a Poisson bracket, that is,
a bilinear product {−,−} : A × A → A such that A is a Lie algebra under {−,−} and,
for all a ∈ A, the Hamiltonian ham(a) := {a,−} is a �-derivation of A.

The following definitions and claims made for them are well known. One
comprehensive reference is [8, Lemma 1.1 and thereabouts].

DEFINITIONS 2.2. Let � be a set of derivations of a commutative �-algebra A. The
�-centre, Z�(A), of A is {a ∈ A : δ(a) = 0 for all δ ∈ �}.

An ideal I of A is a �-ideal if δ(I) ⊆ I for all δ ∈ � and a proper �-ideal P of A is
�-prime if, for all �-ideals I and J of A, IJ ⊆ P implies I ⊆ P or J ⊆ P. If � = {δ} is
a singleton then, in these and subsequent definitions, we replace � by δ rather than by
{δ}.

To say that A is �-simple means that 0 is the only proper �-ideal I of A. A
derivation δ of A is said to be simple if A is δ-simple.

The �-core of an ideal I of A, denoted (I : �), is the largest �-ideal of A contained
in I . If P is a prime ideal of A then (P : �) is prime, see [8, Lemma 1.1(a)].

If I is a �-ideal of A then each derivation δ ∈ � induces a derivation δ of A/I such
that δ(a + I) = δ(a) + I for all a ∈ A. If I is a �-ideal and is also prime then δ extends
to the quotient field Q(R/I) by the quotient rule δ(as−1) = (sδ(a) − aδ(s))s−2.

A �-ideal P of A is �-primitive if P = (M : �) for some maximal ideal M of A.
Every �-primitive ideal is �-prime.

If A is a Poisson algebra and � = {ham(b) : b ∈ A} then we replace the prefix �-
by the word Poisson. In particular, an ideal I of a Poisson algebra is a Poisson ideal
if {i, a} ∈ I for all a ∈ A and i ∈ I and A is a simple Poisson algebra if and only if the
only Poisson ideals of A are 0 and A. The Poisson centre of A and the Poisson core of
a Poisson ideal I of A will be denoted by PZ(A) and P(I) respectively.

LEMMA 2.3. Let A be a commutative Noetherian �-algebra, and let � be a set of
derivations of A. If P is a �-prime ideal of A then P is prime.

Proof. See [8, Lemma 1.1 (d)]. �
DEFINITIONS 2.4. Let � be a set of derivations of a commutative Noetherian �-

algebra A. The �-prime spectrum of A, denoted �-Spec(A), is the set of all �-prime
ideals of A with the topology induced from the Zariski topology in Spec(A). The
Poisson spectrum of A will be denoted by P. Spec(A). Thus, a closed set in P. Spec(A)
has the form V (I) := {P ∈ P. Spec(A) : P ⊇ I} for some ideal I of A. As is observed in
[9, Section 6.1], replacing I by the Poisson ideal that it generates, I can be assumed to
be a Poisson ideal.

DEFINITION 2.5. Let A be a Poisson algebra and I be a Poisson ideal of A. If
the induced Poisson bracket on A/I is zero, we say that I is residually null. This is
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equivalent to saying that I contains all elements of the form {a, b} where a, b ∈ A, or
that I contains all such elements where a, b ∈ G for some generating set G for A. The
set of residually null Poisson prime ideals of A is clearly closed in P. Spec(A).

DEFINITIONS 2.6. By a Poisson maximal ideal we mean a maximal ideal that is also
Poisson whereas by a maximal Poisson ideal we mean a Poisson ideal that is maximal
in the lattice of Poisson ideals. These notions are not equivalent. Any Poisson maximal
ideal is maximal Poisson but the converse is false as can be seen by considering the
ideal 0 in any simple Poisson algebra that is not simple as an associative algebra, such
as �[y, z] with {y, z} = 1.

DEFINITIONS 2.7. A G-domain is a commutative integral domain R such that the
intersection of the non-zero prime ideals is non-zero, in other words 0 is locally closed
in Spec R. See [20, Theorems 19 and 20 and the intermediate text]. With A and � as in
Definitions 2.2, let P be a �-prime ideal of A. We shall say that P is �-G if it is locally
closed in �-Spec(A). To say that A is �-G means that 0 is a �-G ideal of A.

If P is a �-ideal and prime, in particular if A is Noetherian and P is �-prime, we
say that P is �-rational if Z�(Q(A/P)) = �, where � is the set of derivations of the
quotient field Q(A/P) induced, via R/P, by derivations belonging to �.

3. Semi-classical limits of Ore extensions. Let A denote a commutative �-algebra
that is also a domain and let D be the polynomial algebra A[h]. Let δ be a derivation of
A and extend δ to D by setting δ(h) = 0. Then hδ is a derivation of D and we can form
the Ore extension (or skew polynomial ring or ring of formal differential operators)
T := D[z; hδ] in which elements have the form

∑n
0 dizi, di ∈ D and zd − dz = hδ(d)

for all d ∈ D. Note that hz = zh and h is a central non-unit regular element of T
such that T/hT is isomorphic to the commutative polynomial algebra B := A[z] and
T/(h − 1)T is isomorphic to the Ore extension R := A[z; δ]. If α ∈ �∗, then T/(h −
α)T � A[z; αδ] � A[z; δ], where the final isomorphism maps z to α−1z. In this situation,
there is a well-defined Poisson bracket on B such that

{u, v} = h−1[u, v]

for all u = u + hT and v = v + hT ∈ B. With this bracket, B is the semi-classical limit
of the family A[z; αδ], α ∈ �∗, as in [9, 2.1], T is a quantization of the Poisson algebra
B in the sense of [1, Chap. III.5] and R is a deformation of B in the sense of [19]. A
familiar example is obtained by taking A = �[x] and δ = d/dx. Here R is the Weyl
algebra A1(�), with generators x and z subject to the relation zx − xz = 1, and the semi-
classical limit B is �[x, z] with {z, x} = 1, that is the coordinate ring of the symplectic
plane.

To emphasise the role of the single derivation δ, the Poisson bracket on B will
sometimes be written {−,−}δ. Thus, {a, b}δ = 0 and {z, a}δ = δ(a) for all a, b ∈ A. In
the terminology of [23], B is a Poisson polynomial ring over A for which the Poisson
bracket on A and the derivation α are both zero.

LEMMA 3.1. Let A be a commutative �-algebra with a derivation δ and let B = A[z]
equipped with the Poisson bracket {−,−}δ.

(i) For all a, b ∈ A and all m, n ∈ �, {azm, bzn} = (maδ(b) − nbδ(a))zm+n−1.
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(ii) Let Q be a δ-ideal of A. Then QB is a Poisson ideal of B and there is an
isomorphism of Poisson algebras, θQ : B/QB → (A/Q)[z] given by

θQ

((
n∑

i=0

aizi

)
+ QB

)
=

n∑
i=0

(ai + Q)zi,

where the Poisson bracket on A/Q[z] is {−,−}δ.

Proof. (i) is routine using the fact that the Hamiltonians are derivations. The first
statement in (ii) is immediate from (i) and the second statement is straightforward. �

LEMMA 3.2. Let A be a commutative Noetherian �-algebra that is also a domain, let
δ be a non-zero derivation of A and let P be a non-zero Poisson prime ideal of B := A[z]
for the Poisson bracket {−,−}δ. Let Q = P ∩ A.

(i) Q is a non-zero δ-prime ideal of A.
(ii) If δ(A) 
⊆ Q then P = QB.

Proof. (i) Let p = ∑n
i=0 aizi, with each ai ∈ A, be an element of minimal degree n in

z among non-zero elements of P. Let a ∈ A be such that δ(a) 
= 0. Then (ham a)(p) =
−∑n

i=0 iδ(a)aizi−1 ∈ P. This contradicts the minimality of n unless n = 0. Thus, n = 0
and Q 
= 0.

As P is a Poisson ideal of B, Q is a δ-ideal of A. Let I and J be δ-ideals of A such
that IJ ⊆ Q. By Lemma 3.1(ii), IB and JB are Poisson ideals of B. Clearly, IBJB ⊆ P
so either IB ⊆ P, whence I ⊆ P ∩ A, or JB ⊆ P, whence J ⊆ P ∩ A. Thus, P ∩ A is
δ-prime.

(ii) By Lemma 2.3, A/Q is a domain. Suppose δ(A) 
⊆ Q, so that the induced
Poisson bracket on the domain A/Q is non-zero. Clearly, QB ⊆ P. If QB 
= P then
θQ(P/BQ) is a non-zero Poisson ideal of (A/Q)[z] intersecting A/Q in 0. This is
impossible by (i) applied to A/Q, so QB = P. �

The situation is similar for the prime spectrum of the Ore extension R = A[z; δ].
Let A be a commutative �-algebra with a derivation δ, and let Q be a δ-ideal of A.
By [7, Section 1, final paragraph], QR is an ideal of R and there is an isomorphism
ψQ : R/QR → A/Q[z; δ] given by

ψQ

((
n∑

i=0

aizi

)
+ QR

)
=

n∑
i=0

(ai + Q)zi.

LEMMA 3.3. Let A be a commutative �-algebra that is also a domain, let δ be a non-
zero derivation of A and let P be a non-zero prime ideal of R := A[z; δ]. Let Q = P ∩ A.

(i) Q is a non-zero δ-prime ideal of A.
(ii) If δ(A) 
⊆ Q then P = QR.

Proof. (i) By [14, Lemma 1.3], Q is δ-prime and, by [15, Lemma 1], Q 
= 0.
(ii) By Lemma 2.3 with � = {δ}, A/Q is a domain. Suppose that δ(A) � Q so that

the induced derivation δ on the domain A/Q is non-zero. The ideal QR is prime by [14,
Lemma 1.3] and QR ⊆ P. If QB 
= P then ψQ(P/RQ) is a non-zero ideal of (A/Q)[z; δ]
intersecting A/Q in 0. This is impossible by (i) applied to A/Q, so QR = P. �

COROLLARY 3.4. Let A be a commutative �-algebra that is a domain and let δ be a
non-zero derivation of A. Let R = A[z; δ] and let B be the Poisson algebra A[z] with the
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Poisson bracket {−,−}δ. Then B is Poisson simple if and only if R is simple if and only if
δ is simple.

Proof. It follows from Lemmas 3.2 and 3.3 that if δ is simple then B is Poisson
simple and R is simple. On the other hand, if J is a non-zero δ-ideal of A then JR is a
non-zero proper ideal of R, by [14, Lemma 1.3], and JB is a non-zero proper Poisson
ideal of B by Lemma 3.1(ii). �

We now aim to generalize Corollary 3.4 to establish a homeomorphism between
Spec R and P. Spec B. On each side, we shall partition the spectrum into two types of
prime ideal.

NOTATION 3.5. Let A be a commutative �-algebra and domain with a non-zero
derivation δ, let R = A[z; δ] and let B = A[z] equipped with the Poisson bracket {−,−}δ.
Let J = δ(A)A, which is a δ-ideal of A, and let S = (A/J)[z]. Then

(i) JB = {B, B}B is a residually null Poisson ideal of B and is contained in all
residually null Poisson ideals of B.

(ii) θJ : B/JB → S is an isomorphism of �-algebras. The Poisson brackets are both
0.

(iii) JR is an ideal of R such that R/JR is commutative and JR is contained in all
ideals I of R such that R/I is commutative.

(iv) ψJ : R/JR → S is an isomorphism of commutative �-algebras. The induced
derivation δ on A/J is 0.

Let

P. Spec1(B) = {P ∈ P. Spec B : P is residually null} = {P ∈ P. Spec B : JB ⊆ P}
and let P. Spec2(B) = P. Spec B\ P. Spec1(B). By analogy, let

Spec1(R) = {P ∈ Spec R : R/P is commutative} = {P ∈ Spec R : JR ⊆ P}
and let Spec2(R) = Spec R\ Spec1(R). Note that P. Spec1(B) and Spec1(R) are

closed in P. Spec B and Spec R respectively. Also, P. Spec1(B) is homeomorphic to
Spec(B/JB) and Spec1(R) is homeomorphic to Spec(R/JR).

Let κ be the isomorphism ψ−1
J θJ : B/JB → R/JR. Thus,

κ

((
n∑

i=0

aizi

)
+ JB

)
=

(
n∑

i=0

aizi

)
+ JR.

Then κ induces a homeomorphism between Spec(R/JR) and Spec(B/JB) and there
is a homeomorphism 
1 : P. Spec1(B) → Spec1(R) such that 
1(P)/JR = κ(P/JB) for
all P ∈ P. Spec1(B).

THEOREM 3.6. Let A be a Noetherian �-algebra that is a domain, and let δ be a
non-zero derivation of A. Let R = A[z; δ], and let B be the Poisson algebra A[z] with the
Poisson bracket {−,−}δ. There is a homeomorphism 
 between Spec R and P. Spec B.

Proof. We have seen in 3.5 that there is a homeomorphism 
1 : P. Spec1(B) →
Spec1(R) such that 
1(P)/JR = κ(P/JB) for all P ∈ P. Spec1(B). We aim to extend this
to a homeomorphism 
 : P. Spec(B) → Spec(R).

By Lemma 3.2, every element of P. Spec2 B has the form QB for a δ-prime ideal Q
of A such that J 
⊆ Q and, by Lemma 3.3, every element of Spec2 R has the form QR
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for such an ideal Q. Define 
2 : P. Spec2 B → Spec2 R by setting 
2(QB) = QR. Then

2 is bijective and 
2 and 
−1

2 preserve inclusions. Combine 
1 and 
2 by defining a
bijection 
 : P. Spec B → Spec R by


(P) =
{


1(P) if P ∈ P. Spec1(B)


2(P) if P ∈ P. Spec2(B)
.

Inclusions within P. Spec1 B and Spec1 R and within P. Spec2 B and Spec2 R are
preserved by 
 and 
−1. There are no inclusions P′ ⊆ P with P′ ∈ P. Spec1 B and
P ∈ P. Spec2 B or with P′ ∈ Spec1 R and P ∈ Spec2 R. Let P′ = QB ∈ P. Spec2 B and
P ∈ P. Spec1 B. Then

QB ⊆ P ⇔ QB + JB
JB

⊆ P
JB

⇔ κ

(
QB + JB

JB

)
⊆ κ

(
P

JB

)
= 
(P)

JR

⇔ QR + JR
JR

⊆ 
(P)
JR

⇔ 
(QB) = QR ⊆ 
(P).

Thus, both 
 and 
−1 preserve inclusions. By [9, Lemma 9.4], 
 is a
homeomorphism. �

REMARK 3.7. For many affine algebras, particularly enveloping algebras and
quantum algebras, there are prime ideals that are not completely prime and there
is an established homeomorphism between the completely prime part of the spectrum
of a deformation and the Poisson prime spectrum of a corresponding semi-classical
limit. Some such algebras are discussed in [17], where a common theme is that the
incompletely prime ideals are annihilators of finite-dimensional simple modules of
dimension d > 1 and it is such a module, rather than its annihilator, that is reflected
on the Poisson side through a d-dimensional simple Poisson module. In the context
of this paper, this issue is not present on either side. On the Ore side, Sigurdsson [24]
shows that all prime ideals of A[z; δ] are completely prime. On the Poisson side, by [17,
Theorem 1], a d-dimensional simple Poisson module over an affine Poisson algebra
corresponds to a d-dimensional simple Lie module for the Lie algebra M/M2 for some
maximal Poisson ideal M. In the context of the present paper, M/M2 is always soluble
and, by [5, Corollary 1.3.13], every finite-dimensional simple Lie module for M/M2

has dimension one.

4. Primitivity. The purpose of this section is to show that, for a commutative
affine domain A with derivation δ, the Ore extension A[z; δ] is primitive if and only
if A[z] is Poisson primitive, for the Poisson bracket {−,−}δ, and that, under the
homeomorphism 
 of Theorem 3.6, Poisson primitive ideals of A[z] correspond to
primitive ideals of A[z; δ].

It follows from [15, Theorems 1,2], where A is not necessarily affine, that if δ 
=
0 and A is either δ-primitive or δ-G then A[z; δ] is primitive. The converse in the
Noetherian case was established in [11, Theorem 3.7]. The logical independence, in the
general case, of the two conditions, δ-primitive and δ-G, was shown in [15] by means
of the non-affine examples A = �[[y]] with δ = y/. dy, which is δ-G but not δ-primitive,
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and A = �(t)[y] with δ = t∂/∂t + y∂/∂y, which is δ-primitive but not δ-G. If A is affine
and δ-G, then A is δ-primitive by [8, Proposition 1.2]. It would be interesting to know
whether there is an affine δ-primitive �-algebra A which is not δ-G. Such an example
would have consequences for the Poisson Dixmier–Moeglin equivalence, as it would
give rise to a Poisson bracket on A[z] for which 0 is Poisson primitive, and hence
Poisson rational, but not locally closed.

In the Poisson setting we have analogues of [15, Theorems 1,2].

THEOREM 4.1. Let δ be a non-zero derivation of a commutative �-algebra A. Then
A[z], with the Poisson bracket {−,−}δ, is Poisson primitive if A is δ-primitive or δ-G.

Proof. Suppose that A is δ-G and let I 
= 0 be the intersection of the non-zero
δ-prime ideals of A. As A is a domain, the Jacobson radical Jac(A[z]) = 0, for example
by [13, Theorem 4]. Suppose that A[z] is not Poisson primitive and let M be a maximal
ideal of A[z]. Then P(M) 
= 0 and, by Lemma 3.2(i), P(M) ∩ A is a non-zero δ-prime
ideal of A. Therefore, I ⊆ M for all maximal ideals M of A[z], so I ⊆ Jac(A[z]) = 0.
This contradiction shows that A[z] is Poisson primitive.

Suppose that A is δ-primitive and let M be a maximal ideal of A containing no non-
zero δ-ideal of A. Let N be any maximal ideal of A[z] containing M. Thus, N ∩ A = M.
Let P = P(N). Then P = 0 for otherwise, by Lemma 3.2, P ∩ A is a non-zero δ-ideal
of A contained in M. Thus, A[z] is Poisson primitive. �

It would be interesting to know whether the converse is true in the Noetherian
case. As the next result shows, it is true in the affine case.

THEOREM 4.2. Let δ be a non-zero derivation of a commutative affine �-algebra A.
Then A[z] is Poisson primitive if and only if A is δ-primitive.

Proof. Suppose that A[z] is Poisson primitive and let M be a maximal ideal of A[z]
containing no non-zero Poisson ideal of A[z]. Then M ∩ A contains no non-zero δ-
ideal of A for if J is a non-zero δ-ideal of A contained in M ∩ A, then by Lemma 3.1(ii)
JA[z] is a non-zero Poisson ideal of A[z] contained in M. But, by [20, Theorem 27],
A/(M ∩ A) is a G-domain. As A is affine, it is a Hilbert ring, by [20, Theorem 31],
so M ∩ A is a maximal ideal of A. Thus, A is δ-primitive. The converse holds by
Theorem 4.1. �

COROLLARY 4.3. Let δ be a non-zero derivation of a commutative affine �-algebra
A. Then A[z], with the Poisson bracket {−,−}δ, is Poisson primitive if and only if A[z; δ]
is primitive.

Proof. As we observed above, [8, Proposition 1.2] tells us that, in the affine case, if
A is δ-primitive then A is δ-G. The result is then immediate from Theorem 4.2 and [11,
Theorem 3.7]. �

COROLLARY 4.4. Let δ be a non-zero derivation of a commutative affine �-algebra
A, let B = A[z] with the Poisson bracket {−,−}δ and let R = A[z; δ].

(i) In P. Spec(B), the Poisson primitive ideals are the maximal elements of P. Spec1 B,
that is, the Poisson ideals P of B such that B/P � �, and the ideals of the form
QB, where Q is a δ-primitive ideal of A.

(ii) In Spec(R), the primitive ideals are the maximal elements of Spec1 R, that is, the
ideals P of R such that R/P � �, and the ideals of the form QR, where Q is a
δ-primitive ideal of A.
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(iii) In the homeomorphism 
 between P. Spec(B) and Spec(R) in Theorem 3.6, the
Poisson primitive ideals of B correspond to the primitive ideals of R.

Proof. (i) Let P be a Poisson prime ideal of B. First suppose that P ∈ P. Spec1 B.
Then the Poisson bracket on B/P is 0, so P is Poisson primitive if and only if P is
maximal if and only if B/P � �. Now suppose that P ∈ P. Spec2 B. Then P = QB for
some δ-prime ideal Q of A with δ(A) 
⊆ Q and, by Theorem 4.2 applied to A/Q, P is
Poisson primitive if and only if Q is δ-primitive.

(ii) Let P be a prime ideal of R. First suppose that P ∈ Spec1 R. Then R/P is
commutative, so P is primitive if and only if P is maximal if and only if R/P � �. Now
suppose that P ∈ Spec2 R. Then P = QR for some δ-prime ideal Q of A with δ(A) 
⊆ Q
and, by Theorem 4.2 and Corollary 4.3 applied to A/Q, P is primitive if and only if Q
is δ-primitive.

(iii) This follows from (i) and (ii). �

5. Examples in �[x, y, z]. Here we look at some examples where A = �[x, y] so
that B = �[x, y, z], the polynomial algebra in three indeterminates. For w = x, y or z,
we denote the derivation ∂/∂w of B by ∂w and, for a ∈ B, we write aw for ∂w(a) and
grad a for the triple (ax, ay, az) ∈ B3. Poisson brackets on �[x, y, z] are the subject of
[18]. Any such bracket is determined by the triple (f, g, h) ∈ B3 such that

{y, z} = f, {z, x} = g and {x, y} = h.

A triple F = (f, g, h) ∈ B3 is a Poisson triple if it does determine a Poisson bracket
in this way. By [18, Proposition 1.17(1)], a triple F = (f, g, h) ∈ B3 is a Poisson triple
if and only if F. curl F = 0. Similar results are true for the rational function field
Q(B) = �(x, y, z) and the completion B̂ of B at any maximal ideal.

For any a, b ∈ B, there is a Poisson bracket on B such that

{y, z} = bax, {z, x} = bay and {x, y} = baz.

We call such a bracket exact if b = 1 and m-exact in general. A Poisson bracket on B
is qm-exact, respectively cm-exact, if there exist a, b ∈ Q(B), respectively a, b ∈ B̂, for
some maximal ideal of B, such that

{y, z} = bax ∈ B, {z, x} = bay ∈ B and {x, y} = baz ∈ B.

It is shown in [18] that every Poisson bracket on B is cm-exact and the Poisson spectrum
is determined for a qm-exact bracket with a = st−1 and b = t2, s and t being co-prime
elements of B. Taking t = 1, this includes the exact brackets.

In the remainder of this section, we consider non-exact Poisson brackets on B =
�[x, y, z] that extend the zero Poisson bracket on A = �[x, y], that is, we consider
Poisson brackets on B with {x, y} = 0.

LEMMA 5.1. Let f, g ∈ B, and let F = (f, g, 0). Then F is a Poisson triple if and only
if there exist h ∈ B and f1, g1 ∈ A such that f = hf1 and g = hg1.

Proof. Suppose that F is a Poisson triple. If g = 0 we can take h = f , f1 = 1 and
g1 = 0 so we may assume that g 
= 0. As curl((f, g, 0)) = (−gz, fz, gx − fy), we have
fgz = gfz. Hence, ∂z(f/g) = 0 and pf = qg for some p, q ∈ A. Let h be the highest
common factor of f and g in B, and let f1, g1 ∈ B be such that f = hf1 and g = hg1.
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Then pf1 = qg1. If f1 /∈ A then f1 has an irreducible factor u in B\A and, as q ∈ A, u
must divide g1, contradicting the choice of h. Thus, f1 ∈ A and similarly g1 ∈ A.

Conversely, suppose that F = (hf1, hg1, 0) where h ∈ B and f1, g1 ∈ A. Then curl F
has the form (−g1hz, f1hz, �), where � ∈ B, so F. curl F = 0, and hence F is a Poisson
triple. �

The Poisson prime ideals of B for a Poisson triple F = (hf1, hg1, 0) are the prime
ideals containing h and the Poisson primes for the Poisson triple (f1, g1, 0), so it
suffices to consider the case where f, g ∈ A. Thus, ham x = −g∂z, ham y = f ∂z and
ham z = g∂x − f ∂y. Also, ham z(A) ⊆ A so that ham z restricts to a derivation of A and
the results of Section 3 apply with δ being the restriction to A of g∂x − f ∂y.

If a ∈ A then the corresponding exact bracket on B has {y, z} = ax, {z, x} = ay and
{x, y} = 0. The following theorem is a special case of [18, Theorem 3.8].

THEOREM 5.2. Let a ∈ A\{0}. The Poisson prime ideals of B under the exact bracket
determined by a are 0, the residually null Poisson prime ideals and the height one prime
ideals uA, where u is an irreducible factor of a − λ for some λ ∈ � such that a − λ is a
non-zero non-unit.

Combining this with Theorem 3.6 and its proof, we obtain the following corollary.

COROLLARY 5.3. Let a ∈ A\{0}, let δ be the derivation of A such that δ(x) = ay and
δ(y) = −ax, and let R = A[x; δ]. Let J = ayA + axA. Then

(i) JR is an ideal of R and R/JR � (A/J)[z].
(ii) The prime ideals of R under the exact bracket determined by a are 0, the height

one prime ideals uR, where u is an irreducible factor of a − λ for some λ ∈ � such
that a − λ is a non-zero non-unit and the prime ideals of the form π−1(Q), where
Q is a prime ideal of (A/J)[z] and π is the composition R � R/JR � (A/J)[z].

EXAMPLE 5.4. Let a = x2 + y2. Then {z, x} = 2y, {y, z} = 2x and {x, y} = 0. The
residually null Poisson prime ideals of B are xB + yB and the maximal ideals that
contain it. The other Poisson prime ideals of B are 0, the height one prime ideals
(x + iy)A, (x − iy)A and (x2 + y2 − λ)A, where λ ∈ �∗. Note that those of the form
(x2 + y2 − λ)A are maximal Poisson ideals.

If δ = 2y∂x − 2x∂y so that δ(x) = 2y and δ(y) = −2x and R = A[z; δ] then the
prime spectrum of R consists of 0, the height one prime ideals (x + iy)R, (x − iy)R and
(x2 + y2 − λ)R, where λ ∈ �∗, xR + yR and xR + yR + (z − μ)R, where μ ∈ �. For
each λ ∈ �∗, the algebra R/(x2 + y2 − λ)R is simple.

In the remainder of the paper we consider non-exact Poisson brackets on B,
beginning with some for which B is Poisson simple. The following result of Shamsuddin,
for which a proof may be found in [2, Proposition 3.2], is useful in identifying Poisson
brackets for which B, or a localization of B, is Poisson simple.

PROPOSITION 5.5. Let C be a commutative domain and let g = at + b ∈ C[t], where
a, b ∈ C. Suppose that there exists a derivation δ of C[t] such that δ(C) ⊆ C, C is
δ|C-simple, δ(t) = g and, for all r ∈ C, δ(r) 
= ar + b. Then C[t] is δ-simple.

EXAMPLES 5.6. In the case where A = �[x, y] and B = �[x, y, z], there are many
known examples of simple derivations δ = g∂x − f ∂y of A. For all of these, B is Poisson
simple for the Poisson bracket determined by the triple (f, g, 0). In many of these
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examples g = 1 so that

{x, y} = 0, {z, x} = 1 and {y, z} = f. (5.1)

In the best known example which is due to, but not published by, Bergman and
is documented in [3, Section 6], f = −(1 + xy). The simplicity of δ follows easily
from Proposition 5.5, with C = �[x] and t = y and the same argument works for
f = −(1 + λxy), λ ∈ �∗. When λ = −1 and x, y and z are written −x1, x3 and x2

respectively, this gives the first published example, due to Farkas [6, Example following
Lemma 15], of a Poisson bracket on B for which B is Poisson simple.

Other examples of polynomials f ∈ A for which B is Poisson simple under the
Poisson bracket in (5.1) include:

(i) f = p(x) − y2, where p(x) ∈ �[x] has odd degree. See [21, Theorem 6.2].
(ii) f = −(ym + axn), where m, n ∈ �, m ≥ 2 and a ∈ �\{0}. See [12, Theorem 1],

which generalised an earlier result [22] for the case n = 1.

EXAMPLE 5.7. In contrast to the examples in Examples 5.6, B is also Poisson simple
for the Poisson bracket such that

{x, y} = 0, {z, x} = y3 and {y, z} = xy − 1,

which has the property that, for all b ∈ B, {z, b}, {x, b} and {y, b} are not units.
Clearly, {x, b} = −y3∂z(b) and {y, b} = (xy − 1)∂z(b) are never units. For {z, (

∑
aizi)} =∑{z, ai}zi to be a unit, it is necessary that {z, a0} is a unit, and it is shown in [16] that

if a ∈ A then {z, a} = δ(a) is not a unit.

REMARK 5.8. The examples in 5.7 and 5.6(i) have analogues in the polynomial
algebra �[x1, x2, . . . , xn] when n > 3. In these {xi, xj} = 0 for 1 ≤ i, j ≤ n − 1 and ham z
is a simple derivation of �[x1, x2, . . . , xn−1]. See [16, Section 3] and [21, Section 9] for
details from the point of view of Ore extensions.

EXAMPLE 5.9. Coutinho [3, 4] has used the theory of foliations to make a substantial
contribution to the understanding of the simple derivations of �[x, y]. Let A2 be the
subspace of �[x, y] consisting of polynomials of total degree at most 2 and let U2 be the
set of unimodular rows (a, b), where a, b ∈ A2 × A2 are such that at least one of a and b
has total degree 2. It is shown in [4] that the closure U2 in A2 × A2 has four irreducible
components Pi, 1 ≤ i ≤ 4 and examples of simple derivations from each component
are given. For the first two types, the class of examples is dense in Pi. Below we give the
details of examples of four corresponding types of Poisson bracket on B for which B is
Poisson simple. Full details, presented from the point of view of derivations of �[x, y],
can be found in [4].

Type 1, P1: Let a, b, c ∈ �[i]\0, with a 
= 1 be such that the quadratic polynomial
y2 + bx2 + cxy is irreducible over �[i]. Then, by [4, Proposition 4.1] and Corollary 3.4,
�[x, y, z] is Poisson simple for the Poisson bracket such that

{x, y} = 0, {y, z} = c(xy + a) + bx2 and {z, x} = xy + a.

Type 2, P2: Let β ∈ �[i][x, y] be homogeneous of degree 2 and irreducible over
�[i]. Then by [4, Proposition 5.4] and Corollary 3.4 �[x, y, z] is Poisson simple for the
Poisson bracket such that

{x, y} = 0, {y, z} = −β and {z, x} = 1.
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Type 3, P3: By [4, Proposition 6.1] and Corollary 3.4, �[x, y, z] is Poisson simple
for the Poisson bracket such that

{x, y} = 0, {y, z} = −x and {z, x} = xy + 1.

Type 4, P4: In Examples 5.6(i), take p(x) = ρx, where ρ ∈ �\{0}.
For discussion of some classes of simple derivations δ = g∂x − f ∂y of A where the

degrees of f and g may be greater than 2, see [3, Corollary 4.3, Theorems 4.4 and 5.5
and Proposition 6.2].

EXAMPLE 5.10. Let f = −1 and g = x, so that δ(x) = x and δ(y) = 1 and the
Poisson bracket on A is such that {y, z} = −1, {z, x} = x and {x, y} = 0. The Poisson
triple here is the cm-exact triple x grad(y − log x). It is clear that xB is a Poisson prime
ideal and x /∈ PZ(B). Applying Proposition 5.5 with C = �[x±1], a = 0, b = 1 and
δ|C = xd/dx, it is easy to see that xA is the only non-zero δ-prime ideal of A. As
δ(A) � xA, it follows from Theorem 3.2 that P. Spec(A) = {0, xA}. By Theorem 3.6, if
R = A[z; δ] then Spec R = {0, xR}.

EXAMPLE 5.11. Let M = xB + yB and N = xA + yA and suppose that f, g ∈ A
are such that if δ = g∂x − f ∂y then N is the unique non-zero δ-prime ideal of A, in
other words, there are no height one prime ideals invariant under δ and N is the
only maximal ideal of A invariant under δ. Then f = −δ(y) ∈ N, g = δ(x) ∈ N and
δ(A) ⊆ N. By Theorems 3.2 and 3.6,

P. Spec B = {0, xB + yB} ∪ {xB + yB + (z − α)B : α ∈ �},
and if R = A[z; δ],

Spec R = {0, xR + yR} ∪ {xR + yR + (z − α)R : α ∈ �}.
Note that P. Spec2 B = {0} and Spec2 R = {0}. In other words, there is no proper
Poisson prime homomorphic image of B with a non-zero Poisson bracket and every
proper prime homomorphic image of R is commutative. However, if j is such that
f /∈ Nj or g /∈ Nj then B/(NjB) is a proper Poisson homomorphic image of B with a
non-zero Poisson bracket and R/(NjR) is a non-commutative proper homomorphic
image of R. Such a j must exist as f and g must be non-zero and ∩j≥1Nj = 0.

Goodearl and Warfield [10, p. 61] specify such an example with f = −(x2 + y2)
and g = x + y. Although the condition on the base field in [10] is satisfied by � but
not by �, the conclusion is also valid for �. The details of this example were omitted
from [10] as the proof was ‘exceedingly tedious’. Interest was expressed in any similar
example with a short proof. Here, subject to the reader’s interpretation of the word
‘short’, we present such an example.

Let f = −x(1 + xy) and g = y so that δ(y) = x(1 + xy) and δ(x) = y. Let ′ denote
differentiation with respect to x. Clearly, N is the unique maximal ideal of A invariant
under δ. Let Q 
= N be a non-zero δ-prime ideal of A. Then Q has height one and is
principal, Q = qA, say, with 0 
= q = ∑n

i=0 qi(x)yi, each qi(x) ∈ �[x], qn(x) 
= 0, and as
δ(q0(x)) = yq′

0(x), n > 0. Let h ∈ A be such that δ(q) = hq. Note that for 0 ≤ i ≤ n,

δ(qi(x)yi) = q′
i(x)yi+1 + ix2qi(x)yi + ixqi(x)yi−1.

Also note that q′
n(x) ∈ qn(x)�[x], whence q′

n(x) = 0 and qn(x) ∈ �∗. Therefore,
degy(δ(q)) ≤ n so h = h(x) ∈ �[x]. Comparing coefficients of yi, 0 ≤ i ≤ n, in the
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equation δ(q(x)) = h(x)q(x), we obtain

(i + 1)xqi+1(x) = (h(x) − ix2)qi(x) − q′
i−1(x), (5.2)

where q−1(x) = 0 = qn+1(x). Note that q0(x) 
= 0, otherwise qi(x) = 0 for all i. For
i ≥ 0, let di = deg(qi(x)), let d = d0 and let ei = deg(h(x) − ix2). By (5.2) with i = 0,
d1 = e0 + d0 − 1. It follows from (5.2) that

if di + ei > di−1 − 1 then di+1 = di + ei − 1. (5.3)

In the following five situations, (5.3) can be used to show, inductively, that the sequence
{di} is eventually strictly increasing. Hence, these cases can be excluded.

(i) If h(x) = 0 then ei = 2, when i > 0, q1(x) = 0 and di = d − 4 + i whenever i > 1.
(ii) If h(x) has degree r = 0 or 1 then e0 = r, ei = 2 when i > 0, d1 = d + r − 1 and

di = d − r − 2 + i when i > 1.
(iii) If h(x) has degree r ≥ 3 or h(x) = ax2 + bx + c has degree r = 2 and a /∈ �

then di = d + i(r − 1) for i > 0.
(iv) If h(x) = ax2 + bx + c has degree 2, a ∈ � and b 
= 0 then di = d + i for 0 ≤

i ≤ a, da+1 = d + a and da+j = d + a + j − 1 for j ≥ 2.
(v) If h(x) = ax2 + c has degree 2, a ∈ � and c 
= 0 then di = d + i for 0 ≤ i ≤ a,

da+1 = d + a − 1 and da+j = d + a + j − 2 for j ≥ 2.
This leaves only the case h(x) = ax2, a ∈ �, in which we need to keep track of

leading coefficients as well as degrees. Let α be the leading coefficient of q0(x). By
repeated use of (5.2), the leading coefficient of qi(x) is

( a
i
)
α for 0 ≤ i ≤ a. In particular,

the leading coefficients of qa−1(x) and qa(x) are aα and α respectively. By (5.3), di =
d + i for 0 ≤ i ≤ a.

By (5.2), with i = a, (a + 1)xqa+1(x) = −q′
a−1(x) so da+1 = d + a − 3 and the

leading coefficient in qa+1(x) is −(d + a − 1)aα/(a + 1).
From (5.2), with i = a + 1, we see that da+2 ≤ d + a − 2 and the coefficient of

xd+a−2 in qa+2(x) is −(d + 2a)α/((a + 1)(a + 2)) 
= 0. Therefore, da+2 = d + a − 2 >

da+1 − ea+2 − 1. It now follows, inductively, that da+j = d + a + j − 4 for all j ≥ 3,
which is impossible. This completes the proof that P. Spec and Spec R are as stated
above.

EXAMPLE 5.12. Here we consider the Poisson bracket on B arising from [10,
Example 2.15], where δ = 2y∂x + (y2 + x)∂y so that {y, z} = −(y2 + x), {z, x} = 2y and
{x, y} = 0. In [10], it is shown that the only non-zero δ-prime ideals of A are the
maximal ideal M := xA + yA and the height one prime Q := (y2 + x + 1)A. Note that
Q � M and δ(A) ⊆ M but δ(A) � Q. By Theorem 3.2,

P. Spec B = {0, (y2 + x + 1)B, xB + yB} ∪ {xB + yB + (z − α)B : α ∈ �}.

If R = A[z; δ] then

Spec R = {0, (y2 + x + 1)R, xR + yR} ∪ {xR + yR + (z − α)R : α ∈ �}.

Note that P. Spec2 B = {0, (y2 + x + 1)B} and Spec2 R = {0, (y2 + x + 1)R}. In
contrast to Example 5.11, there is a unique non-zero Poisson prime ideal that is
not residually null.
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REMARK 5.13. In both Examples 5.11 and 5.12, the Poisson algebra B has a Poisson
prime ideal P = xB + yB which has height two as a prime ideal but is minimal as a
non-zero Poisson prime ideal. In both cases P is residually null. To obtain examples of
this phenomenon in which P is not residually null, pass to B′ = B[u, v] = �[x, y, z, u, v]
with the Poisson bracket such that {u, b} = {v, b} = 0 for all b ∈ B and {u, v} = 1. This
is the tensor product, as Poisson algebras, of B and a copy of the coordinate ring of the
symplectic plane. Then xB′ + yB′ again has height two as a prime ideal and is minimal
as a non-zero Poisson prime ideal but it is not residually null, having factor isomorphic
to �[z, u, v] with {u, v} = 1 and {u, z} = {v, z} = 0.
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