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POROUS MEDIUM COMBUSTION:
IGNITION, TEMPORAL EVOLUTION,

AND PARAMETER DEPENDENCE
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Abstract

A model for the combustion of a porous medium is considered for an infinite slab.
The case of ignition by an initial temperature distribution is considered first. The
influence of the initial data and parameters on the solution is inferred from the
solution of a related ordinary differential equation. The case of ignition by heating
on one side of the slab is then considered in the same manner.

1. Introduction

Recently, Norbury and Stuart [2] proposed a model for porous medium com-
bustion. The governing equations are

da .

4 j = «-ti>, (1-2)
du d f, , 3 , , 9 H ] , , _.

°m = a-Am+[)e-zrw-u + r- (1"3)

if-?- "-)
and

= H{o-aa)H{u-uc)^gw2. (1-5)
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[2] Porous medium combustion 17

Here t and z are the time and space variables; the nondimensionalised a ,
w , u, are respectively the solid heat capacity, the gas temperature, and the
solid temperature; g is proportional to the product of oxygen concentration
and gas temperature. The parameter A relates the amount of combustible
solid present to the heat content of the solid; the parameter n is proportional
to the inlet gas mass flux; and the parameter a represents the ratio of the rate
of oxygen consumption to that of solid consumption. The parameter d is a
measure of the nonlinear radiation coeflicient. The reaction rate r involves
two Heaviside functions with threshold parameters aa and uc, giving it a
switching behavior. Travelling wave solutions to the above system has been
investigated by Norbury and Stuart [3], [4] and by Tarn [5].

In this note, we pose the following question. Suppose a porous slab of unit
width undergoes combustion, what can be said about the qualitative aspects
of its temporal evolution, as well as the parameter dependence? It is clear that
an analytic solution to the above system is not attainable. The answer to the
question would likely rely on further simplifications which retain the salient
features of the system, but renders it manageable. In the next two sections,
we consider ignition resulting from an initial temperature distribution, and
in Section 4, we consider ignition resulting from heating on one side of the
slab.

2. Formulation and approximation

Let the porous slab occupy 0 < z < 1. We impose the following conditions
on the system (1-1) to (1-4):

a(x ,0) = as, a(x ,oo) = aa<as,

K ( 0 , 0 = 0 , u{\,t) = 0 , M ( Z , O ) = M O (Z) ,

10(0,0 = 0, g(O,t) = ga.
Here we have normalised u and w so that the ambient temperature is taken
as zero. Of the two parameters aa and uc in (1-5), aa is the solid heat
capacity of the ash (burnt medium) and can be considered well defined. The
threshold temperature uc for reaction to start is not so well defined. More-
over, (1-2) shows that if u > w, w increases (with z) . Thus, if u is
large, w will be large also. For this reason, we simplify (1-5) by removing
H(u — uc), so that the reaction rate is no longer governed explicitly by the
solid temperature. Writing x = ° - a

a
 a Qd Xo = a

s ~ aa > anc* noting that r
is non-negative, we recognise from (1-1) that for 0 < z < l , 0 < f < o o , w e
have 0 < x < XQ • Now, we recognise that the switching factor H{a — aa)
is used so that the expression r has a manageable structure, but it is also
clear that in most decay processes, the time rate of decay is affected by the
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18 K. K. Tam [3]

magnitude of the quantity under consideration. In the present situation, re-
taining the factor (a - aa) in r does not lead to much additional difficulty.
We therefore replace H(a - aa) by {a - aa) and take

1 2

r = (o - oa)fi?gw . (2-1)

We convert (1-1), (1-2) and (1-4) into the corresponding integral relations

X = XoexP {-*/** j gw2dx^ , (2-2)

and

g = gaexp l-an"1 j xw2ds\ , (2-3)

w = j-e f / uei1 ds. (2-4)
M Jo

To proceed further, we observe that since 0 < x < XQ > it is clear that

/ >/> f2 >A
ga exp \ -an x0 / w ds} <g<ga.

Consistent with our objective simplification while retaining the salient feature
of the system, and in the spirit of modified Oseen linearisation [1], we adopt
the approximation

{ 1 / 2 J Z 2 } (2-5)
where x* = XQ/2- The advantage is that g is now determined by w , which
is given in terms of u. If we now substitute (2-2), (2-4) in (1-3), we see that
it is an equation involving only the unknown u, albeit with integrals and
derivatives thereof. We suppose that the problem under consideration admits
a unique solution u(z, t), which is positive for 0 < z < 1, 0 < f < oo.
Hence, we can consider an expansion of u in terms of the eigenfunctions
<t>n{z) defined by

4>* = -vfa> *„«>) = 4,(1) = o,
where y2

n is the eigenvalue corresponding to <j>n . Indeed, we have yn = nn
and <f>n = y/2sin nnz. We observe that (j>x{z) is positive in 0 < z < 1,
while all higher eigenfunctions change sign in 0 < z < 1. In the expression
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[4] Porous medium combustion 19

M > 0 implies that y4,(r)0,(2) must dominate, (otherwise, u may become
negative), and Ax{t) must be positive for 0 < t < oo. If u is large, it
implies Ax is large, and conversely. If u is small, it implies Ax is small,
and conversely. Accepting the validity of this observation, we see that the
temporal evolution of u can be inferred from the temporal evolution of

If we now take u(z, t) ~ ^,(/)</>(z), and consider only the point z = \ ,
at which <f>{ acquires its maximum value, we obtain an ordinary differential
equation. We propose that this is an approximate equation governing A{(t).
In what follows, we omit the subscript in A{(t). We have

w ( r ') " ^e~^A{t)IoJ ^^ ds = w (1)A { t ) ' (2"6)

W\s)ds

= gaexp{-GA2{t)},ga

where we have used G and W for simplicity, and G and W are denned
by (2-6) and (2-8). It then follows from (1-3) that

(2-9)

For simplicity, we write the right side of (2-9) as -K}A -K2A
4+K-iA

2e~GA .
Clearly, dA/dt vanishes at A = 0 and when A is a solution of the tran-
scendental equation

Kx + K2A
3 = K3(t)Ae\p{-GA2). (2-10)

While (2.10) cannot be solved analytically, its behavior is readily discernible.
We discuss this in the following section.

3. Ignition, temporal evolution and parameter dependence

The behavior of the solution to (2.10) can be examined with the help of
Figure 1.
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20 K.K.Tam [5]

L(t) (2G)~l/2 U(t)

Figure 1. Schematic interpretation of (2-9).

The function K3(t)A exp(-GA ) has a relative maximum at A = (2G) 2 ,

where its value is ^3(r)(2eGl)~2 . We make the following observations:

1) If

(3-1)

then it is clear that dA/dt > 0 for whatever value of .4(0), and A
decays to zero as t tends to infinity. Thus, the process is essentially
one of diffusion. In terms of the original parameters, the inequality
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[6] Porous medium combustion 21

(3-1) is

Using y, = n, (j)l = \/2 sin nz, we have

V2[l+

(i)-
+ /i2n2)2

+ 2n3n\l - e'l) + v27i* - Sn2n2e~^

With x(i>Q) = <*s-
aa> an<^ considering the case of fi -> 0 , where

W —• V2, we see that combustion does not occur if

a s a (3-3)

2) If A:3(0)(2eG)~2 > Kl +K2(2G)~* , then (2-10) admits two solutions,
say L(0) and (7(0), as depicted in Figure 1. If .4(0) < L(0), A de-
cays to zero. If L(0) < /l(0) < C/(0) A increases towards (7(0);
but as t increases U(t) decreases. When A{t) reaches U{t), A(t)
acquires its maximum value and from then on dA/dt < 0, so that
A decays to zero as t tends to infinity. If .4(0) > C/(0), dA/dt < 0 ,
and so A decays to zero as t tends to infinity. The case 1,(0) <
A(0) < (7(0) exhibits the typical combustions phenomenon. If the
initial temperature .4(0) is higher then the threshold temperature
L(0), A starts to increase (ignition). Having reached a maximum
temperature, A decreases as a result of the depletion of the combus-
tion medium.

3) To obtain an estimate of (7(0), we first observe that the curve
Aj(0).4exp(-<7,42) lies below the curve

1
_ i I

for A > (2G) 3 . Thus, F(0) must lie between (2G) 2 , and the

intersection of Kx and K^O^eG)'^ exp j -G \A - (2G)'?] \,
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which is

i f i ( K cm I I 2

(3-4)T+ W *'<0)
(2C)i L<^lW*O)"2 )]

The true value of 1/(0) is closer to the expression in (3-4) if d is
I

small, and closer to (2G) 2 if d is large. In terms of the original
parameters, and considering n —> 0, we have

F o r *• f/%n ranging from 10 to 10000, the value of the term

ranges from 1.5 and 2.6. Thus, it is clear that C/(0) = 0{n*l\fa~iC).
Since fi is small, a must also be small for C/(0) to be large.

4) An estimate of L(0) is given by the intersection of Kl + K2A
3 and

K3(0)A . While the solution of this cubic equation can be obtained
explicitly, we note simply that for d small, i.e., K2 small, we have

L(0)=KJK3(0).

For n —> 0, we have

Thus, the threshold value is inversely proportional to gax0 •
5) To bring (2), (3) and (4) into focus, suppose the initial condition on

u is u(z, 0) = A{Qi)<f>x (z). Then for fi -> 0, the typical combustion
phenomenon is exhibited if

7 ,,1/4
: ,4(0) <

Clearly, the parameters a, ga, XQ must satisfy the inequality

6) The parameter k governs the rate that x decays. With reference to
Figure 1, a large A implies that the bell-shaped curve drops rapidly,
causing a rapid burn-out of the medium. This result agrees with that
obtained in Norbury and Stuart [4].
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Boundary ignition

In this section, we let the initial temperature of the medium be zero, but
consider the possibility of ignition when the temperature on one face of the
slab is raised to a constant value. Specifically, we consider the initial and
boundary conditions on u as

u(0,t)=y>0, K ( 1 , 0 = 0 , (4-1)

and

u(z, 0) = 0. (4-2)

All other conditions remain unchanged as in Section 2. Our interest is now
on the dependence of the solution on h. To simplify the situation, we let
d = 0.

We write u = 8 + U, and ask that U satisfies the equation

t = Uzz-U, (4-3)

and the conditions

t / (z ,0) = 0; U(O,t) = h, 17(1,0 = 0. (4.4)

Clearly, U reaches the steady state

U=J\rsinh(lz).s sinhl

The expression for x a n d g can be written again as in (2-2) and (2-5), but
now w becomes

w
- I - z fz S.

= fi e « / (d + u)ee ds,
Jo

while 6 is governed by equation (1-3) with u replaced by 6 and d = 0 .
Although U cannot be determined analytically, it is clear that U < Us for
0 < z < 1, / > oo; its effect on w can be assessed through its steady state Us .
Again, using the heuristic argument that the behaviour of 6 parallels that of
its first Fourier component B(t)<j){{z), where </>, is the first eigenfunction as
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in Section 2, we obtain, in a similar manner, the following expressions:

w(z, t) = s-~{fine~v + sinnz - /xncosnz}
1 + r 11 +

ez-
\-fi ( '

SU

2B{t) [2 W{s)Wk(s)ds+ f
Jo Jo

It then follows from (1-3) that

i ) Wh Q

(4-6)

(4-7)

(4.8)

The behaviour of the solution to (4-8) can be examined with the help of
Figure 2. The right side of (4-8) has a unique zero B0{t) which is a decreasing
function of t, tending to

as f tends to infinity. As / increases from zero, B increases to BQ(t),
and then decreases to B{oo). If B0(0) is much greater than B{oo), which
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t increasing

B(oo) B0(t) B0(0) B

Figure 2. Schematic interpretation of (4-8).

implies a large value of gax(j, 0 ) ^ ( 5 ) , and a small value of an 2 , we
have ignition. However, if BQ(0) is close to B(oo), the process is essentially
one of diffusion.

5. Concluding remarks

For the initial-value problem with homogeneous boundary conditions, we
use the heuristic argument that u(z, t) and the first term of its Fourier
decomposition Ax{t)4>x{z) must have parallel behavior to obtain an equa-
tion which we believe is an approximate governing equation for A{(t). The
threshold value, temporal evolution, and parameter dependence of A{(t) are
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26 K.K.Tam [11]

then obtained in a simple manner. We expect that if u(z, 0) does not de-
viate substantially from </>,(z), the heuristic argument is correct and hence
the question of ignition, temporal evolution and parameter dependence for
u(z, t) can be inferred. This study also suggests that the system of model
equations does indeed contain the features of the combustion process.

For the case of boundary ignition, we separate the problem into two parts.
One of which has a simple steady state, and the other is dealt with using the
same heuristic argument. The dependence of u(z, t) on boundary data and
parameters can again be inferred.
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