T. Kubota Nagoya Math. J. Vol. 61 (1976), 113-116

A COMPLEX AIRY INTEGRAL

Dedicated to Professor Tikao Tatuzawa on his 60th birthday

TOMIO KUBOTA

The Airy integral is a formula concerning the Fourier transform of a function like $\sin x^3$ or $\cos x^3$, and is written, for instance in [2], as

$$\int_{0}^{\infty} \cos{(t^{3} - xt)} dt = \frac{1}{3}\pi \sqrt{\frac{1}{3}x} \Big[J_{-1/3} \Big(\frac{2x\sqrt{x}}{3\sqrt{3}} \Big) + J_{1/3} \Big(\frac{2x\sqrt{x}}{3\sqrt{3}} \Big) \Big]$$

for $x \ge 0$.

In this paper, we shall prove a similar formula

(1)
$$\int_{c} e(z^{3} - 3zw) dV(z) = \frac{1}{3} \pi^{2} \left(\sin \frac{\pi}{3} \right)^{-1} |w| (|J_{-1/3}(2\pi w^{3/2})|^{2} - |J_{1/3}(2\pi w^{3/2})|^{2})$$

containing same Bessel functions and the exponential function $e(z) = \exp(\pi\sqrt{-1}(z+\bar{z}))$, where dV(z) is the usual euclidean measure, and the integral \int_{c} should be interpreted as $\lim_{Y\to\infty}\int_{|z|<Y}$. This is a byproduct of the results in [1].

The proof of our main result (1) is reduced to an equality between Mellin transforms of certain functions. Let us first treat the purely computational part of the proof. If $z = r \exp(\sqrt{-1}\theta)$ and $w = r' \exp(\sqrt{-1}\theta')$, $(r, r' \ge 0, \ \theta, \theta' \in \mathbf{R})$, are polar expressions of complex numbers z and w, then a general formula on the Bessel function J_m says

$$e(z) = \sum_{m=-\infty}^{\infty} \sqrt{-1}^m J_m(2\pi r) \exp\left(\sqrt{-1}m\theta\right) \,.$$

This implies

$$e(z^3) = \sum_{m=-\infty}^{\infty} \sqrt{-1}^m J_m(2\pi r^3) \exp(\sqrt{-1}3m\theta) ,$$

 $e(-3zw) = \sum_{m=-\infty}^{\infty} (-\sqrt{-1})^m J_m(6\pi rr') \exp(\sqrt{-1}m(\theta + \theta')) ,$

Received June 2, 1975.

This research is supported by NSF Grant GP-43950 (SK-CUCB).

and consequently

$$(2) \qquad \int_{c} e(z^{3})e(-3zw)dV(z) \\ = \sum_{m=-\infty}^{\infty} \left[2\pi \int_{0}^{\infty} J_{-m}(2\pi r^{3})J_{3m}(6\pi rr')rdr \right] \exp\left(\sqrt{-1}3m\theta'\right) \\ = \sum_{m=-\infty}^{\infty} \left(-1\right)^{m} \left[2\pi \int_{0}^{\infty} J_{m}(2\pi r^{3})J_{3m}(6\pi rr')rdr \right] \exp\left(\sqrt{-1}3m\theta'\right) ,$$

where \int_{0}^{∞} is in the sense of $\lim_{Y \to \infty} \int_{0}^{Y}$. Denote in general by

$$M(f,s) = \int_0^\infty f(y) y^s rac{dy}{y}$$

the Mellin transform of a function f. Then, there are well-known formulas

$$M({J}_{m}(lpha r),s)=lpha^{-s}rac{2^{s-1}arGamma(s/2\,+\,m/2)}{arGamma(1\,-\,s/2\,+\,m/2)}$$
 ,

 $(\alpha > 0)$, and

$$M({J}_{m}(2\pi r^{3}),s)=rac{1}{3}(2\pi)^{-s/3}rac{2^{s/3-1}\Gamma(s/6\,+\,m/2)}{\Gamma(1-s/6\,+\,m/2)}\;.$$

On the other hand, Γ -function satisfies the multiplication formula $\Gamma(s) = (2\pi)^{-1}3^{s-1/3}\Gamma(s/3)\Gamma(s/3+1/3)\Gamma(s/3+2/3)$. Using these facts, we can compute the Mellin transform of the function

$$b_m(r') = 2\pi \int_0^\infty J_m(2\pi r^3) J_{3m}(6\pi rr') r dr$$

of r' appearing in (2) as follows:

$$\begin{split} M(b_m,s) &= 2\pi \int_0^\infty \int_0^\infty J_m(2\pi r^3) J_{3m}(6\pi r r') r dr \, r'^s \frac{dr'}{r'} \\ &= 2\pi \int_0^\infty \int_0^\infty J_m(2\pi r^3) J_{3m}(6\pi r') r dr \frac{r'^s}{r^s} \frac{dr'}{r'} \\ &= 2\pi \int_0^\infty J_m(2\pi r^3) r^{2-s} \frac{dr}{r} \int_0^\infty J_{3m}(6\pi r') r'^s \frac{dr'}{r'} \\ &= 2\pi M(J_m(2\pi r^3), 2-s) M(J_{3m}(6\pi r), s) \\ &= 2\pi \cdot \frac{1}{3} (2\pi)^{-(2-s)/3} \frac{2^{(2-s)/3-1} \Gamma((2-s)/6+m/2)}{\Gamma(1-(2-s)/6+m/2)} (6\pi)^{-s} \frac{2^{s-1} \Gamma(s/2+3m/2)}{\Gamma(1-s/2+3m/2)} \end{split}$$

AIRY INTEGRAL

$$\begin{split} &= 2\pi \cdot \frac{1}{3} (2\pi)^{-(2-s)/3} (6\pi)^{-s} 2^{(2-s)/3-1} 2^{s-1} \frac{\Gamma(1/3-s/6+m/2)}{\Gamma(2/3+s/6+m/2)} \cdot \\ &\cdot \frac{3^{s/2+3m/2-1/2} \Gamma(s/6+m/2) \Gamma(s/6+m/2+1/3) \Gamma(s/6+m/2+2/3)}{3^{1-s/2+3m/2-1/2} \Gamma(1/3-s/6+m/2) \Gamma(2/3-s/6+m/2) \Gamma(1-s/6+m/2)} \\ &= \frac{1}{18\pi} \pi^{-(2s-4)/3} \frac{\Gamma(s/6+m/2) \Gamma(s/6+m/2+1/3)}{\Gamma(2/3-s/6+m/2) \Gamma(1-s/6+m/2)} \cdot \end{split}$$

Comparing this result with Proposition 1 of [1], one sees by Theorem 1 of [1] that the coefficients of $\exp(\sqrt{-1}m\theta')$ in the Fourier series expansion with respect to θ' , $(w = r' \exp(\sqrt{-1}\theta'))$, of the both hand sides of (1) have a common Mellin transform for $m \ge 0$. Since, however, $e(z) = e(\bar{z})$ implies that the left hand side of (1) is invariant by $w \to \bar{w}$, the same situation holds for m < 0, too.

To complete the proof, we now need only a few supplements to the above computation. Introducing a parameter ρ , let us consider the integral

(3)
$$2\pi \int_0^\infty \int_0^\infty J_m(2\pi r^3) J_{3m}(6\pi r r') r^{\rho} dr r'^{s} \frac{dr'}{r'} .$$

Then, under the condition, for instance, $0 < \operatorname{Re} s < \varepsilon$ and $-\varepsilon < \operatorname{Re} \rho < 0$ with a small positive ε , $\operatorname{Re}(1 + \rho - s)$ is slightly smaller than 1. (As a matter of fact, it will be enough that $\operatorname{Re}(1 + \rho - s)$ is close to 1.) Therefore, the same computation as above shows that (3) is equal to the absolutely convergent integral

$$2\pi \int_{0}^{\infty} J_{m}(2\pi r^{3})r^{1+\rho-s}\frac{dr}{r} \int_{0}^{\infty} J_{3m}(6\pi r')r'^{s}\frac{dr'}{r'}$$

which can be expressed as

$$2\pi M(J_m(2\pi r^3), 1+\rho-s)M(J_{3m}(6\pi r), s) = 2\pi \cdot \frac{1}{3} (2\pi)^{-(1+\rho-s)/3} \frac{2^{(1+\rho-s)/3}\Gamma((1+\rho-s)/6+m/2)}{\Gamma(1-(1+\rho-s)/6+m/2)} (6\pi)^{-s} \frac{2^{s-1}\Gamma(s/2+3m/2)}{\Gamma(1-s/2+3m/2)}$$

in terms of Γ -functions, and has the inverse Mellin transform

$$2\pi\int_0^\infty J_m(2\pi r^3)J_{3m}(6\pi rr')r^\rho dr$$

in the region determined by 0 < Re s < 1, say. Considering the analytic continuation to $\rho = 1$, we see now that b_m is actually the inverse Mellin

TOMIO KUBOTA

transform in the region $0 < \operatorname{Re} s < \varepsilon$ of $M(b_m, s)$, which has been computed formally.

Remark. A simpler integral similar to (1) is

$$\int_{C} e(z^{2})e(zw)dV(z) = \frac{1}{2}e(-\frac{1}{4}w^{2}).$$

References

- [1] T. Kubota, On a generalized Fourier transformation, to appear in J. Fac. Sci. Univ. Tokyo.
- [2] G. N. Watson, A treatise on the theory of Bessel functions, Cambridge University Press, 1966.

Department of Mathematics, Nagoya University Department of Mathematics, University of Maryland

116