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Abstract

Let u be a random signal with realisations in an infinite-dimensional vector space X and v
an associated observable random signal with realisations in a finite-dimensional subspace
Y c X. We seek a point wise-best estimate of u using a bounded linear filter on the observed
data vector v. When x is a finite-dimensional Euclidean space and the covariance matrix
for v is nonsingular, it is known that the best estimate u of u is given by a standard matrix
expression prescribing a linear mean-square filter. For the infinite-dimensional Hilbert
space problem we show that the matrix expression must be replaced by an analogous but
more general expression using bounded linear operators. The extension procedure depends
directly on the theory of the Bochner integral and on the construction of appropriate Hilbert-
Schmidt operators. An extended example is given.

1. Introduction

A common problem in engineering, applied mathematics and statistics is the estima-
tion of a random signal u by measuring an associated observable random signal v.
Realisations of u are often represented as elements in an infinite-dimensional vector
space. For a general background to the theory of random signals and noise, we cite
the classic text by Davenport and Root [2] and the book by Frank [4]. A more recent
work by Haykin [6] is primarily concerned with adaptive filters. There are many
other general references. Of particular relevance to this paper is the strong similar-
ity between optimal filtering problems and problems of approximation of linear and
nonlinear systems. Representation and approximation are the themes in a sequence of
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papers by Sandberg [11-15] and the fundamental theory of constructive approxima-
tion for nonlinear systems is discussed by Torokhti and Howlett [17] and by Howlett
and Torokhti [7,8].

Let u be a random signal with realisations U(CD) = x in an infinite-dimensional
vector space X for each outcome co from the set Q of all possible outcomes. We
seek an estimate of the vector u by observing an associated random vector v where
the outcome v(co) = y of the observed data vector is realised as an element of some
finite-dimensional subspace Y c X. Our goal is to find the best possible estimate of
u using a linear estimator on v. Previous similar formulations of this problem and
the corresponding solutions [9,10,16,18] are justified only for estimation of random
vectors with realisations in finite-dimensional vector spaces.

Suppose (S2, E, /u.) is a probability space and u e L2(fi, Km), v e L2(fi, K")
are random vectors with realisations u(co) e Km, v(co) e K" in finite-dimensional
Euclidean space and assume that the covariance matrices &[uvT] e Rm*n, S'ivv7] e
\&nxn are known. The symbol S denotes the expectation operator. If the matrix S\vvr~\
is nonsingular, then it is well-known [16] that the best linear mean-square estimate u
of the random vector u from the observed data vector v is given by a linear estimator
of the form

u = g[uvT]<?[vvT]-1v. (1.1)

We emphasise that the formula (1.1) involves finite-dimensional matrices and as
such is valid only for random vectors with realisations in finite-dimensional Eu-
clidean space. Each matrix F e Kmx" defines a bounded linear transformation
JtF 6 -£?(L2(fi, R"). L2(£2, R"1)) via the formula \J(Fv\{aS) = Fv{w) for each
co e Q. It is customary to write Fv rather than J(Fv so that we can also write
[Fv](co) = Fv(co) for each co e £2. We note that there are many bounded linear
transformations from L2(£2, K") into L2{Q, Rm) that cannot be written in the form
[^Fv](co) = Fv(co) for each co e Q.

Some generalisations of formula (1.1) have already been considered. In the case
where v = u + % and £ is an independent noise term, Kazakos [10] used a trun-
cated singular-value decomposition of the matrix S'[uvT]^[vvT]~1. More recently,
Yamashita and Ogawa [18] have shown that when the inverse matrix £[vvT]~x does
not exist the optimal estimate of Kazakos can be replaced by an optimal estimate
using a truncated singular-value decomposition of the matrix <o[uvT]S'[vvTy, where
&[vvTY is a generalised inverse matrix. Hua and Liu [9] argue that this truncated
form of the matrix formula

u = £[uvr]£[vvTVv (1.2)

is valid when no specific relationship between u and v is assumed. They claim that
in this case the formula is easily established by finding the matrix Fo
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minimises

Q(F) = g[||M -

The argument proposed by Hua and Liu relies on the identity

Q(F) - Q(F0) = tr{(F - F0)<?[vvT](F - Fo)), (1.3)

where tr{A} denotes the trace of the square matrix A. Once again the arguments
are based on a standard matrix formulation and the random vectors are realised in
some finite-dimensional Euclidean space. Similar arguments relating to minimum
mean-square errors can be found in a recent paper by Zou and Lu [20], who consider
the problem of optimal estimation in systems with linear associative memory.

In this paper we show that an extended form of the optimal estimator (1.2) can
be applied to random vectors with realisations in a separable Hilbert space. To be
specific, we show that the best linear mean-square estimate ti of the random vector u
from the observed data vector v is given by a linear estimator of the form

u = g[JaJv
T]g[JvJv

TYv + K[I - {i[JvJj])lll{g[JjJV)x'2]v, (1.4)

where K e ^{Y, X) is arbitrary. This extended form of the optimal estimator can
be applied to random vectors with realisations in a separable Hilbert space. Although
the principles of least squares approximation are well-known, this explicit formula for
the optimal estimator appears to be new.

To define the expected value for a random vector with realisations in a separable
Hilbert space it is necessary to use a vector-valued Bochner integral. Consequently
we must also show that certain special random vectors are strongly E-measurable. We
use a standard Banach space formulation of the Bochner integral [19] and apply this
theory to Hilbert space. To ensure that the trace operator is well-defined the optimal
estimator is constructed using Hilbert-Schmidt operators.

In the following section, we address the background mathematical machinery,
while Section 3 presents a motivating generic example. Section 4 introduces some
bounded linear mappings that are used to establish the main results, which are given
in Section 5. We conclude in Section 6 with an analysis of the generic example.

In formulating practical problems it is often necessary to choose between two
options, an approximate solution to the exact problem and the exact solution to an
approximate problem. We have chosen the former course of action for the follow-
ing reason. If we construct an optimal filter in infinite-dimensional space using
bounded linear operators, then we can estimate the truncation errors in subsequent
finite-dimensional approximations. If we truncate the signal before we attempt any
estimation, it is difficult to see how we could make sensible judgements about the
errors.
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2. Preliminaries

In this section we outline a theoretical basis for the description of random vectors
with realisations in Banach space. We follow the methods of Halmos [5], Dunford and
Schwartz [3] and Yosida [19]. Although many of the results are natural extensions of
results for real-valued random variables, the extensions require some care.

As in the real context, (ft, E, /x) will denote a probability space. Here ft is the set of
outcomes, I! a (completed) cr-field of measurable subsets £ c ft and /z : E H-> [0, 1]
an associated probability measure on S, so that /x(Q) = 1. Each element co € ft
represents the outcome of an observation of experiment and each E e E a set of
outcomes, called an event. We say that the event E has occurred if co e E.

Suppose Ej € E 0" = 1 , . . . , n) are mutually disjoint events and S € X, a Banach
space, forj = 1, . . . , n. We may define a finitely-valued function u : ft h-> X by

(2-1)
7 = 1

where the characteristic function Xj : ft •-> {0, 1} of the set Ej is given by Xj (&>) = 0
or 1 according as co e Ej or cv £ Ej.

A function u : ft H-> X is said to be strongly ^-measurable if there exists a sequence
(«n)n>i of finitely-valued functions un : ft h-> X such that ||M(OJ) — «n(o))|| -» 0 as
n -> oo for almost all &> e ft. The value u(a/) of a strongly E-measurable function
u is referred to as a random vector. When u is finitely-valued, the Bochner /z-integral

e X is prescribed by

When u is strongly E-measurable, we say that u is Bochner /x-integrable if there
exists a sequence (»„)„>] of finitely-valued functions un : ft i-> X with ||Mn(w) —
«(a>)|| -*• 0 for /x-almost all co e ft in such a way that

f \\un(eo) - u(a>)\\fi(da>)-+0

as n —> oo. In this case the Bochner /z-integral is defined by

Lin
where J^(M) e X is the unique element with \\^(u) — J{un)\ -> 0 as n -> oo. In
general, for each E 6 E, we define

/ u(co)fj.(dco) = /
JE JQ
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where x is the characteristic function of the set E. The following general results can
be found in Yosida [19].

THEOREM 1. A strongly £ -measurable function u : Q h-> X is Bochner fi-
integrable if and only if\\u\\ is /x-integrable.

COROLLARY 1. / / | |M | | is ^-integrable, then | / n u(a))(i(dco)\\ < fn \\u(co)\\^(dco).

COROLLARY 2. Let X and Y be Banach spaces and A e .if (X, Y) a bounded linear
map. Ifu:£ly->Xis Bochner fi-integrable in X and ifv = A[u], then v : Q i-> Y
is Bochner fx-integrable in Y and fn v(cL>)fx,(da>) = A [Jn u{

Suppose X and Y are Banach spaces. Let u : Cl i-> X be a Bochner /u.-integrable
random vector in X. The expected value of u is defined by

and we note from Corollary 1 that \\£[u]\\ < <?[ | |K| | ] . When A e Sf(X, Y) is a
bounded linear map, it follows from Corollary 2 that § [A («)] = A (<f [u]).

The theory of random vectors in Hilbert space is an extension of the corresponding
theory in Banach space. Let X be a Hilbert space with scalar product (•, •). Of
particular interest are properties relating to the scalar product, which are used directly
in defining special operators for the optimal filter.

Let X be a Hilbert space with scalar product (•, •) and let u : £2 H-» X be the
finitely-valued random vector given by (2.1). Since ||«(o>)||2 = £ " = 1 Xj (<^)ll£; II2. it
follows that if A e Jif (X, X) is a bounded linear map, then

0 u(a>)(j,(da)), I A[u(co)]/j,(dco)
n Jo

y=i t=i 7 = 1

\\2 = \\A\\ / \\u(co)\\2fM(dco),

using the elementary inequalities

< \\A\\ • Mj\\ • II&H and | |^ | | • \\$k\\ < [||^

https://doi.org/10.1017/S1446181100012888 Published online by Cambridge University Press

https://doi.org/10.1017/S1446181100012888


490 P. G. Howlett, C. E. M. Pearce and A. P. Torokhti [6]

By taking appropriate limits, we can easily extend the above argument to establish
the following general results, which are used to justify the construction of the optimal
filter.

THEOREM 2. If u : Q t-> X is strongly £ -measurable and \\u\\2 is /x-integrable,
then u is Bochner ^-integrable and for each bounded linear map A e J£{X, X) we
have

I f u(co)/JL(da>), f A[u(fi))Mdco)\ < \\A\\ f ||«
\Ja Jn I Jn

COROLLARY 3.Ifu:£2h+Xis strongly Y,-measurable and \\u\\2 is fi-integrable,
then

f u{co)n{dco) < f \\u(a>)\\
I Jn Jn

The last two results can be expressed in terms of expected values. LetA e J£(X,X)
and let u : £2 t-*- X be a random vector. If ||M||2 is /x-integrable, then

and in particular ||<?[M]||2 <

We write L2(Q, X) for the set of all strongly E-measurable functions u : Q t-> X
with<f[||M||2] < oo.

To conclude this section, we review some basic structural results for bounded linear
maps with finite-dimensional ranges on Hilbert space, which are used directly in our
construction of the optimal estimates. We assume that X is a separable Hilbert space
and Y c X is a finite-dimensional subspace with dimension n. The material on
Hilbert-Schmidt operators follows Balakrishnan [1].

LetA e -£?(X, K)andlet^(A) c Y denote the range space of A. Suppose .^(A)
has dimension r < n. L e t ^ ( A ) c X denote the null space of A. The bounded linear
map AT e S£(Y, X) is defined uniquely by the equation

(AT(y),x) = (y,A(x))

foreachy 6 Y. Wewri te^(Ar) c X for the range space of A7 and let Jf (A7) c Y
denote the null space of A7. Since £%(A) has dimension r < n, it follows that^"(A7)
also has dimension r.

Since @.{A) is finite-dimensional and therefore closed, it follows that Y = 3$(A) ©
^Y(AT) and that each y e Y can be written uniquely in the form y = y& + y^y,
where y& € ^ ( A ) and y^y € J/(AT) and where (ya,y^y) = 0 . In a similar
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fashion X = 2%(AT) ® ^V(A) and each x.e X can be written uniquely in the form

x =xgt + x^, where x& e ^.{AT),x^ e jV{A) and {x&,x^) = 0.
The generalised inverse A1 e S£(Y, X) of A is defined as follows. Let y & Y, put

y =. yg, -\- y^ and choose x e X such that A(x) = y&. Write x — xgg + x^ and
define

The bounded linear operators ATA e Sf(X, X) and AAT e -S?(T, Y) are positive-
definite and self-adjoint.

Since ATA e ^{X, X) and AAT e ^f(K, Y), we can find orthonormal vectors
ieiYi=\ forming a basis for^(A r ) and {/,}[=1 forming a basis for&(A) which satisfy

ArAe, = 5,2e, and AATft = j , 2 / i

for each j = 1,2,... , r. Here j] > s2 > • • • > sr > 0 are real numbers and

/ , = -Aet and e, = -ATft
Si Sj

for each i = 1, 2, . . . , r. Because X is separable, the orthonormal sets {e,}j=1 and
{//},_! can be extended to form complete orthonormal sets {e,}~, and [fi}°l, in X and
the bounded linear operators A and A7 are by definition Hilbert-Schmidt operators
because

and

We recall ([1, Definition 3.4.2]) the concept of a nuclear or trace class operator.
Suppose 3^C\, 3^2 are separable Hilbert spaces with respective orthonormal bases {#,},
{hj}. A bounded linear operator A : JP\ i->- Jft is nuclear if XXi K^£" ̂ <)l < °°-

It follows that the operators ATA and AA r are nuclear operators with finite traces
given by

tr(ArA) := £<ATAe,, e,> = £ > 2 < oo
1=1 i=i

and
oo r

tr(AAr) := £<AA7,,/,> = ^ 5 , 2 < oo.
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3. A generic example

In this section we show that an elementary random function is equivalent to a
random vector with realisations in an infinite-dimensional Hilbert space. This generic
example will be used later in the paper to illustrate our proposed optimal linear
estimator. It is well-known that a function x : [0, 1] H* R for which

f [x(t)]2dt<oo
Jo

can be represented by a Fourier sine series x (r) = YlT=i xkV2sinknt, or equivalently
by an infinite-dimensional vector x = (xit JC2,X3, .. . ) r , where Y1T=\ I**!2 < °°- *n

this case we say that the vector x e X = I2.
For the purpose of practical calculations with these functions it is necessary to use

a suitable finite-dimensional approximation. Thus we write

x s s ( x u x 2 , . . . , x n , 0 , . . . ) T

for some fixed value of n. We can generate random vectors with realisations in an
infinite-dimensional Hilbert space by thinking of each coefficient xk in the Fourier
sine series as the realisation of a real-valued random variable. Let £2 be the set of all
possible outcomes and let uk : Q \-> R be a real-valued random variable. For each
outcome a> e £2 we have uk(co) = xk e R and we obtain a corresponding realisation

u(co, t) = y ]uk(co)w2sinknt
k=\

of the random function u(t) — «(•, t), or equivalently a realisation

u{co) = (utico), u2{co), T

of the infinite-dimensional random vector u = «(•)• For the above realisations to be
meaningful it is necessary that J2T=\ IM*(W)I2 < °° f°r almost all co e Q.

4. Some special mappings

In this section we define some special bounded linear mappings that will be used
to establish the main results.

For each x e X, define a bounded linear map Jx e S£(K, X) by Jx(a) = ax. The
adjoint mapping JX

T € 3?(X, R) is given by Jx
T(y) = (x,y). Now JX

T Jx e Jf(R, K)
satisfies

jJjAa) = Jx
T{ax) = {x,ax)=a\\x\\2
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and clearly \\JX
T Jx\\ = \\x\\2. On the other hand, Jx JX

T e S£ (X, X) is prescribed by

and hence, once again, \\JXJX
T\\ = \\x\\2.

Relative to the complete orthonormal set {e,} in X, we have

Y,{JxJ/(e,), e,) = f > , et)
2 = = IUII2

1=1

and in K we have Jx
TJx(l) = \\x\\2. Hence JX

TJx and JXJX
T are both nuclear

operators with finite trace given by tr(Jx
TJx) = tr(JxJx

T) = \\x\\2. If A € J?(X, Y)
and B eSf(Y, X) then JAx = AJX and JBy = BJy for all x e X and all y e Y.

Suppose that Y is a finite-dimensional subspace of the Hilbert space X. Let
u : Q h-> Xandv : Q i->- Y be random vectors with ^ [ | | M | | 2 ] < ooand(^[||u||2] < oo.

LEMMA 1. Suppose q e Y is a fixed vector. Then the functions JuJv
Tq : £2 H>- X

and JVJV
Tq : £2 H> Y defined by

[JuJv
Tq](a>) = (v(co), q)u(co) and [JvJv

Tq](co) = (v(co), q)v(a>)

for each a> € £1 are strongly £ -measurable with

£[\\JujJq\W<0O and 6[\\JvJv
Tq\W < OO.

REMARK 1. The following proof makes extensive use of the material discussed in
Section 2. In order to define the expectations S\_JujJ q\ and £\JvjJ q\, it is necessary
to use a Bochner integral. It is therefore also necessary to establish that the functions
JuJv

Tq and JVJV
Tq axe. strongly E-measurable.

PROOF. Let {«„} and [vn] be sequences of finitely-valued random vectors with
\\un(co) — u(co)\\ -*• 0 and \\vn(co) — v(co)\\ -> 0 as n -> oo for almost all co e £2.

Then {(vn(co), q)un(co)} is a sequence of finitely-valued random vectors with

\\(vn(co), q)un((o) - (v(co), q)u((o)\\

< \\(vn(co) - v(<u), q)ua(f>)\\ + \\(v(co), q)[un(o>) - u(co)]\\

< \\vn(o>) - v(co)\\ • \\q\\ • \\u((o)\\ + \\v(fi>)\\ • Ikll • \\un(o>) - " M i l -> 0

as n -*• oo for almost all u> e Q. Therefore Jujjq is strongly S-measurable.
Similarly JVJV

Tq is strongly E-measurable. It follows that

< \\q\\\<?[\\u\\ •

| | | | K [ | | | | ] < 00

and likewise that \\&[JvJv
Tq]\\2 < oo.
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The operators £[JVJU
T] e Sf(X, Y) and <?[/„//] 6 Jf(Y, X) are defined by

setting S\JjJ\p = S[{u, p)v] and S\JjJ\q = £[(v, q)u] for each p e X and
q e Y. We have

(p, £[JujJ]q) = {p, g[[v, q)u\) = £[(p, u)(v, q)}

and hence S[JUJV
T]T = S[JVJU

T]. The self-adjoint operator £[JvjJ\ e -£?(K, F)
can be defined in a similar way.

5. The main results

We are now ready to return to the problem posed in the introduction. Suppose
u e L2(£l, X) and v e L2(Sl, Y). For each F e t£(Y, X), the linear transformation
JtF 6 Sf(L2(Q, Y), L2(Q, X)) is defined by \JtFv\{co) = Fv{co) for each co e £2.
Once again it is customary to write Fv rather than JMFV since we then have [Fv](co) =
Fv(co) for each co e Si. We wish to solve the following problem.

PROBLEM 1. Let u e L2(£l, X) be an unknown random function and v e L2{Sl, Y)
an observable random function and suppose that S[JujJ] and 4>[JVJV

T] are known.
Let Q:S?(Y,X)t+ R be defined by Q(F) = g[\\u-Fv\\2} for each F e Sf(Y, X).
We wish to find Fo e ££(Y, X) such that Q(F0) < Q{F) for all such F.

REMARK 2. In spite of an apparent close similarity between Problem 1 and the
problem solved by Hua and Liu [9] we note that Problem 1 is formulated in a more
general vector space. Hua and Liu assume the random functions are realised in finite
dimensional vector spaces and the optimal estimator is constructed using matrices.
Problem 1 allows realisation of the random functions in a separable Hilbert space and
the optimal estimator is constructed using Hilbert-Schmidt operators.

LEMMA 2. The null space jY{S\JvjJ\) of the operator S\JJV
T\ e S£ (Y, Y) is a

subspace of the null space ^(<o[JuJv
T]) of the operator S\JU]J\ € ££ (Y, X).

PROOF. Suppose q^ e ^Y(,£[JVJV
T]). Then (q^, £[{v, q^)v]) = 0 and hence

= 0. But for each p e X we have

\{p, <?VuJv
T]q^)\ = \#[{p, u){v,

<(^[(p,«)2])

Therefore S{JujJ\q^ = 0 and hence q^ e JV{S[JUJV
T]).
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COROLLARY 4. £[jujtt
T]£[jvjv

Ty£[jvju
T] = g[JuJv

T\

PROOF. If qjr e jV{S[JvjJ]), then g{JuJv
T]g[JvJjV£[JuJ/\qjr = 0 and

since the previous lemma shows that q^ e Jf{£\JuJj\), we have also
£UuJj]q^ = 0. On the other hand, if qx e @.(S{JvjJ\) =
then there exists k e Y such that q& = S'[JvJv

Tyk. Hence

The desired result follows from the fact that any element of Y can be written in the
form q = q^y + q&.

REMARK 3. If u e L2(Q, X) and x = u(u>) for some co e Q. then the operators
JXJX

T and JX
T Jx are each nuclear operators and the trace is well defined. The trace is

used to establish the next identity and the subsequent theorem. It is therefore necessary
to know that the operators concerned are nuclear operators.

For each F e Sf(Y, X), we have

Q(F) = <?[||H - Fu||2] = ^[tr(7u_Fl,yu_Fu
T)] = S[\x([Ju - FJV][JU - FJV]T)].

THEOREM 3. The solution to Problem 1 is given by

where K e 3f(Y,X) is an arbitary bounded linear operator. The corresponding
uniquely defined minimum value of Q(F) is

Q{FQ) = tr{<?[/u7/] -

PROOF. If we write AQ(F) = Q{F) - Q(F0), then

= tr [F6[JVJV
TFT - S[JuJj]FT -

= tr{(F -

= \\(F ~

where the norm is the Hilbert-Schmidt norm. Hence Q(F) — Q(F0) > 0 with equality
if and only if F — Fo.
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COROLLARY 5. The best estimate u of u using a bounded linear estimator on the
observed signal v is given by

+ - (<?[jvjv
T])1/2(g[jvjv

Tyy/2]v,

where K € JC(Y, X) is arbitrary. The minimum norm estimate is given by setting
K = ©.

REMARK 4. The papers by Hua and Liu [9] and Yamashita and Ogawa [18] consider
a finite-dimensional problem and use a truncated singular-value decomposition to
minimise Q(F) = S[||« — Fu||2] subject to a restriction on the rank of the matrix F.
We believe our result can be used to solve a similar problem for random vectors with
realisations in a separable Hilbert space.

6. Analysis of the generic example

The generic example will be used to demonstrate the construction of an optimal
estimator. In this example random functions are represented by infinite-dimensional
random vectors. We show that the optimal filter can be represented using infinite-
dimensional matrices with suitable limits on the size of the matrix coefficients. Let
X = I2. Suppose that we wish to estimate the random function

on the basis of an observed function

0

with realisations in a four-dimensional subspace K I We assume that v — Au,
where

V© o) and A \ \ =
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and where © is an infinite-dimensional zero submatrix. Therefore Ui = U\ + u2,
v2 — u2 + «3, v-i — M3 + «4, U4 = M4 4- u\ and vk = 0 for all /: > 5.

To find the best estimate u of u using a linear estimator on v, we need to define
some special operators. For each u : Q \-t I2 and v : £2 i->- I2 and each y e Y, the
functions JuJv

Ty : Q, H* X and JvJv
Ty : £1 (-* K are defined by

= (v(co), y)u(co) and = (v(co), y)v(co)

for each OJ e J2. We suppose that the random variables uk are pairwise indepen-
dent with S[uk] = pk and <o[{uk — pk)

2] = a2. In practice this could occur as a
deterministic function with coefficients {pk} and an additive noise term & = u* — pk-

We also suppose that \pk\ < R/k for some fixed constant R > 0. We can now
calculate

and

y3)

(p\ [(Pi+Pi)y\ + (P2+P3
P2KP1+Pi)yi + (P2+Pi)yi+(P3+P i + (P4 + Pl))'4]

P4[(PI+P2)yi + (P2+Pi)y2+(P3+p*)y?, + (P4+Pi )y*]

Ps [(Pi+p2)y\ + (P2+Pi)yi+(P3+P4)y3 + (P4+Pi )y*\

\ •

i2y\ + (o"2
2 + cr3

2)y2 •

0

({p\ + Pi) [(Pi + P2)yi + (P2+P3)y2+(P3+P4)y3 + (p4+Pi )y*]\

(P3 + P4>[(Pl + P2)yi + (P2 + P3>y2 + (P3 + P4)>-3 + (P4 + Pl )>".
3)
0
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for all y € Y. This enables us to write down a matrix representation for each of these
operators. Note that these representations are essentially infinite matrices with some
limit on the size of the matrix coefficients. In this case the size of the coefficients is
limited by the inequality

£(P,P,)2

If we define

\O OJ' where S\\ =

36

0 0
a2 0
0 CT3

0\
0
0

0 0 aj

and p =

then

ppT]AT and J] = A[SST + ppT]AT.

We now show that the operator S[JVJV
T] is not invertible and calculate the gener-

alised inverse. Define an orthogonal transformation

U
~\O l)'

where U\\ =

1/2 -1/2 1/2
1/2 1/2 1/2

-1/2 -1/2 1/2
1/2 -1/2 -1/2

and observe that

U£[JVJV
T}UT =

/O
0

0

' - oi2

0

a 4
2 -

a2
2 +

0
0

a , 2 - a 3
2

0

0
0
0

•\

or,2 + a-3
2 0

0 0

/ 0
T4

P*
P\

\

—
—
0

Pi

Pz
Pi

\

)

•)•
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Using an appropriate partition we can therefore write

499

<© © ©>
U<?[JVJV

7]UT =

where

P = - o2
2 a2

2 + CT4

- CT3
2 0

Since

P4 ~ Pi I ( E i = l Pi' P4 - P2, Pi - Pi) •

\Pl ~ P3/

y^4 2
^ ^ 1 = 1 '

o"42 - a 2
2

a,2-a3
2

it follows that P exists and

ox
2

. V 0,

£[JVJV
TV = V

© ©N
/>-' © I uT.
O ©;

It has been shown that the minimum norm best estimate u of u using a linear
estimator on the observed function v is given by

u = g[JuJv
T]£[Jj/?v.

In this example we have seen that the estimator can be easily computed. In general
the estimator involves an infinite-dimensional matrix and our implementation must
necessarily be a truncation of the true optimal estimator. The approximation can be
made as accurate as we please.
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