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Abstract

V. Krishnamurthy has shown that on a finite set X all topologies can be mapped into a certain set of
matrices of zeros and ones. In this paper it is shown that all lattices, algebras and rings on a finite set
X can be mapped onto particular sets of matrices of zeros and ones.

1980 Mathematics subject classification (Amer. Math. Soc): 28 A 05, 05 B 20.

In this paper our aim is twofold. Firstly, we consider families of subsets of a finite
set with particular reference to lattices, rings, algebras and topologies. Secondly,
we consider finite matrices of zeros and ones with various sets of properties and
show the pairing of the matrices with the families of subsets considered in the
earlier part.

Krishnamurthy [2] showed that on a finite set all topologies are mapped onto a
certain set of matrices of zeros and ones. We establish similar mappings for
lattices, rings and algebras.

Let Xdenote a finite set. Let n be a positive integer and N = {1,2,...,«}. Then
we shall assume that X = {*,: i E N}. On finite sets the operations of arbitrary
or countable unions (intersections) collapse into finite unions (intersections). Thus
a topology 9" is a family of subsets of X such that 0 6 f , l e J , and 5" is closed
under the operations of unions and intersections of sets.

We shall deal with certain subsets of the following set of set-operations:

po = { u , + , - , e , A , n , c , s 6 > s , }

where U denotes the operation of union of sets, + denotes the disjoint union, —
denotes the difference, © denotes the proper difference, A denotes the symmetric
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difference, n denotes the intersection, C denotes the complement, Sb denotes the
formation of subsets, and Sr denotes the formation of supersets.

Let 'fbe a family of subsets of X such that 0 G fand ^Fbe closed under the
operation of intersection of sets. Given x G X, we define ^x = {A E ^: x E A]
and put S(x) = C\ % whenever % =£ 0, and S(x) - 0 whenever % - 0 .

The following proposition is now straightforward for any 'f with the above
conditions.

PROPOSITION 1. To each x G X there exists a unique set S(x) such that:
(i) S(x) E ff,
(ii) S(x) ¥= 0 implies x G S(x), and
(in)A EtfandxEA imply S(x) C A.

We shall use the symbol SC F̂) to denote the family of sets (5(x): x G X}.
Below we give examples of families which satisfy the assumptions of the above

proposition.
(a) A lattice of sets £, which is a family of subsets of A'with the set of properties

{ n , U } and 0 G £.
(b) A ring of sets *3l, which is a non-empty family of subsets of X with any of

the following sets of properties (U, - } , { + , - } , {U, 0 } , (A, n ) , {-, A} or
{U,A}.

(c) An algebra of sets &, which is a non-empty family of subsets of X with any
of the sets of properties {U, C}, { n , C} or {-, C}.

(d) A topology 9", which is a family of subsets of X with the set of properties
{U, n } and such that 0 G !Tand l e i

(e) A non-empty family 'S of subsets of X closed under the set operations from
any of the following sets of operations { + ,D} , {—,0}, { —,H}, {©, D},
{u, sb), {+, sb), {-, sb), {©, sb}, {A, sb}, {n, sb}, {c, sb},{-, sr}, {©, sr},
{b,sr),{n,sr),{c,sr},{sb,sr}.

We shall deal mainly with 4 types of families of subsets of X, namely algebras,
rings, topologies and lattices. The relationship between these types of families is
indicated by the diagram below.

Topology^,

Algebra^ ^Lattice

'Ring*
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PROPOSITION 2. Let & be a lattice of subsets of X and f denote the following
family

Then £ = <$.

PROOF. Let A G £ such that A=h 0. Then A - UxeAS(x), since x <E A
implies x G S{x) C A hence x G UxeA S(x) and so .4 C 0xeA S(x). For _y e
Uxey<5(x) we have j G S(x) for some A: G A hence >> G S(x) C 4̂ implies

j G A. Thus Uxe/< S(x) C A. Therefore A = UxeA S(x) G «F. Hence E c f . O n
the other hand, if B E 'f and 5 ¥> 0 we have 5 = U,e /5(x,) G £ for some
/ C N. So f C £. Summarising, we have £ = f.

PROPOSITION 3. Let Qlbea ring of subsets of X.
(i) IfS(x) ¥= 0 theny G S(x) if and only ifS(y) = S(x).
(ii) For a// x j e X 5 « c / i r/iar x =£ j , d/Zier S(x) n 5(j) = 0 o/- 5(x)

Further, if<€= { U,e/S(jc,-): (5(x,)) G §(%) A (/ C AT)} f/ie/i & = f.

PROOF, (i) Assume that S(x) ^ 0 for some x E. X. Further, suppose that
y G S(x). By Proposition l(iii), S(y) C S(x). On the other hand, we show that
S(x) C S(y). This is equivalent to S(x) — S(y) = 0. Assume on the contrary
that either: (a) S(x) - S(y) # 0 and x G S(x) - 5(j); or (b) S(x) - S(y) *
0 and x <£ S(x) - S(y). In case (a), we have S(x) - S(y) G <3l, so by Proposi-
tion l(iii), S(x) C S(x) - S(y). Since

0 C S(x) n 5(^) C[5(x) - S(y)] n S( j ) = 0 ,

wehaveS(x) n 5(j) = 0 . But this contradicts S(x) n S(y) ^ 0 sincey G S"(x)
hence 5(x) G <&y so 5(^) ^ 0 hence^ G 5(j) and S(x) n 5(j) ^ 0 . In case
(b) we assume that S(x) — S(y) = 0 and x £ S(x) — S(y) then since 0 ^
S(x) - 5(j) C 5(x) implies x G 5(x) and x G 5(x) = [5(x) - S(y)] U [5(x)
n S(y)] implies x G 5(x) n S(y) C 5(j). Hence S(x) C 5(^) and so S(x) -
S(y) = 0 which is a contradiction. Therefore, S(x) — S(y) = 0 is true and so
S(JC) = S(x) D 5(j) C S(y).

Summarising, we havej G S(x) implies S(y) = S(x). Now the second implica-
tion is easy since S(x) =£ 0 implies x G S(x) = S(y) so S(y) ¥= 0 and y G
S(y) = S(x).

(ii) Let A E <3l such that A ¥= 0 .
We prove that if S(x) ¥= S(y) then S(x) C\ S(y) = 0 . It is sufficient to assume
that S(x) ¥= 0 and S(y) ¥= 0.
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On the contrary, assume also that S(x) C\ S(y) ¥= 0. Then either x
S(y) or x £ S(x) n S(y). In the case x G S(x) n 5(^) we have by (i) above,
x G S(/) if and only if S(x) = S(y), and this is a contradiction since we
assumed S(x) ¥= S(y). In the case x £ S(x) 0 S(y) then * G S(x) - [S(x) n
S(y)] G 51, hence 5(x) C S(x) - [S(x) D S(y)] and then

0 * s(x) n s(j) c (s(x) - [s(x) n s(>>)]} n s(y)
= [S(x) - S(y)] n S(y) = 0

and this is a contradiction. Thus 5(x) ¥= S(y) and 5(x)(15(> ' )7 t 0 leads in
any case to a contradiction. So 5(x) ^ 5(>») and S(x) n 5(>>) = 0 is always
true. Hence S(x) # S(y) implies S(x) n SC;') = 0 . Hence for each x ¥= y the
sets S(x) and ^ j ) are either identical or disjoint.

Since every ring of sets 91 is also a lattice of sets we have by Proposition 2 that

PROPOSITION 4. Le/ & be an algebra of subsets of X. Then all the properties of
Propositions 1, 2 and 3 are satisfied and UxexS(x) = X.

PROOF. Let x (= X. Then X E&x = {A £&: x EA}. Hence n # x = S(x) C *
so Ux£XS(x) C X

On the other hand, if x G X, there exists /I G &, v4 ̂  0 such that x G 4,
hence S(x) C ̂  so x G 5(x) C U ^ ^ C x ) .

Thus UxeXS(x) = X.

PROPOSITION 5. Let ^ be a topology of subsets of X. Then the family §(?T) U
{ 0 , X} forms a basis of neighbourhoods for the topology 5".

PROOF. [2]. ;

i

We shall denote by w the set of all n X n matrices of zeros and ones. It is f
evident that | « |= 2"2. Assume that (apq) is an n X n matrix from w. |

Certain matrices in w may possess some combinations of properties from the
list given below.

(a) a a - 0 implies ap, = 0 = a,q for each/?, q G N.
(b) a,, = 1 for each / G N.
(c) For i, j E N and for each k G N, aik = 1 = ajk implies aim = ajm for each

mEN.
(d) For i,j G ./V and each k EN, aJt = 1 = aik implies ajk — 1.
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The following symbols will be used to denote the subsets of w whose matrices
satisfy the given combinations of properties from the above list:

X denotes the set of matrices with properties (a) and (d);
p denotes the set of matrices with properties (a), (c) and (d);
a denotes the set of matrices with properties (b), (c) and (d);
T denotes the set of matrices with properties (b) and (d).

PROPOSITION 6. Let F be the collection of all families f of subsets of X such that
0 E 5 and§is closed under the formation of intersection of sets. Then there exists a
mapping Tof3 into u where for each f G F the matrix TC$) is defined as follows.

(i) If for xt E X the set S(x,) = 0 then atj = Ofor all).
(ii) / / 5(x,) ¥= 0 then atj = 1 whenever Xj E S(x,) and atj — 0 whenever

xj e s(xt).

The uniqueness of elements in §(5r) guarantees that T is a mapping.

In what follows, Propositions 7 through 10 are associated respectively with
Propositions 2 through 5.

PROPOSITION 7. Let L be the collection of all lattices on X. Then there exists a
one-to-one mapping TofL onto X.

PROOF. Define T as in Proposition 6.
Then T(L) C a where T(L) = {T(£): £ £ L}.
Let £„ £2 e L such that £, ¥= £2.

Then there exists A £ £„ A ^ 0 such that A & £2. Since 0 =£A C X assume
that \A |= k. Now consider £'(*,) £ §(£,) for each x, EA,i=l,2,3,... ,k, and
S2(JC,) £ S(£2). Then there exists at least one i0 such that S\xiQ) ^ S2(x,0). On
the contrary, assume that 5'(x,) = S2(xt) for each / = 1,2,3,...,k. Then A =
Vx.eASl(Xj) = Vx.eAS2(Xj) £ £2. This contradicts the assumption that A £ £2.
Thus there is at least one /„ such that S\xio) ^ S2(xio). Hence §(£,) # S(£2).
Now the /oth row of the matrix T(&{) is different from the joth row of the matrix
T(£2) and so T(£,) ¥= T(t2). Thus Tis a one-to-one mapping of L into <o.

Next, we show that 7" is a mapping into X. Assume that for some £ £ L, T(£) is
such that a,, — 0. That is, xt € S(xt). Then, by Proposition l(ii), S(x,) = 0 and
so alq = 0 for each q £ N. Now, we prove also that apl = 0 for each p £ N. On
the contrary, suppose that apl = 1 for some p. Since an = 0 we have p ^ / so
x, £ S(xp). That is, S(xp) ^ 0 and then S(xp) £ tX) = {A £ £: x, £ A) hence
S(x,) = D tx ¥= 0 and this is a contradiction with S(x,) = 0 . Thus apl = 0 for
each p EN. So T(£) satisfies the condition (a). Now, let 7\£) be such that
aik — 1 = akJ. We wish to prove that atj = 1.
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From aik = 1 = akJ we have that xk E S(x,) and xy E S(xk). Since S(x,) # 0
and S(xk) # 0 we have that x,, xfc E S(x,) and xjy xk E S(xk). So xk E S(x,)
n S(xk). Further xy £ S(x*) ¥= 0 implies that 5(xt) E tXj, hence S(x;) =£ 0
and so xy e S{Xj). Now, either xy G S(x,) n ^(xj.), and since S(x,) n S ^ ) C
S(x,), we have atj = 1, or x, £ 5(x,) D S(xk), hence Xj G ^(xj.) and x, £ S(x,).
Now, since xk G 5(xt) D 5(x() £ £, so 5(x,) D S{xk) E £Xt, thus S(xk) C
S(xk) C\ S(x^), vrtuch is a contradiction since S(xk) n S(x,) is a proper subset of
SXxj.), namely xy G ^(x^) and xy £ 5(x,), so finally xy G S(x,) and thus a,; = 1.

Now we show that T is a mapping from L onto X. Assume that the matrix
(au) E X. We shall prove that there exists a lattice £ E L such that J(£) = (a,7).
Consider the /th row of the matrix (au) and define the set 2(x,) by

2(xl) = {XjeX:aiJ=l}

and put 2(x,) = 0 whenever atj = 0 for eachy G iV. Further, define two families
of sets <$ = (2(x,): / E TV} and £ = { U ; e / 2(x,): (I C N) A (2(x,) E <?))}.

We show that £ is the required lattice. It is evident that £ is closed under unions
and contains the empty set.

To show that £ is closed under intersections it is sufficient to show that for each
pair (/, j) the set 2(x,) n 2(xy) is a finite union of sets from 6D.

Either 2(x,) n 2(xy) = 0 and then 2(x,) fl 2(xy) E £, or 2(x;) n 2(xy) ?t
0 , in which case we consider the following cases.

(i) x, E S(x,) n 2(x7), so a,, = 1 = a,,. Now, let x t E 2(x,). Then aiyt = 1,
hence by {d)ajk = 1. That is, xk E 2(x,). Hence 2(x,) C 2(xy) and so 2(x,) n
2(Xj) = 2(x,) G £.

(ii) xj E 2(x,) n 2(x7) leads to 2(x,) n 2(x^) = 2(x;) E £.
(iii) x, ^ 2(x,) fl 2(xy) and xy ^ 2(x,) n 2(xy). Now, from the assumption,

2(x,) D 2(xy) ^ 0 it foUows that 2(x,) i- 0 and 2(x;) ¥= 0 and so x, E 2(x,)
and x7 E 2(x7). That is, a,, = 1 = a^.

Since x, ^ 2(xy) and xy £ 2(x,) we have a,7 = 0 = ajt.
Consider any xk E 2(x,) n 2(x;). That is, aik = 1 = ajk. We shall prove that

for/? T̂  kandp E iVwehavex^ £ 2(x,) n 2(xy), that is, akp = 0.
Assume that xp (£ 2(x,), that is, aip = 0. Now, also akp = 0, since on the

contrary, if a ^ = 1 then from (d), aip = 1 (note aik = 1), which is a contradic-
tion, so akp = 0. Similarly, from xp & 2(x^) we show that akp = 0 whenever
ajp = °'

Combining the two parts we have that for each r ¥^ k, if xr ? 2(x,) n 2(xy),
then ^ , = 0, thus xr 6 2(sk). That is, xr ^ 2(x,) n 2(xy) =* xr £ 2(xfc), which
is equivalent to xr E 2(xjt) => xT E 2(x,) D 2(xy) for r ¥= k. Hence 2(xJt) C
2(x,) n 2(xy), and so UJt teS(J t i )nS( } 2(x,) C 2(x,) n 2(xy). Now, from xk E
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2(x,.) n 2(x y ) we have xk E 2(xA:), hence

Finally, 2 ( x ; ) n 2 ( x ; ) = UXkE^x )n2(jc., 2 ( x k ) provided that x,, xy £ 2 (x , ) n
2(x y ) . Hence 2(x , ) n 2(x y ) E £.

PROPOSITION 8. Lef R be the collection of all rings of subsets of X. Then there
exists a one-to-one mapping TofB onto p.

PROOF. Since each ring 61 E R is also a lattice, consider the restriction to R of
the mapping, say Tx: L -> X and denote this new mapping T: R -> X. We shall
show that T is also onto p.

First, we prove that T is a mapping into p. It is sufficient to show that for
61 E R the matrix T(6l) has property (c), since the other properties, namely (a)
and (d) follow from Proposition 7. Consider i, j E N and the matrix (a,y) and
assume mat for each / =£j there exists a k E N such that aik — 1 = ajk, that is,
xk E S(xt) and xk E S(xj). Now, by Proposition 3(i), we have S(xt) = S(xk) and
S(xk) = S(Xj). Hence, S(x,) = S(x,) or a,m = ajm for each m£iV.

To prove that T is a mapping of R onto p, consider a matrix (a,y) E p and
proceed as in Proposition 7.

PROPOSITION 9. Let A fee f/re collection of all algebras of subsets of X. Then there
exists a one-to-one mapping T of A onto a.

PROOF. Since each algebra <$, E A is also a ring, consider the mapping T: A -> p
which is the restriction of the mapping from R onto p. We shall show that T is
also onto a.

First, we prove that T is a mapping into a. Now it is sufficient to show that the
matrix T(&) has the property (b), since all the other properties follow from
Propositions 7 and 8. Consider an arbitrary element x, E X. By Proposition 4,
X = UkeNS(xk) and each S(xk) ^ 0 so xt E 5(x,), thus au = 1 for each
iEN.

Next, we show that T is a mapping from .4 onto a. Consider a matrix (a,y) E a
and proceed as in Proposition 7. We define the families of sets

<%= pfxJi iGJV) and (2 = { U 2(x,): (2(JC,.) E <$) A (/ c JV) j .

We shall prove that & is an algebra of subsets of X. We already know that & is a
ring of subsets of X. It is sufficient to prove that X E 6E. By property (b),
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xt £ 2(x,) for each / G N so

x= U {*,} = U2U)e0.

PROPOSITION 10. Let T fee //ie collection of all topologies of subsets of X. Then
there exists a one-to-one mapping TofT onto r.

PROOF. See [2].

Krishnamurthy [2] enumerated the topologies on finite sets by counting certain
matrices of zeros and ones. We can also enumerate lattices, rings and algebras on
a given finite set by generating and counting the relevant matrices.

Evans, Harary and Lynn [1] developed a recurrence relation involving Stirling
numbers of the second kind to find the number of topologies on a finite set and
from this result Levinson and Silverman [3] derived an asymptotic formula.
Similar recurrence relations can now be found for the number of algebras, rings
and lattices on a finite set.

By considering the matrices as representative of the various families of subsets,
it is possible to develop alternative sets of axioms, which determine whether or
not a given matrix of zeros and ones represents a lattice, topology, algebra or
ring of subsets.
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