Formalisation in higher-order logic and code generation to functional languages of the Gauss-Jordan algorithm

JESÚS ARANSAY and JOSE DIVASÓN
Departamento de Matemáticas y Computación, Universidad de La Rioja,
c/ Luis de Ulloa s/n, La Rioja, 26004, Spain
(e-mail: http://www.unirioja.es/cu/jearansa; http://www.unirioja.es/cu/jodivaso)

Abstract

In this paper, we present a formalisation in a proof assistant, Isabelle/HOL, of a naive version of the Gauss-Jordan algorithm, with explicit proofs of some of its applications; and, additionally, a process to obtain versions of this algorithm in two different functional languages (SML and Haskell) by means of code generation techniques from the verified algorithm. The aim of this research is not to compete with specialised numerical implementations of Gausslike algorithms, but to show that formal proofs in this area can be used to generate usable functional programs. The obtained programs show compelling performance in comparison to some other verified and functional versions, and accomplish some challenging tasks, such as the computation of determinants of matrices of big integers and the computation of the homology of matrices representing digital images.

1 Introduction

Computer Algebra systems are used nowadays in very different environments and, after years of continuous improvement, with an ever increasing level of confidence. Despite this, these systems focus intensively on performance, and their algorithms are subject to continuous refinements and modifications, which can unexpectedly lead to losses of accuracy or correctness. On the other hand, Theorem Provers are specifically designed to prove the correctness of program specifications and mathematical results. This task is far from trivial, except for standard introductory examples, and it has a significant cost in terms of performance, paying off exclusively in terms of the simplicity and the insight of the programs one is trying to formalise.

Fortunately, after years of continuous work, theorem proving tools have reduced this well-known gap, and the technology they offer is being used to implement and formalise state of the art algorithms and generate programs to, usually, functional languages, with remarkable performance (see, for instance, Esparza et al. (2013), Sternagel (2013)). Code generation is a well-known and admitted technique in the field of Formal Methods. Avigad and Harrison in a recent survey about formally verified Mathematics (Avigad \& Harrison, 2014), enumerate three different strategies to verify "mathematical results obtained through extensive computations"; the third
one is presented as "to describe the algorithm within the language of the proof checker, then extract code and run it independently".

In this work, following the third strategy quoted above, we present an experiment to formalise a version of the Gauss-Jordan algorithm (Strang, 2009) over matrices in the theorem prover Isabelle/HOL (Nipkow et al., 2002). The algorithm computes the reduced row echelon form of a matrix, which is then proved to be applicable to solve standard problems in Linear Algebra, such as computing the rank of matrices, computing determinants and inverses, solving systems of linear equations, and computing bases of fundamental subspaces of matrices. These verified algorithms are later codegenerated to the functional languages SML (Milner et al., 1997) and Haskell (2014). The algorithm that we implement is neither specialised, nor obtained from a Computer Algebra system, but is just a simple version of the Gauss-Jordan algorithm designed to ease its formalisation. Nevertheless, the utility of our work is threefold.

First, it sets a framework in which formalisation of Linear Algebra results, implementation of algorithms, and code generation to functional programs is achieved with an affordable effort, by using well-established tools. Second, it shows that the performance of the generated code is enough (even if it is not comparable to specialised programs in Computer Algebra) to obtain interesting computations (such as determinants with big integers that disclosed a bug in Mathematica ${ }^{\circledR}$ (Durán et al., 2014) and relevant properties of digital images). Finally, it shows that the ties between matrix algorithmics and Linear Algebra can be established thanks to the Isabelle/HOL Multivariate Analysis Library (HMA, 2014) infrastructure (a property that is harder to find in Computer Algebra systems).

The paper will be divided as follows: in Section 2, we introduce the Isabelle/HOL theorem prover and the infrastructure in such a system that is used in our work; we distinguish among the parts which are already in the system, and the new components that are product of our own work. In Section 3, we present a version of the Gauss-Jordan algorithm over fields, as well as the different applications of it that we have formalised in Isabelle/HOL. In Section 4, we present the code generation process from the formalised Isabelle algorithm to the running versions in SML and Haskell. In Section 5, we introduce some case studies in which the generated algorithms show their usefulness, and some relevant related work. The source files of the development are available at Aransay \& Divasón (2014c); they have been developed under the Isabelle 2013-2 version. The previous website also includes the SML and Haskell code generated from the Isabelle specifications, an implementation of the algorithm in $\mathrm{C}++$, which performance is compared to ours, and some input matrices that have been used for profiling and benchmarking. Finally, in Section 6, we draw some conclusions and possible research lines that follow from our work.

2 Isabelle

2.1 Isabelle/HOL

Isabelle (Paulson, 1990) is a generic theorem prover which has been instantiated to support different object-logics, from which higher-order logic (or briefly, $H O L$
(Nipkow et al., 2002)) is the one that offers a greatest number of facilities to the user, some of which will be relevant to our work (such as code generation, see Section 2.3). The HOL type system is based on non-empty types, function types (\Rightarrow) and type constructors of different arities (list, $\times^{-} \times_{-}$) that can be applied to already existing types (nat, bool) and type variables (α, β). Types can be also introduced by enumeration (bool) or by induction, as lists (by means of the datatype command). Additionally, new types can be also defined as non-empty subsets of already existing types (α) by means of the typedef command; the command takes a set defined by comprehension over a given type $\{x:: \alpha \mid P x\}$, and defines a new type σ.

Isabelle also introduces type classes in a similar fashion to Haskell; a type class is defined by a collection of operators (over a single type variable) and premises over them. For instance, the HOL Multivariate Analysis Library has a type class field representing the algebraic structure. Concrete types (real, rat) can be proven to be instances of a given type class (field in our example). Type classes are also used to impose additional restrictions over type variables; for instance, the expression ($x:: \alpha::$ field $)$ imposes the constraint that the type variable α possesses the structure and properties stated in the field type class, and can be later replaced exclusively by types which are instances of that type class.

2.2 HOL multivariate analysis

The HOL Multivariate Analysis (or HMA for short) Library (HMA, 2014) is a set of Isabelle theories which contains theoretical results in mathematical fields such as Analysis, Topology and Linear Algebra. They are based on the impressive work of Harrison in HOL Light (Harrison, 2013), which includes proofs of intricate theorems (such as the Stone-Weierstrass theorem) and has been used as a basis for appealing projects such as the formalisation of the proof of the Kepler conjecture by Hales (Hales \& Ferguson, 2011). Among the fundamentals of the library, one of the keys is the representation of n-dimensional vectors over a given type $\left(\mathbb{F}^{n}\right.$, where \mathbb{F} stands for a generic field, or in Isabelle jargon a type variable $\alpha::$ field $)$.

The idea (first presented by Harrison (2005)) is to represent n-dimensional vectors (type vec) over α by means of functions from a finite type variable β :: finite to α, where $\operatorname{card}(\beta)=n$ (the cardinal of a type can be interpreted as an abuse of notation; it really stands for the cardinal of the universe set of such a type). For proving purposes, this type definition is usually sufficient to support the generic structure \mathbb{F}^{n}.

The Isabelle vec type definition is as follows; the functions vec-nth and vec-lambda are the morphisms between the abstract data type vec and the underlying concrete data type, functions with finite domain (additional restrictions over α and β are added only when required for formalisation purposes):

```
typedef (\alpha,\beta) vec = UNIV :: (( }\beta::\mathrm{ :finite) ) 
    morphisms vec-nth vec-lambda ..
```

The previous type also admits in Isabelle the shorter notation $\alpha^{\wedge} \beta$. The idea of using underlying finite types for vectors indices has great advantages from the formalisation point of view, as already pointed out by Harrison. For instance, the type system can be used to guarantee that operations on vectors (such as addition and multiplication) are only performed over vectors of equal dimension, i.e., vectors whose indexing types are exactly the same (this would not be the case if we were to use, for instance, lists as vectors). Moreover, the functional flavour of operations and properties over vectors is kept (for instance, vector addition can be defined in a pointwise manner).

The representation of matrices is then derived in a natural way based on the representation of vectors by iterating the previous construction (matrices over a type α will be terms of type $\alpha^{\wedge} m^{\hat{n}} n$, where m and n stand for finite type variables).

A subject that has not been explored either in the Isabelle HMA Library, or in HOL Light, is the possibility to execute the previous data types and operations. Another aspect that has not been explored in the HMA Library is algorithmic Linear Algebra. One of the novelties of our work is to establish a link between the HMA library and a framework where algorithms can be represented and also executed.

Our work also enhances the HMA Library by generalising some of the definitions and mathematical results presented there over type classes representing real vector spaces and Euclidean spaces (such as for instance matrices, determinants and associated lemmas) to more general type classes and locales representing vector spaces and finite-dimensional vector spaces over a generic field \mathbb{F} (of any characteristic). This limitation had been pointed out in some previous developments over this Library (see, for instance, Avigad et al. (2014)). This will enable us to carry out computations over any field, such as $\mathbb{F}_{p}, \mathbb{Q}, \mathbb{R}$ and \mathbb{C}. This generalisation is thoroughly described in Aransay \& Divasón (2015). It has involved the introduction of new structures (locales and type classes), the reproduction of some previous definitions and proofs in those structures, and also in some particular cases the formalisation of different proofs for results that hold both in a generic field \mathbb{F} and in \mathbb{R}, but whose previous proofs in \mathbb{R} made use of specific properties of such a structure. We present in Sections 4 and 5 further details involving computations over $\mathbb{Z}_{2}, \mathbb{Q}$ and \mathbb{R} matrices.

2.3 Code generation

Another interesting feature of Isabelle/HOL is its code generation facility (Haftmann, 2013). Its starting point are specifications (in the form of the different kinds of definitions supported by the system) whose properties can be stated and proved, and (formalised) rewriting rules that express properties from the original specifications. From the previous code equations, a shallow embedding from Isabelle/HOL to an abstract intermediate functional language (Mini-Haskell) is performed. Finally, trivial transformations to the functional languages SML, Haskell, Scala and OCaml are performed. The expressiveness of HOL (such as for instance universal and existential quantifiers and the Hilbert's ϵ operator) is not that of functional programming languages, and therefore one must restrict herself to use Isabelle
"executable" specifications, if she aims at generating code from them (or prove code equations that refine non-executable specifications to executable ones).

One weakness of this methodology is the different semantics among the source Isabelle constructs and their functional languages counterparts; this gap can be narrowed to a minimum, since the tool is based on a partial correctness principle. This means that whenever an expression v is evaluated to some term $t, t=v$ is derivable in the equational semantics of the intermediate language, see Haftmann \& Nipkow (2010) for further details. Then, from the intermediate language, the code generation process can proceed to the functional languages by means of the aforementioned trivial transformations, or, in a broadly accepted way of working (Esparza et al., 2013; Haftmann et al., 2013; Avigad \& Harrison, 2014), ad-hoc serialisations to types and operations in the functional languages library can be performed. These serialisations need to be trusted, and, therefore, they are kept as simple as possible (in Section 4.1 we explicitly introduce these transformations).

3 The Gauss-Jordan algorithm and its applications

In a previous work (Aransay \& Divasón, 2014b), we formalised the Rank Nullity Theorem of Linear Algebra. In our formalisation, it is established that, given V a finite-dimensional vector space over \mathbb{R}, W a vector space over \mathbb{R}, and $\tau \in L(V, W)$ (a linear map between V and W), $\operatorname{dim}(\operatorname{ker}(\tau))+\operatorname{dim}(\operatorname{im}(\tau))=\operatorname{dim}(V)$ or, in a different notation, null $(\tau)+\operatorname{rk}(\tau)=\operatorname{dim}(V)$. We closely followed the proof in Gockenbach (2010), as we follow here its notation. In our new development (Aransay \& Divasón, 2014c), the previous result has been generalised replacing \mathbb{R} by a generic field \mathbb{F} of any characteristic. Unfortunately, having formalised the previous result does not provide us with an algorithm that computes the dimension of the image and kernel sets of a given linear map.

As it has been formalised in Aransay \& Divasón (2014c), every linear map between finite-dimensional vector spaces over a field \mathbb{F} is equivalent to a matrix $\mathbb{F}^{m \times n}$ (once a pair of bases have been fixed in both \mathbb{F}^{n} and \mathbb{F}^{m}), and, therefore, we can reduce the computation of the dimensions of the range (or rank) and the kernel (or nullity) of a linear map to the computation of the reduced row echelon form (Roman, 2008) (or rref) of a matrix; the number of nonzero rows of such a matrix provides its rank, and the number of zero rows its nullity. The Gauss-Jordan algorithm computes the rref of a matrix.

Algorithm 1 describes the Gauss-Jordan elimination process that inspired our Isabelle formalisation. We must note that our Isabelle implementation of the algorithm differs from Algorithm 1 since we have replaced side effects and imperative statements (such as for loops) by standard functional constructs that are detailed below.

Algorithm 1 traverses the columns of the input matrix, finding in each column k an element in the i th row (the first nonzero element in a row greater than the index l); if such an element (the pivot) exists, rows i and l are interchanged (if the matrix has maximum rank, l will be equal to the column index, otherwise it will be smaller), and the l th row is multiplied by the inverse of the pivoted element; this row is then

```
Algorithm 1 Gauss-Jordan elimination algorithm
    Input: \(A\), a matrix in \(\mathbb{F}^{m \times n}\);
    Output: The rref of the matrix \(A\)
    \(l \leftarrow 0 ; \quad \triangleright l\) is the index where the pivot is placed
    for \(k \leftarrow 0\) to (ncols \(A\) ) -1 do
        if nonzero \(l(\operatorname{col} k A)\) then \(\quad\) Check that col. \(k\) has a pivot over pos. \(l\)
            \(i \leftarrow\) index-nonzero \(l(\operatorname{col} k A) \quad \triangleright\) Let \(i\) be the such entry
            \(A \leftarrow\) interchange-rows Ail \(\triangleright\) Rows \(i\) and \(l\) are interchanged
            \(A l \leftarrow\) mult-row \(A l(1 / A l k) \quad \triangleright\) Row \(l\) is multiplied by \((1 / A l k)\)
            for \(t \leftarrow 0\) to (nrows \(A\) ) -1 do
                if \(t \neq l\) then \(\quad \triangleright\) Row \(t\) is added row \(l\) times \((-A t k)\)
                    \(A t \leftarrow \operatorname{row}-\operatorname{add} A t l(-A t k)\)
                end if
            end for
            \(l \leftarrow l+1\)
        end if
    end for
```

used to perform row operations to reduce all remaining coefficients in column k to 0 . If a column does not contain a pivot, the algorithm processes the next column. The algorithm performs exclusively elementary row operations.

In our Isabelle specification, rows and columns are assigned finite enumerable (in the sense that they admit an extensional definition) types, over which matrices are represented as functions. We have replaced the operations in the previous algorithm that produce side effects (for instance, interchange-rows, mult-row, rowadd) by Isabelle functions whose outputs are matrices. We have replaced the first (and outer) for loop ranging along the columns indexes in the original algorithm by means of a fold operation of a list with the desired indexes. The second (and inner) for loop, whose range is the rows of a given column, is replaced by means of a lambda expression over the rows' type (indeed, each row is itself a function over this finite type).

Note that we have represented matrices by means of functions over the columns' type of a function over the rows' type. The following Isabelle code snippets are presented to provide a better understanding of the gap between Algorithm 1 and our Isabelle implementation; additionally, they provide the complete Isabelle definition of the Gauss-Jordan algorithm, in terms of elementary row operations.

The Isabelle definition Gauss-Jordan-in-pos shown below selects an index i greater than l in the k th column (line 6 in Algorithm 1), interchanges rows i and l (line 7), multiplies the row l by the multiplicative inverse of the element in position (l,k) (line 8) and reduces the rest of the rows of the matrix, by means of a lambda expression, which represents the new created matrix (lines 9 to 13).

```
Gauss-Jordan-in-pos A l k =
    (let
        i = (LEAST n. A $ n $ k # 0 ^ n \geqslant l);
```

```
interchange-A = (interchange-rows A i l);
A' = mult-row interchange-A l (1/interchange-A $ l $ k)
    in
vec-lambda (\lambdat. if t = l then A' $ l
    else (row-add A' t l (-(interchange-A $ t $ k)))$ t))
```

The definition Gauss-Jordan-column checks if there is a pivot on column k of a matrix A, starting from position i and then applies the previous operation Gauss-Jordan-in-pos (and corresponds with line 5 in Algorithm 1).

```
Gauss-Jordan-column (i', A) k' =
    (let
        i = from-nat i';
        k = from-nat k'
    in
        if ( }\forall\textrm{m}\geqslant\textrm{i}.A|m$k=0) V (i = nrows A) then (i, A),
        else (i+1, (Gauss-Jordan-in-pos A i k)))
```

The traversing operation over columns (line 4) is performed by folding the operation Gauss-Jordan-column over the list containing the columns' type universe, starting with a pair given by the index 0 (line 3) and the input matrix A.

Gauss-Jordan-upt $A k=$ snd (foldl Gauss-Jordan-column ($0, A$) [0..<Suc k])
Gauss-Jordan A = Gauss-Jordan-upt A ((ncols A) - 1)
The algorithm admits several variants, both to speed up its performance and also to avoid numerical stability issues with floating point numbers (Gockenbach (2010), Chap. 9), but in order to reduce the complexity of its formalisation we chose the above presentation.

The rref of a matrix has indeed further applications than computing the rank. Since this version of Gauss-Jordan is based on elementary row operations, it can be also used for:

- Computation of the inverse of a matrix, by "storing" the elementary row operations over the identity matrix.
- Determinants, taking into account that some of the elementary row operations can introduce multiplicative constants.
- Computation of bases and dimensions of the null (defined as $\left\{x \in \mathbb{F}^{m} \mid A \cdot x=\right.$ $0\}$), left null ($\left\{x \in \mathbb{F}^{n} \mid x^{T} \cdot A=0\right\}$), column $\left(\left\{A \cdot x \mid x \in \mathbb{F}^{m}\right\}\right)$ and row ($\left\{A^{T} \cdot x \mid x \in \mathbb{F}^{n}\right\}$) subspaces (also known as fundamental subspaces) of a matrix.
- Solution of systems of linear equations $\left(\left\{x \in \mathbb{F}^{m} \mid A \cdot x=b\right\}\right)$, both consistent (with unique or multiple solutions) and inconsistent ones.

The formalisation of the Gauss-Jordan algorithm, together with numerous previous results in Linear Algebra, and the different applications that are presented above, summed up ca. 12000 lines of code (see Table 4); the proofs check that the defined objects (determinant, inverse matrix, solution of the linear system, fundamental
subspaces) are preserved (or modified in a certain way) after each algorithm step (and more concretely, after each elementary row operation). By using product types, we store an initial value for the desired object, and the input matrix. In the case of determinants, the initial pair is $(1, A)$.

```
Gauss-Jordan-upt-k-det-P A k =
    (let step = foldl Gauss-Jordan-column-k-det-P (1,0,A) [0..<Suc k]
        in (fst step, snd (snd step))))
Gauss-Jordan-det-P A =
    Gauss-Jordan-upt-k-det-P A ((ncols A) - 1)
```

After each algorithm step, a corresponding modification is applied to the first component. The previous function Gauss-Jordan-upt-k-det-P takes as inputs a matrix A and a column k, performs Gauss-Jordan in the first k columns of A, and returns a pair whose first component is the product of the coefficients originated when performing Gauss-Jordan in the first k columns, and the second component contains the matrix obtained after performing Gauss-Jordan in the first k columns.

In the computation of each of the previous pairs, there is a notion of invariant that is preserved through the Gauss-Jordan algorithm steps. For instance, in the case of determinants, given a matrix A, after n elementary operations the pair $\left(b_{n}, A_{n}\right)$ is obtained, and it holds that $b_{n} \times(\operatorname{det} A)=\operatorname{det} A_{n}$, and $b_{n} \neq 0$. Since the algorithm terminates (the elements indexing the columns are an enumerable type), after a finite number, m, of operations, we obtain a pair ($b_{m}, \operatorname{rref} A$) such that $b_{m} \times(\operatorname{det} A)=\operatorname{det}(\operatorname{rref} A)$; since we proved that the determinant of $\operatorname{rref} A$ is the product of its diagonal elements, the computation is completed.

```
lemma det-Gauss-Jordan-det-P:
    fixes A::\alpha::field^n^n::mod-type
    defines comp == Gauss-Jordan-det-P A
    shows (fst comp) * det A = det (snd comp)
```

In a similar way, we perform the proof of the computation of the inverse of a matrix (starting from an input square matrix A of dimension n, the pair $\left(I_{n}, A\right)$ is built and after every row operation, $\left(P^{\prime}, A^{\prime}\right)$ is such that $\left.P^{\prime} \cdot A=A^{\prime}\right)$, as long as A is invertible (in other words, $\operatorname{rref} A=I_{n}$). When the Gauss-Jordan algorithm reaches $\operatorname{rref} A$, the first component of the pair holds the matrix P (this matrix is indeed the product of every elementary operation performed). The computations of the bases of the fundamental subspaces of linear maps are also based on the computation of the matrix P generated from applying the Gauss-Jordan algorithm to A (or A^{T}) and the same operations to $I_{n}\left(I_{m}\right)$. Their Isabelle definitions are given as follows:
definition basis-null-space $A=$
\{row i (P-Gauss-Jordan (transpose A)) li. to-nat i \geqslant rank A\}
definition basis-row-space $A=$
\{row i (Gauss-Jordan A) li. row i (Gauss-Jordan A) $\neq 0$ \}
definition basis-col-space $A=$ \{row i (Gauss-Jordan (transpose A)) li. row i (Gauss-Jordan (transpose A)) $\neq 0\}$
definition basis-left-null-space $A=$
\{row i (P-Gauss-Jordan A) | i. to-nat i $\geqslant \operatorname{rank} A\}$
With respect to the solution of systems of linear equations, $A \cdot x=b$, we prove that, if a system is consistent, its set of solutions is equal to a single point plus any element which is a solution to the homogeneous system $A \cdot x=0$ (or, in other words, the null space of A). In order to solve the system, we start from the pair $\left(I_{n}, A\right)$ and after applying the Gauss-Jordan algorithm to A, and the same elementary operations to I_{n}, a new pair $(P, \operatorname{rref} A)$ is obtained. The vector b is then multiplied by P, and from its number of nonzero positions and the rank of A (or rref A) the system is classified as consistent or inconsistent. In the first case, a single solution is computed by taking advantage of $\operatorname{rref} A$. The basis of the null space is computed applying Gauss-Jordan elimination to A^{T} in (I_{m}, A^{T}), and performing similar row operations to I_{m}.

In order to consider inconsistent systems suitably, we have represented the solutions as elements of the Isabelle option type (whose elements are of the form (Some x) and None); the set of solutions of a system will be presented as a singular point (whenever the system has solution), and the corresponding vectors forming a basis of the null space (or the empty set). As an additional result, we have formalised in Isabelle that every solution to a given system is of the previous form. Previous formalisations of the solution of systems of linear equations through the GaussJordan algorithm (see, for instance, Nipkow (2011)) and most Computer Algebra systems compute exclusively single solutions (even more, for exclusively compatible systems with equal number of equations and unknowns).

In Section 1, we pointed out that the HMA library permitted us to keep the tie between Linear Algebra and algorithmics. The crucial result to this aim consists in establishing and formalising a link between linear maps and matrices.

The following result states that applying a linear map f to an element x of its source vector space is equal to multiply the associated matrix to f by the vector x (the matrix represents the linear map with respect to some previously fixed bases). The generalisation of this result to fields was formalised as a part of this development, inspired by the result over real vector spaces, already available in HMA. This result is available in the file Generalizations.thy in Aransay \& Divasón (2014c)).

```
lemma matrix-works:
    assumes linear (op *s) (op *s) f
    shows matrix f *v x = f (x::\alpha::field^n)
```

Then, in file Linear-Maps.thy, several results have been proven based on this one, that relate linear maps and properties of their associated matrices. For instance, the following result proves that a linear map is bijective if and only if its associated matrix has full column rank.

```
lemma linear-bij-rank-eq-ncols:
    fixes f::\alpha::field^n::mod-type = 人^n
    assumes linear (op *s) (op *s) f
    shows bij f \longleftrightarrow rank (matrix f) = ncols (matrix f)
```

The rank of a matrix is now a computable property (by means of the Gauss-Jordan algorithm presented), as it is its number of columns.

4 Code generation to functional languages

The presented Isabelle formalisation of the Gauss-Jordan algorithm can be directly executed inside of Isabelle (by rewriting specifications and code equations) with some setup modifications that we presented in a previous work (see Section 4 in Aransay \& Divasón (2014a)) obtaining, thus, formalised computations. Every operation performed in Isabelle is itself executable, since we are dealing with enumerable types for representing matrices columns and rows. For instance, the Isabelle function Gauss-Jordan-in-pos presented previously, makes use of the LEAST operator (based itself on the Hilbert's ϵ operator and not executable in general), and is specified in our particular setting taking advantage of the fact that its underlying type is enumerable, and, therefore, can be executed to select a pivot.

Unfortunately, the performance obtained makes the algorithm unusable in practice, except for testing purposes. Matrices represented as functions over finite domains are reportedly impractical. More concretely, there are two sources of inefficiency in the results obtained. First, Isabelle is not designed as a programming language, and execution inside of the system offers poor performance. In Section 4.1, we present a solution to translate our specifications to functional programming languages. Second, the data structures (functions) that helped us to prove the correctness of the Gauss-Jordan algorithm and its applications are optimal for formalisation, but not for execution. Section 4.2 describes a verified refinement between the type used for representing matrices in our formalisation (vec and its iterated construction) and immutable arrays, a common data structure in functional programming.

4.1 Code generation and serialisations

Since the Isabelle code is not suitable for computing purposes, the original Isabelle specifications are translated to a programming (functional) language, as introduced in Section 2.3. Our choices (from the available languages in the standard Isabelle code generation setup) were SML (since the SML Standard Library includes a Vector type representing immutable arrays) and Haskell (for a similar reason, with the Haskell IArray class type and its corresponding instance IArray.Array, and also because there is a built-in Rational type representing arbitrary precision rational numbers).

Additionally, we make use of serialisations, a process to map Isabelle types and operations to the corresponding ones in the target languages. Serialisations are a common practice in the code generation process (see, Haftmann (2013) for some introductory examples); otherwise, the source types and operations would be generated from scratch in the target languages, and the obtained code would be less readable and efficient (for instance, the nat type would be generated to an ad-hoc type with 0 and Suc as constructors, instead of using the built-in representation of

Table 1. Type serialisations

Isabelle $/ \mathrm{HOL}$	SML	Haskell
iarray	Vector.vector	IArray. Array
rat	IntInf.int / IntInf.int	Rational
real	Real.real	Bool.bool

integers in the target language). The advantage of applying serialisations to the target languages suitably is stressed by an empirical result; profiling the computations carried out over matrices of rational numbers in SML, we detected that the greatest amount of time was spent in reducing fractions (operations gcd and divmod). Serialising these Isabelle operations to the corresponding built-in Poly/ML (2014) and MLton (2014) functions (which are not part of the SML Standard Library, but particular to each compiler), decreased by a factor of 20 the computing times.

The following Isabelle code snippet presents the serialisation that we produced from the Isabelle type rat representing rational numbers (which is indeed based on equivalence classes), to the Haskell type Rational. As it can be observed, it merely identifies operations (including type constructors) from the source and the target languages.

```
code-printing
type-constructor rat > (Haskell) "Prelude.Rational"
    class-instance rat :: "HOL.equal" => (Haskell) -
    constant "O :: rat" \rightharpoonup (Haskell) "Prelude.toRational (0::Integer)"
    constant "1 :: rat" \rightharpoonup (Haskell) "Prelude.toRational (1::Integer)"
    constant "Frct-integer" \rightharpoonup (Haskell) "Rational.fract (_)"
    constant "numerator-integer - (Haskell) "Rational.numerator(_)
    constant "denominator-integer > (Haskell) "Rational.denominator(_)
    constant "HOL.equal :: rat => rat = bool" > (Haskell) "(_) == (_)"
    constant "op < :: rat => rat => bool" > (Haskell) "_ < _"
    constant "op \leqslant :: rat => rat => bool" > (Haskell) "_ <= _"
    constant "op + :: rat => rat => rat" > (Haskell) "(_) + (_)"
    constant "op - :: rat => rat => rat" D (Haskell) "(_) - (_)"
    constant "op * :: rat => rat => rat" > (Haskell) "(_) * (_)"
    constant "op / :: rat => rat => rat" D (Haskell) " (_) '/ (_)"
    constant "uminus :: rat => rat" \rightharpoonup (Haskell) "Prelude.negate"
```

The complete set of Isabelle serialisations that we used is shown in Table 1. The Isabelle types rat, real and bit represent respectively \mathbb{Q}, \mathbb{R} and \mathbb{Z}_{2}. The SML type IntInf.int represents arbitrarily large integers. It is worth noting that the Isabelle type real can be also serialised to the types used for rat in SML and Haskell, preserving arbitrary precision and avoiding numerical stability issues. Types presented in bold face identify serialisations that were introduced by us as part of this work. We also contributed some improvements to the Isabelle Library in the serialisation to the SML type Vector.vector.

The SML Standard Library lacks of a type representing arbitrary precision rational numbers, and thus the proposed serialisation for rat is quotients of arbitrarily large integers. In this particular case, Haskell takes advantage of its native Rational type to challenge SML performance, which otherwise tends to be poorer.

We also explored the serialisation of Isabelle type real to double-precision floating point formats (Double in Haskell, Real.real in SML) in the target languages, but the computations performed present the expected round-off errors.

The bit type admits multiple serialisations, ranging from boolean values to subsets of the integers (with either fixed or arbitrary size). Experimental results showed us that the best performing option was to serialise bit and its operations to the corresponding boolean types in the target languages.

4.2 Data type refinements

Some data types present better properties for specification and formalisation purposes. For instance, specifying an algorithm over sets is easier than doing so over lists. However, the latter data type is better suited for execution tests. Following this idea, the poor performance presented by functions representing matrices can be solved by means of a data refinement to a better performing data structure.

Data refinement (Haftmann et al., 2013) offers the possibility to replace an abstract data type in an algorithm by a concrete type; in particular, our intention is to replace the vec type representing vectors before applying code generation. In our development, we have used the Isabelle type iarray as the target type of our refinement. Accordingly, we define functions vec-to-iarray that convert elements of type vec to elements of type iarray (an operation matrix-to-iarray will convert iterated vectors to iterated iarrays, the natural representation for matrices in this setting).
definition vec-to-iarray:: α^{\wedge} col::\{mod-type\} $\Rightarrow \alpha$ iarray
where vec-to-iarray $v=$ IArray.of-fun ($\lambda i . \quad v \$(f r o m-n a t i))$ (CARD (col))
Each function over elements of type vec needs to be replaced by a new function over type iarray. This requires first specifying a function over the type iarray, and then proving that it behaves as the one over type vec. The following result is labeled as a code equation, that will be later used in the code generation process.

```
lemma [code-unfold]:
    fixes A::\alpha::{field}^col::{mod-type}^row::{mod-type}
    shows matrix-to-iarray (Gauss-Jordan A) =
    Gauss-Jordan-iarrays (matrix-to-iarray A)
```

The code equation certifies that it is correct to replace the function Gauss-Jordan (defined over abstract matrices, or elements of type vec) by the function Gauss-Jordan-iarrays. As it can be observed, the code equation does not include premises; this is a requirement from the Isabelle code generator. The label code-unfold
instructs the code generation tool to record the lemma as a rewriting rule, replacing occurrences of the left-hand side in the execution and code generation processes by the right-hand side. From a broader perspective, the function matrix-to-iarray has to be proved to be a homomorphism between the original and the refined type.

The proving effort (ca. 2800 code lines, see Table 4) to prove the type refinement is significantly smaller than the formalisation itself (ca. 12200). It must be noticed that reproducing the formalisation over iarrays would presumably take more than the aforementioned 12200 lines, since the type vec has particular properties that ease and simplify the proofs. At least two features of this refinement from vec to iarray can be identified that have an influence in the modest amount of work devoted to it. First, the close relationship between the original data type vec and the new data type iarray, since both of them share a similar interface that allows to easily identify operations between them. Second, the fact that we preserved the original algorithm design, replacing operations over the vec type by equivalent ones over the iarray type. Nevertheless, the Isabelle code generator leaves the door open to algorithmic refinements (obviously, the bigger the differences between the abstract and the concrete algorithms, the greater the proving effort that has to be invested to fill such a gap). This effort pays off in terms of reusability, since the lemmas proving the equivalence between abstract and concrete operations for elementary row (or column) operations could be reused in future developments (implementations of different algorithms over matrices).

```
lemma [code-unfold]:
fixes A::\alpha::{semiring-1}^col::{mod-type}^row::{mod-type}
shows matrix-to-iarray (interchange-rows A i j) =
    interchange-rows-iarray (matrix-to-iarray A) (to-nat i)(to-nat j)
```

Mapping some other operations on the type vec to the type iarray may involve programming decisions. For instance, the LEAST operator, which in its Isabelle original definition merely has a logical specification (a description of the properties that the least element satisfying a predicate possesses), and has not an executable specification, needs to be proved equivalent to a user provided operation on the data type iarray. The definition below shows an operation on the type iarray, which is itself based on the operation find of lists. The Isabelle corollary presented below proves that this operation successfully finds the least (with respect to the indexing order) nonzero element in a matrix column j over a row i (if such an element exists, as expressed in the assumes clause).

```
definition least-nonzero-position-index v i =
    the (List.find (\lambdax. v!!x = 0) [i..<(IArray.length v)])
corollary
    fixes A::\alpha::zero^col::mod-type^row::mod-type and j::col
    defines colj \equiv vec-to-iarray (column j A)
    assumes \neg(vector-allzero-from-index (to-nat i, colj))
    shows least-nonzero-position-index (colj) (to-nat i) =
        to-nat (LEAST n. A$n$j # 0 ^ i\leqslantn )
```


5 The generated programs and related work

5.1 The generated programs

The Isabelle code generation facility is now applied to generate the SML and Haskell code from the Gauss-Jordan algorithm specification. Note that in this process both the serialisations and data type refinements presented in Section 4 are used. The automatically generated code sums up 2,300 lines in SML and 1,300 in Haskell (see Table 4). The SML and Haskell sources are available from Aransay \& Divasón (2014c). They closely resemble the definitions presented in Section 3 of the Gauss-Jordan algorithm.

It shall be clear that the programs pose a serious drawback, since the input matrices are stored by means of immutable data types. Since we are using iarrays for representing both vectors and matrices, every operation with side effects requires additional memory consumption, whereas mutable data structures in imperative languages should avoid this matter. Even so, the obtained programs were useful in at least a couple of interesting case studies:

- The rank (computed, for instance, as the number of nonzero rows of the rref) of a \mathbb{Z}_{2} matrix, permits the computation of the number of connected components of a digital image; in Neurobiology, this technique can be used to compute the number of synapses in a neuron (see Heras (2012) for details). With our programs, the computations can be carried out on images at least of $2560 \times 2560 \mathrm{px}$. size (which are conventional ones in real life experiments). The running time to obtain these computations was $c a .160 \mathrm{~s}$.
- Varona et al. (Durán et al., 2014) detected that Mathematica ${ }^{\circledR}$, at least in versions $8.0,9.0$ and 9.0 .1 , was erroneously computing determinants of matrices of big integers, even for matrices of small dimensions (in their work they present an example of a matrix of dimension 14×14). The same computation, performed twice, can produce different results. The bug was reported to the Mathematica ${ }^{\circledR}$ support service. The error might be originated in the use of some arithmetic operations modulus large primes (apparently, the prime numbers could be either not large enough or not as many as required). With our verified program, the computation takes $c a .0 .64 \mathrm{~s}$ (in MLton; Haskell and Poly/ML performance are also practically the same over inputs of such sizes), and the result obtained is the same as in Sage (which requires 0.0 s) and Maple ${ }^{\mathrm{TM}}$. Our algorithm relies on the arbitrarily large integers as implemented in each one of the functional languages. The computing time in Mathematica ${ }^{\circledR}$ (of the wrong result) sums up 2.68 s .

In general, the applicability of the generated programs is widely possible. Linear Algebra is well-known for being a central tool for graph theory, coding theory and cryptography, among many others.

5.2 Related work

The formalisation of Abstract Algebra has been of recurrent interest for the Theorem Proving community, and it would be difficult to provide here a complete survey
on the subject; even so, the formalisation of Linear Algebra algorithms has not received such an attention from the community. This is somehow surprising, since new algorithms are being continuously implemented in Computer Algebra systems in a search for better performance.

Nevertheless, it is worth mentioning the CoqEAL (standing for Coq Effective Algebra Library) effort (Dénès et al., 2012). This work is devoted to develop a set of libraries and commodities over which algorithms over matrices can be implemented, proved correct, refined, and finally executed. We try to compare our work with theirs in each of these terms.

The implementation of algorithms is rather similar, except for the peculiarities of the Isabelle and Coq systems; the algorithms in CoqEAL take advantage of the SSReflect library and facilities, which indeed represents vectors and matrices as functions, and therefore quite close to ours. The Coq type system is richer than the one of Isabelle; in particular, it allows the definition of dependent types, enabling the use of submatrices and some other natural constructions, that in our Isabelle implementation have been avoided.

In order to prove the correctness of algorithms, CoqEAL algorithms can take advantage of the use of dependent types to extensively apply induction over the dimension of matrices, whereas we chose to apply induction over the number of columns; there might be algorithms where this fact really poses a difference, but we did not detect any particular hindrance in the proof of the algorithm computing the rref.

Refinements in CoqEAL can be performed both on the algorithms and on the data structures (Dénès et al., 2013) (as we also do in our development); data type refinements in CoqEAL are made in a parametricity fashion, since algorithms are implemented and proved over unspecified operations (by means of type classes) that are later replaced with computational or proof oriented types. Then, some parametricity lemmas state the equivalence between computational and proof oriented operations. These lemmas sometimes introduce additional parameters (such as the size of matrices) that could be unnecessary in some of the representations. In practice, the data type refinements in CoqEAL are reduced to using either functions or lists for representing vectors (and then matrices iteratively). Our approach is more flexible since it is based in proving the equivalence (modulus type morphisms) of the operations in the computational and proof oriented types (Haftmann et al., 2013). In Isabelle, there is no special requirement over the proof type and the computational type, as long as a suitable morphism exists between both, and operations that are proven equivalent in both types. Type classes are thus avoided, enhancing the flexibility of the refinements to be carried out.

Regarding execution, there is a crucial difference between CoqEAL's approach and ours. In the CoqEAL framework computations are carried out over the Coq virtual machine (and thus "inside" the Coq system, avoiding code generation), a bundle of Coq libraries to optimise computational times. Our approach is thought for code generation, and executions are completed in Haskell or SML (they can be also performed "inside" of Isabelle, but execution times are considerably slower). This
provides us with a remarkable edge in performance. For instance, the computation of the rank of a \mathbb{Z}_{2} matrix of size 1000×1000 consumes 32 s . in Poly/ML but 121 s. in Coq (following the figures in Dénès (2013)), even if their algorithm exclusively computes the rank of the matrix, without any additional information, whereas ours produces the rref of the matrix. One potential source of inefficiency in CoqEAL performance could be the use of lists, instead of arrays, to encode vectors and matrices.

A different tempting approach would be to verify an imperative version of the algorithm producing the rref of a matrix. The implementation of imperative programs and (mutable) arrays in Isabelle/HOL has been studied in Bulwahn et al. (2008), through the use of suitable monads, giving place to a library called Imperative $H O L$. When applying code generation, mutable arrays are refined to the SML Array.array type, which is also mutable (whereas immutable arrays were refined in our work to the SML type Vector.vector). The authors present two different case studies; in one of them the performance gain is a 30% with respect to a purely functional implementation using balanced trees. The use of monads introduces inherent intricacies both in the definitions and also in the consequent formalisations.

As an experiment, we produced a (non-formalised) imperative implementation of the Gauss-Jordan algorithm, inspired by Algorithm 1 and our functional representation (see file Gauss-Jordan-Imp.thy in Aransay \& Divasón (2014c)). Algorithm 1 involves numerous matrix rows and column traversals that we have implemented by recursion (up to our knowledge, there is not a suitable array traverse operator in Imperative HOL).

We generated SML code from this imperative version, and carried out some performance tests between the functional verified version presented in Section 5.1 and the new imperative one. Rather surprisingly, the functional and imperative versions performed almost equally (with a little bias of a 10% for each version depending on the compiler used, MLton or Poly/ML). Profiling both algorithms (see Table 2) it seemed clear that the amount of time spent in the functional version of the algorithm in the construction of new immutable arrays (operation of-fun) was greater than the amount of time devoted in the imperative version (operation make.fn), but this amount of time was compensated by the time spent in the imperative version performing updating and the remaining recursive operations (operations sub and nth.fn represent both the array access operation).

Table 2 presents the result of profiling in MLton the computation of the rref of a 600×600 matrix with inputs in \mathbb{Z}_{2} (profiling itself adds up an overhead of almost 20% in the computing times).

Replacing some of the recursive operations used in the imperative version by traversals may reduce computing times, but apparently by a low margin. An additional drawback of using Imperative HOL is that the underlying types (used in arrays) have to be proven instances of the type class countable, since the heap is modeled as an injective map from addresses to values. In our particular case, this limitation prevent us of using this representation for the type real.

Table 2. Profiling of the "imperative" and verified versions of Gauss-Jordan

"Imperative" version		Verified version	
Function	Time perc.	Function	Time perc.
nth.fn	29.8\%	sub	33.4\%
upd.fn.fn.fn	12.2\%	of_fun	32.7\%
IntInf.schekToInt64	12.1\%	IntInf.extdFromWord64	9.3\%
make.fn	8.1\%	IntInf.schckToInt64	7.5\%
plus_nat.fn	7.9\%	row_add_iarray.fn	6.3\%
\ldots	...	\ldots	\ldots
Total			
9.42 s of CPU time (0.04 s of GC)		10.06 s of CPU time (0.22 s of GC)	

Table 3. $C++$ and verified versions of the Gauss-Jordan algoithm

Matrix sizes	C++ version	Verified version
600×600	01.33 s.	06.16 s.
1000×1000	05.94 s.	32.08 s.
1200×1200	10.28 s.	62.3 s.
1400×1400	16.62 s.	97.16 s.

As an additional test of the performance of the obtained verified code, we implemented the same algorithm as presented in Algorithm 1 in $\mathrm{C}++$ (see file Gauss-Jordan.cpp in Aransay \& Divasón (2014c)), where vectors are represented by $\mathrm{C}++$ arrays, and array traversals are replaced by for loops. We produced some benchmarking to compare our verified functional version, executed with the Poly/ML interpreter, against the C++ version, that is presented in Table 3.

The obtained times with both versions are of the same order of magnitude, and grow cubically with respect to the number of rows of the matrices (it is worth noting that the Gauss-Jordan algorithm is of cubic order). Apparently, the use of immutable arrays in our verified code does not pose a drawback, and both algorithms scale similarly.

6 Conclusions and further work

In this work, we have presented a formalisation of the Gauss-Jordan algorithm and its principal applications in Linear Algebra. The algorithm has been proved in an environment (the HMA Library) that allows to keep the mathematical meaning of the results (for instance, the relation between matrices and linear maps) and over a representation of matrices which simplifies the proving effort. Additionally, the algorithm has been refined to a more suitable data type, and generated to SML and Haskell, languages in which we have been capable of executing the algorithm over matrices of remarkable dimensions (in our case study with digital images) and inputs (in matrices with big coefficients, that were erroneously computed in

Table 4. List of files in the formalisation and generated code

File name	Number of lines
Formalisation	
Dual-Order	71
Mod-Type	527
Generalizations	2519
Miscellaneous	535
Rref	412
Fundamental-Subspaces	263
Code-Set	40
Code-Matrix	82
Elementary-Operations	1031
Dim-Formula	366
Rank	45
Gauss-Jordan	2416
Linear-Maps	1229
Gauss-Jordan-PA	457
Determinants2	502
Inverse	332
Bases-Of-Fundamental-Subspaces	214
System-Of-Equations	621
Code-Bit	62
Examples-Gauss-Jordan-Abstract	149
Subtotal	12183
Refinement	
IArray-Addenda	98
Matrix-To-IArray	
Gauss-Jordan-IArrays	4319
Gauss-Jordan-PA-IArrays	401
Bases-Of-Fundamental-Subspaces-IArrays	319
System-Of-Equations-IArrays	165
Determinants-IArrays	389
Inverse-IArrays	245
Examples-Gauss-Jordan-IArrays	70
Code-Generation-IArrays	193
Code-Generation-IArrays-SML	103
Code-Real-Approx-By-Float-Haskell	121
IArray-Haskell	66
Code-Rational	111
Code-Generation-IArrays-Haskell	129
Subtotal	59
Total Isabelle code	2884
SML generated code (file Gauss-SML)	15067
	2344

Mathematica ${ }^{\circledR}$). The infrastructure created can be certainly reused; some of the serialisations introduced in Section 4 are already part of the Isabelle Library. The mathematical results are proved over a well-established Isabelle Library (HMA). Results on matrices include many basic operations. The data type refinement from vectors as matrices to immutable arrays is also easily reusable, not only for Linear Algebra purposes.

The number of lines of verified code generated in our work (ca. 2, 300 in SML, 1,300 in Haskell) is considerable and covers a wide range of applications in Linear Algebra. Both its formalisation and the refinement, available in Aransay \& Divasón (2014c), took 15,000 lines of Isabelle code. The HMA Library infrastructure was intensively reused, reducing significatively the amount of mathematical results to be formalised. Isabelle/HOL also provided powerful and efficient features to produce data type refinements. Table 4 shows the collection of files and their sizes produced in our work.

The design decisions that we are subject to (specially, the use of iarrays in the generated code) does not seem to pose a real limitation, since the other options explored (use of monads and use of imperative languages) do not provide a remarkable edge over our verified version.

As a natural continuation to our work, and once we have observed that mutable data types and imperative algorithms do not dramatically increase the performance of the obtained code, we consider that the refinement of algorithms should be a sensible subject. Refining our naive implementation of Gauss-Jordan to better performing algorithms shall be an interesting task. Additionally, once we have solved the problem of computing the solution of systems of linear equations, we could also explore the least squares problem that allows to find the closest point to a solution in systems of linear equations with no solution.

Acknowledgments

David Matthews, Matthew Fluet, Tjark Weber and Jasmin C. Blanchette gave us valuable advice to speed up our programs in Poly/ML, MLton and GHC. David Matthews also modified Poly/ML 5.5.1 to improve the performance offered by variable binders.

Juan Luis Varona helped us to perform Mathematica ${ }^{\circledR}$ computing tests and gave us valuable information about this system. His work encourages formalisation efforts and consequently motivates ours.

The referees made significant contributions to the first version of this paper, specially concerning the presentation of the generated programs and related work in Section 5.

This work has been supported by the research grant FPI-UR-12, from Universidad de La Rioja and by the project MTM2014-54151-P from Ministerio de Economía y Competitividad (Gobierno de España).

References

Aransay, J. \& Divasón, J. (2014a) Formalization and execution of Linear Algebra: From theorems to algorithms. In Post Proceedings of the International Symposium on LogicBased Program Synthesis and Transformation: LOPSTR 2013, Gupta, G. \& Peña, R. (eds), LNCS, vol. 8901. Madrid, Spain: Springer, pp. 01-19.
Aransay, J. \& Divasón, J. (2014b) Gauss-Jordan algorithm and its applications. Arch. Formal Proofs. Available at: http://afp.sf.net/entries/Gauss_Jordan.shtml, Formal proof development.
Aransay, J. \& Divasón, J. (2014c) Gauss-Jordan elimination in Isabelle/HOL. Available at: http://www.unirioja.es/cu/jodivaso/Isabelle/Gauss-Jordan-2013-2-Generalized/
Aransay, J. \& Divasón, J. (2015) Generalizing a Mathematical Analysis Library in Isabelle/HOL. NASA Formal Methods, Havelund, K., Holzmann, G. \& Joshi, R. (eds), LNCS, vol. 9058. Pasadena, CA, USA: Springer, pp. 415-421.
Avigad, J., \& Harrison, J. (2014) Formally verified mathematics. Commun. ACM 57(4), 66-75.
Avigad, J., Hölzl, J. \& Serafin, L. (2014) A Formally Verified Proof of the Central Limit Theorem. Available at: http://arxiv.org/abs/1405.7012v1.
Bulwahn, L., Krauss, A., Haftmann, F., Erkök, L. \& Matthews, J. (2008) Imperative functional programming with Isabelle/HOL.
In TPHOLs '08: Proceedings of the 21st International Conference on Theorem Proving in Higher Order Logics, O. Mohamed, C. Muñoz \& Tahar, S. (eds), LNCS, vol. 5170. Montreal, Canada: Springer, pp. 352-367.
Dénès, M. (2013) Étude Formelle d'algorithmes Efficaces En Algèbre Linéaire. PhD Thesis, INRIA Sophia Antipolis, France.
Dénès, M., Mörtberg, A. \& Siles, V. (2012) A refinement-based approach to computational algebra in COQ. In ITP - 3rd International Conference on Interactive Theorem Proving 2012, Beringer, L. \& Felty, A. (eds), LNCS, vol. 7406. Princeton, NJ, USA: Springer, pp. 83-98.
Dénès, M., Mörtberg, A. \& Siles, V. (2013) Refinements for free!. Certified Programs and Proofs, Gonthier, G. \& Norrish, M. (eds), LNCS, vol. 8307. Melbourne, VIC, Australia: Springer, pp. 147-162.
Durán, A. J., Pérez, M. \& Varona, J. L. (2014) Misfortunes of a mathematicians' trio using computer algebra systems: Can we trust? Notices AMS 61(10), 1249-1252.
Esparza, J., Lammich, P., Neumann, R., Nipkow, T., Schimpf, A. \& Smaus, J. G. (2013) A fully verified executable LTL model checker, Computer Aided Verification: CAV 2013, Sharygina, N. \& Veith, H. (eds), LNCS, vol. 8044. Saint Petersburg, Russia: Springer, pp. 463-478.
Gockenbach, M. S. (2010) Finite-Dimensional Linear Algebra. CRC Press.
Haftmann, F. (2013) Code generation from Isabelle/HOL theories. Available at: http://isabelle.in.tum.de/dist/Isabelle2013-2/doc/codegen.pdf.
Haftmann, F., Krauss, A., Kuncar, O. \& Nipkow, T. (2013) Data refinement in Isabelle/HOL. In Interactive Theorem Proving: ITP 2013, Blazy, S., Paulin-Mohring, C., \& Pichardie, D. (eds), LNCS, vol. 7998. Rennes, France: Springer, pp. 100-115.
Haftmann, F. \& Nipkow, T. (2010) Code generation via higher-order rewrite systems. In Functional and Logic Programming: 10th International Symposium: FLOPS 2010, Blume, M., Kobayashi, N. \& Vidal, G. (eds), LNCS, vol. 6009. Sendai, Japan: Springer, pp. 103-117.

Hales, T. C. \& Ferguson, S. P. (2011) The Kepler Conjecture. The Hales-Ferguson Proof. New York: Springer.
Harrison, J. (2005) A HOL theory of Euclidean space. In Theorem Proving in Higher Order Logics, Hurd, J. \& Melham, T. (eds), LNCS, vol. 3603. Oxford, UK: Springer, pp. 114-129.

Harrison, J. (2013) The HOL Light theory of Euclidean space. J. Autom. Reason. 50(2), 173-190.
Haskell. (2014) The Haskell Programming Language. Available at: http://www.haskell.org/.
Heras, J., Dénès, M., Mata, G., Mörtberg, A., Poza, M. \& Siles, V. (2012) Towards a certified computation of homology groups for digital images. In Computational Topology in Image Context: CTIC 2012, Ferri, M., Frosini, P., Landi, C., Cerri, A. \& Fabio, B. D. (eds), LNCS, vol. 7309. Bertinoro, Italy: Springer, pp. 49-57.
HMA. (2014) HOL Multivariate Analysis Library. Available at: http://isabelle. in.tum.de/library/HOL/HOL-Multivariate_Analysis/index.html.
Milner, R., Harper, R., MacQueen, D. \& Tofte, M. (1997) The Definition of Standard ML, revised edition. MIT Press.
MLton. (2014) The MLton website. Available at: http://mlton.org/.
Nipkow, T. (2011) Gauss-Jordan elimination for matrices represented as functions. Arch. Formal Proofs. Available at: http://afp.sf.net/entries/Gauss-Jordan-Elim-Fun.shtml, Formal proof development.
Nipkow, T., Paulson, L. C. \& Wenzel, M. (2002) Isabelle/HOL: A Proof Assistant for HigherOrder Logic. LNCS, vol. 2283. Springer.
Paulson, L. C. (1990) Logic and Computer Science. Academic Press. Chap. Isabelle: The next 700 theorem provers, pp. 361-388.
Poly/M. L. (2014) The Poly/ML website. Available at: http://www.polyml.org/.
Roman, S. (2008) Advanced Linear Algebra. 3rd edn. Springer.
Sternagel, C. (2013) Proof pearl - a mechanized proof of GHC's mergesort. J. Autom. Reasoning 51(4), 357-370.
Strang, G. (2009) Introduction to Linear Algebra. 4th edn. Wellesley-Cambridge Press.

