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Construction of Generalized
Harish-Chandra Modules with Arbitrary
Minimal k-Type

Ivan Penkov and Gregg Zuckerman

Abstract. Let g be a semisimple complex Lie algebra and k ⊂ g be any algebraic subalgebra reductive

in g. For any simple finite dimensional k-module V , we construct simple (g, k)-modules M with finite

dimensional k-isotypic components such that V is a k-submodule of M and the Vogan norm of any

simple k-submodule V ′ ⊂ M,V ′ 6≃ V , is greater than the Vogan norm of V . The (g, k)-modules M

are subquotients of the fundamental series of (g, k)-modules.

Introduction

The structure theory of infinite dimensional modules over finite dimensional semi-

simple Lie algebras has its roots in the description of all finite dimensional represen-

tations. Celebrated landmarks of the theory are the classification of simple Harish-

Chandra modules and the computation of the characters of simple highest weight

modules (the Kazhdan–Lusztig conjecture). A deep open problem in the structure

theory of modules over a complex semisimple Lie algebra g is the construction and

eventual classification of all simple generalized Harish-Chandra modules, see [4]. By

definition, a simple g-module M is a generalized Harish-Chandra module if M has

finite dimensional isotypic components as module over some reductive in g subal-

gebra of g. Equivalently, a simple generalized Harish-Chandra module is a simple

g-module M for which the multiplicities of M as a g[M]-module are finite. The sub-

algebra g[M] ⊂ g is defined as the set of all elements of g which act locally finitely on

M, see [1, 4]. In [3] we have proved that, if the multiplicities of M as a g[M]-module

are finite, then g[M] has a natural reductive part g[M]red, and that M has finite type

also as a g[M]red-module, i.e., the dimensions of all g[M]red-isotypic components of

M are finite.

Recently two considerable steps in the study of simple generalized Harish-Chandra

modules have been made. In [3] we have described explicitly all possible subalgebras

g[M]red ⊂ g arising from simple generalized Harish-Chandra modules (these are

the primal subalgebras of g, see [3]), and in [5] we have classified all simple gener-

alized Harish-Chandra modules M with generic minimal k-type. Here k stands for

any algebraic reductive in g subalgebra k with k ⊂ g[M] such that M has finite di-

mensional k-isotypic components. The latter result raises a natural question: for a

fixed reductive in g algebraic subalgebra k, what are the minimal k-types arising from

simple (g, k)-modules of finite type? In the case when the pair (g, k) is symmetric,
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it is known from Vogan’s classification of Harish-Chandra modules that there is no

obstruction for a simple finite dimensional k-module to be the minimal k-type of a

simple (g, k)-module.

The purpose of the present note is to give a simple proof of this fact by a direct

construction in the case of an arbitrary algebraic reductive in g subalgebra k ⊂ g. Our

construction is based on the fundamental series of (g, k)-modules [5], and extends

the construction of a simple (g, k)-module with an arbitrary minimal k-type [4] for

the case where k is a principal sℓ(2)-subalgebra of g.

1 Conventions and Preliminaries

The ground field is C, and if not explicitly stated otherwise, all vector spaces and Lie

algebras are defined over C. By definition, N = {0, 1, 2, . . .}. The symbol ⊗ denotes

tensor product over C. The superscript ∗ indicates dual space, and Λ
·( ) and S·( )

denote respectively the exterior and symmetric algebra. By Z(l), we denote the center

of a Lie algebra l, U (l) stands for the enveloping algebra of l, and H·(l, M) stands for

the cohomology of a Lie algebra l with coefficients in an l-module M. The symbol ⊃+

indicates the semidirect sum of Lie algebras (if l = l ′ ′ ⊃+ l ′, then l ′ is an ideal in l and

l ′ ′ ≃ l/l ′).

If l is a Lie algebra, M is an l-module, and ω ∈ l∗, we put Mω := {m ∈ M |
ℓ · m = ω(ℓ)m ∀ℓ ∈ l}. We call Mω a weight space of M and we say that M is an

l-weight module if

M =
⊕

ω∈l∗
Mω.

By supplM we denote the set {ω ∈ l∗ | Mω 6= 0}.

A finite multiset is a function f from a finite set D into N. A submultiset of f

is a multiset f ′ defined on the same domain D such that f ′(d) ≤ f (d) for any

d ∈ D. For any finite multiset f , defined on an additive monoid D, we can put

ρ f := 1
2

∑

d∈D f (d)d. If M is an l-weight module as above and dim M < ∞, then M

determines the finite multiset chlM which is the function ω 7→ dim Mω defined on

supplM.

Let g be a fixed finite dimensional semisimple Lie algebra and k ⊂ g a fixed alge-

braic subalgebra which is reductive in g. Fix a Cartan subalgebra t of k and a Cartan

subalgebra h of g such that t ⊂ h. Note that since k is reductive in g, g is a t-weight

module. Note also that the R-span of the roots ∆ of h in g fixes a real structure on h∗

whose projection onto t∗ is a well-defined real structure on t∗. In what follows, we

will denote by Reλ the real part of an element λ ∈ t∗. We fix also a Borel subalgebra

bk ⊂ k with bk ⊃ t. Then bk = t⊃+ nk, where nk is the nilradical of bk. We set ρ := ρchtnk
,

and we denote the Weyl group of k by Wk.

Let 〈 , 〉 denote the unique g-invariant symmetric bilinear form on g∗ such that

〈α, α〉 = 2 for any long root of a simple component of g. The form 〈 , 〉 enables

us to identify g with g∗. Then h is identified with h∗, and k is identified with k∗. We

will sometimes consider 〈 , 〉 as a form on g. The superscript ⊥ indicates orthogonal

space. Note that there is a canonical k-module decomposition g = k ⊕ k⊥. We also

set ‖κ‖2 := 〈κ, κ〉 for any κ ∈ h∗.
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To any λ ∈ t∗ we associate the following parabolic subalgebra pλ of g:

pλ = h ⊕ (
⊕

α∈∆λ

gα),

where ∆λ := {α ∈ ∆ | 〈Reλ, α〉 ≥ 0}. By mλ and nλ we denote respectively

the reductive part of pλ (containing h) and the nilradical of pλ. In particular, pλ =

mλ ⊃+ nλ, and if λ is bk-dominant, then pλ ∩ k = bk. We call pλ a compatible parabolic

subalgebra. A compatible parabolic subalgebra p = m ⊃+ n (i.e., p = pλ for some

λ ∈ t∗) is minimal if it does not properly contain another compatible parabolic

subalgebra. It is an important observation that if p = m ⊃+ n is minimal, then t ⊂
Z(m).

A k-type is by definition a simple finite dimensional k-module. By V (µ) we will

denote a k-type with bk-highest weight µ (µ is then k-integral and bk-dominant).

For the purposes of this paper, we call a g-module M a (g, k)-module if M is iso-

morphic as a k-module to a direct sum of isotypic components of k-types. We say

that a (g, k)-module M is of finite type if dim Homk(V (µ), M) < ∞ for every k-type

V (µ). We say also that a k-type V is a k-type of M if dimk Hom(V, M) 6= 0. If M is

a (g, k)-module, a k-type V (µ) of M is minimal if the Vogan norm, i.e., the function

µ ′ 7→ ‖Reµ ′ + 2ρ‖2, defined on the bk-highest weights µ ′ of all k-types of M, has a

minimum at µ. Any simple (g, k)-module M has a minimal k-type.

Recall that the functor of k-locally finite vectors Γk,t is a well-defined left exact

functor on the category of (g, t)-modules with values in (g, k)-modules,

Γk,t(M) =

∑

M ′⊂M,dim M ′
=1

dim U (k)·M ′<∞

M ′.

By R·Γk,t :=
⊕

i≥0 Ri
Γk,t we denote as usual the total right derived functor of Γk,t,

see [4] and the references therein.

Let p = m ⊃+ n be a minimal compatible parabolic subalgebra, E be a simple finite

dimensional p-module, ρn := ρchtn and ρ⊥n := ρcht(n∩k⊥). Set

F·(p, E) := R·Γk,t(Γt,0(HomU (p)(U (g), E ⊗ Λ
dim n(n)))).

By definition, F·(p, E) is the fundamental series of (g, k)-modules.

2 Main Results

Theorem 2.1 Let V be any k-type. There exists a simple (g, k)-module of finite type M

such that V is the unique minimal k-type of M.

The proof is based on the following construction. Let V = V (µ) be a fixed k-type

and let p = m⊃+ n be any minimal compatible parabolic subalgebra of g which lies in

pµ+2ρ. In addition, let E be any simple finite dimensional p-module on which t acts

via the weight µ − 2ρ⊥n (E exists since t ⊂ Z(m)).
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Theorem 2.2 Let s = dim nk. The (g, k)-module Fs(p, E) is of finite type and is non-

zero. Also, V is the unique minimal k-type of Fs(p, E) and dim Homk(V, Fs(p, E)) =

dim E.

Theorem 2.2 implies Theorem 2.1 as a module M whose existence is claimed by

Theorem 2.1 can be constructed as any simple quotient of a g-submodule of Fs(p, E)

generated by the image of any k-module injection V → Fs(p, E).

Theorem 2.2 is a direct corollary of the following five statements: two more gen-

eral propositions and three lemmas under the assumptions of Theorem 2.2.

Proposition 2.3 Let p = m⊃+ n be any minimal parabolic subalgebra, E be any simple

finite dimensional p-module, and V (δ) be a k-type of Fs−i(p, E) for some i ∈ Z. There

exists w ∈ Wk of length i (in particular, i ∈ N) and a multiset

n· := suppt(n ∩ k⊥) → N, β 7→ nβ

such that ω = w(δ + ρ) − ρ − 2ρ⊥n −
∑

β nββ, where ω is the weight via which t acts

on E. Furthermore, dim Homk(V (δ), Fs−i(p, E)) is bounded by the integer

dim E
(

∑

ℓ(w)=i

dim(S·(n ∩ k⊥)ξ(w))
)

,

where ξ(w) = w(δ + ρ) − ρ − ω − 2ρ⊥n , and S·(n ∩ k⊥) is considered as a k-weight

module.

Proposition 2.4 Under the assumptions of Proposition 2.3,

(1)

∑

0≤i≤s

(−1)i dim Homk(V (δ), Fs−i(p, E))

=

∑

0≤ j≤s

(−1) j

∞
∑

m=0

dim Homt

(

H j(n ∩ k,V (δ)),

Sm(n ∩ k⊥) ⊗ E ⊗ Λ
dim(n∩k⊥)(n ∩ k⊥)

)

,

and the inner sum on the right-hand side of (1) is finite.

Propositions 2.3 and 2.4 are a modification of [6, Theorem 6.3.12 and Corollary

6.3.13], and their proofs follow exactly the same lines (an inspection of Vogan’s proofs

reveals that the symmetry assumption on (g, k) is not needed). Therefore, we refer

the reader to [6].

Proposition 2.3 implies that for any minimal compatible parabolic subalgebra p

and for any simple finite dimensional p-module E, F·(p, E) (and thus Fs(p, E)) is a

(g, k)-module of finite type, and also that Fi(p, E) = 0 for i > s.

In the rest of this section we assume that p and E are as in Theorem 2.2.

Lemma 2.5 If V = V (µ) is a k-type of Fs−i(p, E), then i = 0.
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Proof Choose λ ∈ h∗ so that p = pλ. In particular, 〈Reλ, γ〉 > 0 for γ ∈ supptn.

By Proposition 2.3, there exist w ∈ Wk of length i and a multiset

n· : suppt(n ∩ k⊥) → N

such that

ω = w(µ + ρ) − ρ − 2ρ⊥n −
∑

β∈suppt(n∩k⊥)

nββ.

In addition, ω = µ − 2ρ⊥n by hypothesis. Hence

(µ + ρ) − (µ + ρ) =

∑

β∈suppt(n∩k⊥)

nββ.

On the other hand, since µ + ρ is bk-dominant, there exists a multiset

m· : suppt(n ∩ k) → N

such that (µ + ρ) − w(µ + ρ) =
∑

α∈suppt(n∩k)

mαα. Therefore

∑

α∈suppt(n∩k)

mαα +
∑

β∈suppt(n∩k⊥)

nββ = 0

and
∑

α∈suppt(n∩k)

mα〈Reλ, α〉 +
∑

β∈suppt(n∩k⊥)

nβ〈Reλ, β〉 = 0.

Hence mα = nβ = 0 for all α, β, and w(µ + ρ) = µ + ρ. As µ + ρ is a regular weight

of k, w = id and i = 0.

Lemma 2.6 dim Homk(V, Fs(p, E)) = dim E.

Proof Lemma 2.5 enables us to rewrite (1) in the special case δ = µ as

dim Homk(V (µ), Fs(p, E))

=

∑

0≤ j≤s

(−1) j

∞
∑

m=0

dim Homt

(

H j(n ∩ k,V (µ)),

Sm(n ∩ k⊥) ⊗ E ⊗ Λ
dim(n∩k⊥)(n ∩ k⊥)

)

,

and, by Kostant’s theorem, supptH
·(n ∩ k,V (µ)) = {σ̃(µ + ρ) − ρ | σ̃ ∈ Wk} and µ

appears with multiplicity 1 in {σ̃(µ + ρ) − ρ | σ̃ ∈ Wk}. On the other hand,

suppt(S·(n∩ k⊥)⊗E⊗Λ
dim(n∩k⊥)(n∩ k⊥)) = {µ+

∑

β∈supp
t
(n∩k⊥)

nβ β | nβ ∈ N}.
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Since µ + ρ is bk-dominant,

{σ̃(µ + ρ) − ρ | σ̃ ∈ Wk} ⊂ {µ −
∑

α∈suppt(n∩k)

mαα | mα ∈ N}.

This, together with the inequality 〈Reλ, γ〉 > 0 ∀γ ∈ supptn (see the proof of Lemma

2.5), allows us to conclude that

{σ̃(µ + ρ) − ρ | σ̃ ∈ Wk} ∩ {µ +
∑

β∈suppt(n∩k⊥)

nββ} = {µ}.

Consequently,

Homt(H j(n ∩ k,V (µ)), Sm(n ∩ k⊥) ⊗ E ⊗ Λ
dim(n∩k

⊥)(n ∩ k⊥)) 6= 0

only for m = 0. This shows that

dim Homk(V (µ), Fs(p, E))

= dim Homt(H0(n ∩ k,V (µ)), E ⊗ Λ
dim(n∩k⊥)(n ∩ k⊥)) = dim E.

Lemma 2.7 If V (δ) is a k-type of Fs(p, E) and δ 6= µ, then ‖Reδ+2ρ‖ > ‖Reµ+2ρ‖.

Proof By Proposition 2.3, and there exists a multiset n· : suppt(n ∩ k⊥) → N such

that δ + ρ = µ + ρ +
∑

β∈suppt(n∩k⊥) nββ. Hence

δ + 2ρ = µ + 2ρ +
∑

β∈suppt(n∩k⊥)

nββ.

Since p ⊂ pµ+2ρ, 〈Reµ + 2ρ, β〉 ≥ 0 for all β ∈ suppt(n ∩ k⊥). In addition, δ 6= µ
implies ‖

∑

β∈suppt(n∩k⊥) nββ‖2 > 0. Therefore

‖Reδ + 2ρ‖2
= ‖Reµ + 2ρ‖2 + ‖

∑

β∈suppt(n∩k⊥)

nββ‖2

+ 2
∑

β∈suppt(n∩k⊥)

nβ〈Reµ + 2ρ, β〉 > ‖Reµ + 2ρ‖2.
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3 Discussion

An ultimate goal of the program of study laid out in [4] is the classification of simple

generalized Harish-Chandra modules. Within this framework, Theorem 2.1 above

establishes the non-emptiness of the class of simple (g, k)-modules of finite type with

a fixed minimal k-type V , where V is an arbitrary k-type. If V = V (µ) is a generic

k-type (the definition, see [5], involves certain inequalities on µ), all modules in this

class are classified in [5] and in particular are subquotients of Fs(p, E) generated by

the unique minimal k-type V of Fs(p, E) constructed exactly as in the present note as

subquotients of Fs(p, E) generated by V . For a non-generic V , Theorem 2.2 yields

an interesting class of simple generalized Harish-Chandra modules which deserves

further study. It is known that in general, these modules do not exhaust all simple

generalized Harish-Chandra modules, as when the pair (g, k) is symmetric, or when

k is a Cartan subalgebra of g, the classifications of simple (g, k)-modules in these two

cases yield modules which do not arise through our construction. For instance, in

the latter case no cuspidal modules, i.e., modules on which all root vectors act freely,

are fundamental series modules. On the other hand, there are symmetric pairs (g, k)

for which our construction yields all simple Harish-Chandra modules. This applies

in particular to pairs of the form (s ⊕ s, s), where s is a simple Lie algebra and the

inclusion s →֒ s ⊕ s is the diagonal map. It is an interesting question whether for

some general (non-symmetric) pairs (g, k) the construction of this paper exhausts all

simple (g, k)-modules of finite type.
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