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Abstract

It is shown that if a , , . . . ,am are relatively prime integers then for every integer n the equation

atXi + a2x2 + • • • +amxm = n

has infinitely many solutions in pairwise relatively pr ime integers xx,...,xm.

1980 Mathematics subject classification (Amer. Math. Soc): 10 B 05.

In a recent paper [4] it was shown by an elementary method (a simple sieve using
the Moebius function) that if the greatest common divisor (a, b) = 1 then the
diophantine equation

(1) ax + by = n

has solutions with (x, y) = 1 and x > y > 0 provided n is sufficiently large. With
little modification the proof shows that for all n, (1) has solutions with (x, y) — 1.

More recently, B. H. Neumann asked for an elementary proof that if (a, b, c)
= 1 then for all integers n

ax + by + cz = n

has solutions with (x, y) — (x, z) = {y, z) — 1, being dissatisfied with the fact
that his proof used the infinitude of primes in arithmetical progressions. Since the
result appears simple, it would be expected to be in the literature. However I have
been unable to find the result mentioned in the obvious places (Dickson [1],
LeVeque [3]). It seems that the need for relatively prime solutions has not arisen
before.
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40 R .T . Worley [21

In this note we show by elementary methods:

THEOREM. If(ax,a2,...,am) = 1 then for all integers n the equations

(2a) a}xx +a2x2+ ••• +amxm = n,

(2b) (*„*,.)= 1, Ki<j<m,

have infinitely many solutions.

This result includes Neumann's case as m = 3. The proof is by induction on m,
the difficult case being a stronger version of the case m = 2.

LEMMA 1. / / ( a , , a2) = 1 , 2 w o<W and (z, n) = 1 then for all integers n the

equations

(3a) aixl + a2x2 = n,

(3a) (xx,x2) = (xl,z) = (x2,z)= I

have infinitely many solutions.

PROOF. Since (a,, a2) = 1 there is a solution x, = u0, x2 = vQ of (3a). This
generates a family

X, = W, = Mo + /O2i *2 = Vl = V0 ~ ' f l l ' I e Z,

of solutions of (3a). The aim of the proof is to show that if r is sufficiently large

then X, = u,, x2 — v, satisfies (3b) for some /, 0 = £ / < / • . This is equivalent to

showing that Nr is arbitrarily large for sufficiently large r, where

*,= 2 ( 2

with v, = (M,, «,), a, = («/, z), p, = (v,, z) and ft denoting the Moebius function.
Since x, = u,, x2 = u; satisfy (3a), and (z, «) = 1, it is clear that v,, a, and p,

are pairwise relatively prime, so any divisor dl of Vio,p/ can be written uniquely as
dx = def whered\v,,e\a,and/|p,. Thus

which we rearrange as

(4) A

-̂= 2
\», e\a, f\p

d\n L
d\v,
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[3] Linear diophantine equations 41

since any divisor of vt must divide n. To continue with the proof we need the
following result.

LEMMA 2. With the above notation, the I for which d\vt form precisely one
congruence class mod d, when d\n.

PROOF. Plainly if d\v^ then d\ vt for all / = /, mod d. Conversely d\v,, d\vt

implies d divides u,t — w,2 = a2(/, — /2) and d divides a,(/, — l2). Since (a,, a2)
— 1 it follows that /, = l2 mod d. It just remains to show that d\ v, for some /.

Consider the equation axuk + a2vk = n, that is,

a,(«0 + a2k) + a2(v0 - axk) = n

and let d\n. Set 8 = (a2, d): then (8, a,) = 1, 8\a2 and 8\d\n = a,«0 + a2v0.
Hence S\u0, from which it follows that there exists an integer k with a2k =
-w0modd. In other words, axuk + a2vk = n with d\uk. Let d* = dS~\ Then
uk+td- = uk + «2'^* = w* + a * ' ^ where a* = ai$ '» s o ^lM^+rd* f° r all integers
r. On the other hand, d\a2vk = n — a^uk means d* \vk. Since (a,, 8) = 1 there is
an integer t such that

axt = vk/d* mod 8.

Then d = d*5 divides t^ — axtd* = vk+ld., and so d\ v{ for / = k + td*.

PROOF OF LEMMA 1 (continued). We re-write the inner sum of (4) as

and rearrange it as

(6)

where /, has the property that d\v,t. If e\z has the property that (e, a2) ¥= 1,
choose a prime />|(e, a2). Then p\e\u,, p\a2, axu, + a2v,= n would mean
p\(z, n) = 1, a contradiction. Hence if (e, a2) =£ 1 then the inner sum in (6) is
empty as there will be no / for which e | u,. We can therefore write the sum in (6)
as

(7) 2 M(0 2 2 **(/)!
(e,a2)=l
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42 R. T. Worley [4)

For / = /, mod d, we write

ut= u, + kda2, k G Z.

Since (d, e) \ (n, z) = 1 and (e, a2) = 1 it is clear that e \ ul for k lying in a unique
congruence class mod e; that is, / lying in a unique congruence class mod de. We
can therefore write the inner sum in (7) as

where e \ a,2 and ^ | v^.
We rearrange this sum as

(8)

^ /=/2niod de

If f\z has the property that (/, ax) ¥= 1, choose a prime/»|(/, a,). Thenp\f\v,,
p | a,, a,«, + a2Vj = n would mean that p |(2, n) = 1, which is impossible. Thus if
/ | z the inner sum in (8) is empty unless (/, a,) = 1, so we can write (8) as

(9)

For hmod d

( j

'e we write

2
f\z

-kd k E Z,

If/ |z, (/, a[) = 1 and (/, e) ¥= 1 then/cannot divide v, for any /, as (p,, a,) = 1.
However if (f,e)= 1 then (de, f)—\ and / | o , for k lying in a unique con-
gruence class mod /. We can therefore write (9) as

2 2 1= 2
f\z _0</<r f\z

lhAdf (f,a,e)

Let ze denote the greatest divisor of z prime to e. The above expression becomes

<»l«
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where T ( « ) denotes the number of divisors of n and <?> is the Euler function.
Substituting in (7) we obtain the estimate

where z+ denotes the product of primes dividing one but not both zfl| and zaj, z
denotes the product of primes dividing both zfl| and zaj, and <f>*(z)/z =

n^a-2/r1).
Finally we obtain the estimate

which is arbitrarily large for sufficiently large r.

REMARK 1. Note that <J>*(z~)/z~ is zero if 2 \z~. This occurs only when z is even
and both ax, a2 are odd, so the conclusion of Lemma 1 is valid when z is even,
provided a,a2 is even.

REMARK 2. J. Loxton has observed that Lemma 1 could be proved using
congruences and the Chinese Remainder Theorem. The above proof has the
advantage of giving the estimate for Nr, and covering the case z even, ata2 even.

PROOF OF THE THEOREM. The case m = 1 is vacuous (or trivial, depending on
your viewpoint). For m > 2 it is convenient to prove a slightly stronger result,
namely.

PROPOSITION. If(ai,...,am) = 1, and a,,. ..,am are ordered so that if i <j then
aj is not divisible by a higher power of 2 than a,, then, for all integers n, the
equations (2a), (2b) have infinitely many solutions in which JC,,. .. ,jcm_, are odd.

PROOF. The proof is by induction on m. For m = 2 w e consider cases, noting
that a 2 must be odd.

(i) If n is even, apply Lemma 1 with z = 1.x, must be odd for if x, were even
then x2 would have to be odd, so atxt = n — a2x2 is odd, an impossiblity.

(ii) If n is odd and a, is even, apply Lemma 1 with z = 2 (note Remark 1).
(iii) If n, a, and a2 are all odd then (at,2a2) = 1 so by Lemma 1 with z = 1

there exist JC,, x2 satisfying axxx + 2a2x2 = n, (JC,, x2) = 1. In this case x, is
plainly odd, and x[ = x,, x'2 = 2x2 satisfy axx\ + a2x2 = n, (x[, x'2) = 1. This
proves the proposition when m = 2.
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44 R. T. Worley [6]

Now suppose the proposition is true for m — 1. Let g = (a,, am), which is odd
and satisfies (g, a2,... ,am_,) = 1. By the inductive assumption there exist solu-
tions x2,...,xm_v qof

a2x2 + • • • + a m _ , x m _ , + gtf = n,

(10) ( * 2 - " * » , - i . 9 ) = l . ( * , . , * , ) = 1, 2 < i < y < m - l ,

Now (2a) is satisfied by any solution of a,*, + amxm = g<7, that is, a\xl + a'mxm

= q where a\ — ax/g, a'm = am/g. By Lemma 1, since z = x2 • • • xm_l is odd
and prime to q, there are infinitely many solutions of this satisfying x] odd and
( x v x j = ( x l , x 2 - - - x m _ l ) = ( x m , x 2 - - x m _ l ) = l . T h u s x v . . . , x m s a t i s f y
(2a), (2b) and xt,... ,x m _, are odd. This completes the proof by induction.

REMARK 3. For any odd integer z with (z, n) — 1 the above proof can easily be
modified to ensure the solutions xx,...,xm are also prime to z. If z is even and
(z, n) = 1, let z = 2rz, with z, odd. The solutions xu... ,xm prime to z, also have
x , , . . . ,x m _, odd, so they are prime to z. Plainly xm can (and will) be odd, and
therefore prime to z, if a, + • • • + a m _ , is even.
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