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1. I n t r o d u c t i o n . The integer par t of a non-negative real number p will 
be denoted by [p]. For any integer ny n* will denote the greatest even integer 
less than or equal to n, t h a t is, n* = n or n — 1 according as n is even or odd 
respectively. 

The order of a set A, denoted by \A\, is the number of elements in A. T h e 
set whose elements are ax, a2, . . . , an will be denoted by {ai, a2j . . . , an}. The 
empty set will be denoted by A. A set will be said to include each of its elements. 
A set separates two elements if it includes one bu t not both of them. 

An unoriented graph Uconsists of two disjoint sets V(U), E(U), the elements 
of V{U) being called vertices of U and the elements of E ( [ / ) being called 
edges of U, together with a relationship whereby with each edge is associated 
an unordered pair of distinct vertices which the edge is said to join. T h e letter 
£/, wi thout further introduction, will always denote an unoriented graph. An 
oriented graph N consists of two disjoint sets V(N), E(N), the elements of 
V(N) being called vertices of N and the elements of E(N) being called edges of 
N, together with a relationship whereby with each edge X is associated an 
ordered pair (\t, Xh) of distinct vertices called the tail and head of X respectively ; 
the s ta tement t ha t X joins two vertices § and t] will mean t h a t either £ = \t 
and 7} = \h or % = \h and rj = \t. T h e letter N, wi thout further introduction, 
will always denote an oriented graph. An orientation of U is any one of the 
2\E(U)i o r i en ted graphs N such t ha t V(N) = V(U),E(N) = E(U) and each 
edge of N joins the same vertices in N as in U. 

Let G be an unoriented or oriented graph. Then G is finite or infinite according 
as the set V(G) W E(G) is finite or infinite. Henceforward, except when the 
contrary is explicitly indicated, all graphs mentioned in this paper will be 
finite, and the word * 'g raph" will mean ' 'finite graph." An edge of G is incident 
with each of the vertices which it joins. If S, T are subsets of V(G),S will 
denote V(G) - 5 , 5 o T will denote the set of those edges which join elements 
of S to elements of T> and Sô will denote S o S. The degree of 5 , denoted by 
d(S), is \S5\. The degree d(£) of a vertex £ of G is the number of edges incident 
with £; thus d(^) = d({£}). A path of G is a finite sequence 

£o, î> £i> ^2, £2, X3, . . . , X„, £n 

in which the £f are vertices of G, the X2 are edges of G and X* G {£z-i} o {£*} 
(i = 1, 2, . . . , n). A pa th with first term £ and last term rj is a ^rj-path. A 
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collection of paths are edge-disjoint if no edge appears in more than one of them. 
The connectivity c(£, rj) of two distinct vertices £, 77 is the minimum of the 
degrees of the subsets of V(G) which separate them. It can be shown1 that 
c(£, rj) is also the maximum number of edge-disjoint frç-paths which can be 
found in G. G is k-connected if d(S) > k for every non-empty proper subset S 
of V(G). 

A path 
£o, Xi, £i, X2, £2, X3, . . . , Xn, £n 

of iV is forwards-directed if X^ = ^_i (and so necessarily X̂ /z = £t-) for 
z = 1, 2, . . . , n. If 5 C V(N), an edge X is an &x;z£ of 5 if \t Ç 5, X/̂  £ $, and 
is an entry of 5 if \h Ç 5, X/ £ £. The number of entries (exits) of S will be 
denoted by e(S) (x(S)). If g, 97 are distinct vertices of N, a(£, 77) (the coefficient 
of accessibility of 77 from J) is defined to be the minimum of the values of x(S) 
as 5 runs through those subsets of V(N) which include £ but not 77. It can be 
shown2 that #(£, 77) is also the maximum number of edge-disjoint forwards-
directed ^-paths which can be found in N. N is k-accessible if x(S) > k for 
every non-empty proper subset S of V(N). N is admissible if a(£, 77) > 
[§£(?> 7?)] f° r every ordered pair £, rj of distinct vertices of N. 

Robbins (4) proved that every 2-connected unoriented graph has an 
orientation in which every vertex is accessible from every other. Such an 
orientation is clearly 1-accessible, since, if 5 C V(N) and x(S) = 0, no 
element of >S is accessible from any element of S. This suggests the generaliza
tion that, for every positive integer k, every 2&-connected unoriented graph 
has a ^-accessible orientation. (2&-connectedness is of course a necessary 
condition for possessing a ^-accessible orientation, since d(S) = x(S) + x(S) 
for every subset 5 of the vertices of an oriented graph.) Since an unoriented 
(oriented) graph is clearly ^-connected (^-accessible) if and only if c(£, 17) 
(a(£, rj)) > k for every pair (ordered pair) of distinct vertices J, 77, our proposed 
generalization of Robbins' theorem states that, if c(£, rj) > 2k for every pair 
£, 77 of distinct vertices of U, then U has an orientation in which a(£, 77) > k 
for every ordered pair £, 77 of distinct vertices (k being a positive integer). 
This in turn suggests the following sharper result, which it is the object of 
this paper to prove: 

THEOREM 1. Every unoriented graph has an admissible orientation. 

Robbins' theorem was extended to infinite graphs by Egyed (2). An exten
sion of Theorem 1 to infinite graphs has been obtained, but the details, being 
somewhat heavy, are deferred to a possible future paper. 

^ince this result is relevant to the present paper only as a slight additional motivation for 
the definition of connectivity, we omit its proof. It can be proved on lines suggested by the 
proof of Menger's Theorem on pp. 244-247 of (3). 

2This result is mentioned only as additional motivation for the definition of a(£, 77), and its 
proof is omitted. 
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A vertex of U is even or odd according as its degree is even or odd respec
tively. A partition of a set A is a set of disjoint subsets of A whose union is A. 
A pair-set of A is a set of subsets of order 2 of A. If P is a pair-set of A and 
B C A, the subset PB of P is defined to be the set of those pairs {a, fi\ Ç P 
such t h a t 5 separates a, 0. If 5 C ^ ( ^ 0 and P is a pair-set of F(C/), the 
P-reduced degree dp(S) of S is d(5) — |Ps | . The P-reduced connectivity cp(£, 77) 
of two distinct vertices £, 77 is the minimum of the P-reduced degrees of the 
subsets of V(U) which separate them. An odd-vertex-pairing of C/is a par t i t ion 
of the set of odd vertices of U into subsets of order 2; such a part i t ion exists 
since, by (3, chapter I I , Theorem 3) , the number of odd vertices of U is even3. 
We shall show in §2 tha t , if P is an odd-vertex-pairing of U and £, 77 are dist inct 
vertices of [/, then cp(%, 77) < c(£, 77)*. P will be called optimal if cp(%, 77) = 
£(£» *?)* f ° r every pair £, 77 of distinct vertices of U. Our proof of Theorem 1 
will depend on the following subsidiary result: 

T H E O R E M 2. Every unoriented graph has an optimal odd-vertex-pairing. 

2. Proof of T h e o r e m 2. 

LEMMA 1. If a, /3, y are distinct elements of a set A and B (Z A, then 

|{{«, flUI + IH0, YÎUI > |{{«, y}\s\. 

(In accordance with our definitions, the notat ion {{6, 4>}}B means PB where 
P is the pair-set whose sole member is {6, 0}.) 

The proof of Lemma 1 is left to the reader. 

Definition. Let A be a set, P be a pair-set of A and B, C be subsets of A. 
Then P(B, C) will denote the number of pairs {a, (3} G P such t h a t one of 
a, /3 belongs to B and the other to C. 

LEMMA 2. Let S, T be subsets of V(U) and P be a pair-set of V(U). Then 

(i) d(S) + d(T) = d(sr\T) + d(snf) + 2\(sr\T) o o§nr)|; 
(ii) dp(S) + d(j) > i(dp(snr) + dp(sr\_f) + dp(snr) + dp(sr\T)) ; 

(iii) if PT = {{0, <£}}, ze/Aere (9 Ç T and $ e T, then 

dp(S) + d(T) > dp(snf) + dp(sr\T) - i, 
and this inequality can only become an equality if 6 £ 5 P i P , 0 Ç SH\T. 

Proof. Wri te 

sr\r = Zi, snf = z2, sn r = z3, sn? = z4, 
<^( = ^ - ) = |£* ° ^ l > />*>( = pji) = P(Zi, Zj). 

Then (i) and (ii) are easily proved by expressing all terms on each side of (i) 
and (ii) in terms of the dtj and pi3—for example, 

3This result also follows by putting S — V(U) in Lemma 3 of this paper. 
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d(S) = du + du + aw + ^24 
dp(S) = dn + du + ^23 + d2i — pu — pu — p2z ~ pi\. 

I t can also be shown by this method t h a t 

dp(S) + d(T) - dp(sr\f) - dp(snr) > \pT\ - 2P(sr\r, snf), 
which clearly implies (iii). 

Definitions. If S C V(U), o{S) will denote the number of odd elements of 
5. An odd-vertex-pairing P of U is S-optimal if cp(£, rf) = c(£, 77)* for every 
pair £, 77 of dist inct elements of S. We define c(S) to be 0 if 5 = A or V(U), 
and to be 

max_c(£, rj) 

otherwise. 
If m, n are integers, the s t a tement ilm^n (mod 2 ) " will be abbreviated 

to um = n ' \ 

LEMMA 3. If S C V(U), d(S)=o(S). 

Proof. If S denotes the sum of the degrees of the elements of S, an edge 
contr ibutes 2, 1 or 0 to 2 according as it belongs to S o S, Sô or S o S respec
tively. Therefore 2 = \Sô\ = d(S). But clearly X = o(S). 

COROLLARY 3A. If P is an odd-vertex-pairing of U, dp(S) is even. 

Proof. Clearly \PS\ = 0 (5 ) ; therefore, by Lemma 3, |P,s| =d(S). 

COROLLARY 3B. If £, 77 are distinct vertices of U, cp(£, rj) < c(£, 77)*. 

Proof. Clearly cp(£, 77) < c(£, 77). Bu t cp(£, 77) is even, by Corollary 3A. 
Therefore cp(£, 77) < c(£, 77)*. 

COROLLARY 3C. If F C F(C/), P is Y-optimal if and only ifdp(S) > c(£, 77)* 
for ez;ery £ri/>/e 5 , J, 77 such that 5 C F (£ / ) , ? € 5 H F and 77 £ SC\Y. 

Proof. T h e given condition is equivalent to the assertion tha t , for every 
pair £, 77 of dist inct elements of F, cp(£, 77) > c(£, 77)*; and this inequali ty is 
equivalent to equal i ty by Corollary 3B. 

COROLLARY 3D . P is optimal if and only if dp(S) > c(S)* for every subset 
SofV(U). 

Proof. T a k e F = V(U) in Corollary 3C. 

Rotational Conventions. When , to avoid ambigui ty , it is necessary to 
specify the graph relative to which a graph-theoret ical symbol is defined, the 
letter denoting the graph will be a t t ached to the symbol in some convenient 
way. For example, if £ is a common ver tex of two graphs G and H, dG(£) will 
denote the degree of £ in G. We shall, however, make the convention tha t , when
ever two or more graphs are under consideration and one of them is denoted 
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by the letter U, all graph-theoretical symbols relate to U unless the contrary 
is specified—for example, d(£), if otherwise ambiguous, means d £/(£). 

Definitions. A subgraph of U is an unoriented graph H such that 
V(H) C V(U), E(H) C. E(U) and each edge of H joins the same vertices in 
H as in U. If X is a subset of V(U), Ux will denote the unoriented graph 
defined by 

(i) V{UX) = J U f r ) , E(UX) = Xo V(U), where X' is a newly 
introduced vertex and is not an element of the set V(U) W E(U); 

(ii) each element o f ï o ï joins the same vertices in Ux as in U; 
(iii) if | G X and X G {£} o X, then X joins f and X ' in Ux. 

Thus Z7X is obtained from U by contracting to a single vertex X ' the subgraph 
of U formed by the elements of X and those of X o X. 

LEMMA 4. If Z d X (Z V(U) and P is an optimal odd-vertex-pairing of 
Ux, then d(Z) > \PZ\ + c(Z)*. 

Proof. Let Ux = H. Since d(Z) = dH{Z) > |P Z | + cH(Z)* by Corollary 
3D, it suffices to prove that cH(Z) > c{Z). This will clearly follow if we show 
that 

(i) if £, 7] are distinct elements of X, then cH(%, 77) > e(£, 77), 
(ii) if f G x, r e x, then £*(r, xo > c(r, T). 

Let PF denote an arbitrary subset of V(II), and T denote whichever of 
W, V(H) - W does not include X'. Then (i) follows from the fact that, if W 
separates £ and 77, dH{W) = d(T) > e(£, 77), and (ii) from the fact that, if W 
separates f and X', dH{W) = d(T) > c(f, r). 

LEMM_A 5. 7 / 5 , r c V(U), then either c(S C\ T)* > c(S)* = c(S)* or 
c(Sr\ f)* > c(S)* = c(S)*. 

Proof. If 5 = A or V(U), the result is trivial. If not, select £ G S, 77 G S 
such that c(£, 77) = c(S). If £ G T, S (^ T separates £, 77 and so 

c(S^T) >c&rj) =c(S), 

whence c(S C\ T)* > c(S)*. Similarly, if £ G 2\ then c ( 5 H f )* > c(5)*. It 
is obvious that c(S)* = c(S)*. 

LEMMA 6. If S, T C F(Z7), /Ac» ei/Aer 

(1) c(s n zy + c(s n f)* > c(S)* + c(r)* 
or 

(2) c(5 H f )* + c(S n T)* > c(S)* + c(T)*. 

Proof. We may assume without loss of generality that c(S)* < c{T)*. 
Then, if c(S r\ T)* < c(5)*, we have_c(5H 71)* < c ( r )* also; these two 
inequalities and Lemma 5 give c(S C\ 77)* > c(5)* and c(S H T)* > c(T)*, 
whence (2) is true. Similarly, if c(S H T)* < c(5)*, then c(S H T)* < c(T)*; 
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these inequalities and Lemma 5 give c(S Pi T7)* > c(S)*, c(S H T)* > c(T)*, 
whence (1) is true. If, finally, c(S C\ T)* > c(S)* and c(S r\ T)* > c(S)*, 
then, since either c(S H T)* > c(T)* or c(S C\ T)* > c{T)* by Lemma 5, 
either (1) or (2) respectively is true. 

Definitions. Let £, 77 G F(£7). Then a subset X of V(U) is ^-critical if 
X separates £, 77 and d(X) = c(£, 77) = 0. A subset of F(£/) is critical if it is 
^-critical for some pair £, 77 of vertices of £/. 

LEMMA 7. If X is a critical subset of V(U), then d(X) = c(X)*. 

Proof. Since X is critical, it is £0?7o-critical for some £0 G X, 770 G X. 
Therefore c(£o, 170) = d(X). But c(£, 77) < d(X) for every ? G X, 77 G X by 
the definition of c(£, 77). Therefore c(X) = d(X). Moreover, d(X) = 0 since 
X is ^ - c r i t i c a l . Since c(X) = d(X) = 0 , it follows that d(X) = c(X)*. 

Definitions. The order of U, denoted by ord U, is | V(U) W E(U)\. If 
X G £(£/) , U - X will denote the subgraph of C7 defined by F(£7 - X) = F(f/), 
E(U-\) = E(U) - {X}. If £ G V(U), e(£) is defined to be 0 or 1 according 
as J is even or odd respectively. A subset S of V(U) is vertical (in the sense of 
"pertaining to a vertex") if either |5| = 1 or |S| = 1. For every subset S of 
V(U), S8 is called a cincture4 of £7. Two sets meet if they have at least one 
element in common. A subset 5 of V(U) divides a subset F of V(U) if both 
S and S meet F. A subset of V(U) is Y-minimal if (i) it divides F and (ii) its 
degree is minimal amongst the degrees of those subsets of V(U) which divide 
F. A subset of V(U) is Y-critical if it is ^-critical for some pair £, 77 of elements 
of F. A Y-critical cincture is a cincture of the form X5, where X is a F-critical 
subset of V(U). 

We shall now suppose that U is a given unoriented graph, and make the 
inductive hypothesis that every unoriented graph of lower order than U has 
an optimal odd-vertex-pairing. By deducing that U has one also, we shall 
clearly establish Theorem 2. 

LEMMA 8. If V(U) has a non-vertical critical subset, U has an optimal 
odd-vertex-pairing. 

Proof. Let X be a non-vertical critical subset of V(U), and let H = Ux, 
K = Ux> The definition of "critical" implies that X and X are non-empty; 
hence, since X is non-vertical, |X| > 2 and |X| > 2. Therefore ord H < ord U 
and ord K < ord U. Therefore, by the inductive hypothesis, there exist 
optimal odd-vertex-pairings P, Q of H, K respectively. Since X is critical, 
d(X) is even. Therefore X \ X' are even in H, K respectively. Moreover, each 
element of X, X has clearly the same degree in U as in H, K respectively. 
Therefore P VJ Q ( = R, say) is an odd-vertex-pairing of U. We will show that 
R is optimal in U. 

4This term is taken from (1). 
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If 5 C V(U), then, by Lemmas 2 (i) and 4, 

d(S) + d{x) > d{s r\ x) + d(s r\ x) 
> \Psnx\ + c(S r\ Xr + l&nxl + c(S H X)* 
= \Rs\ + c(s r\ x)* + c(8 r\ X)*, 

whence 

(3) d*(S) + d(x) > c(s r\ x)* + c(S n X)*. 
If T C F (C0 , application of (3) for 5 = T and 5 = ? gives 

d*(r) +^(X) > max w r n i ) * + ^ n l r , c ( f n i ) H c ( m i f ) 
> c(T)* + c(X)* 

by Lemma 6. Bu t d(X) = c(X)* by Lemma 7. Therefore d * ( r ) > c (P)* . 
Hence, by Corollary 3D, R is opt imal ; and Lemma 8 is proved. 

LEMMA 9. IfX 6 E{U), Y C V{U) and X belongs to no Y-critical cincture, 
then 

(4) cv-x&r,)* = c(l-,r,)* 

for each pair £, 77 of distinct elements of Y. 

Proof. Let £, 77 be distinct elements of F. I t is clear t h a t 

(which implies (4)) unless there is a subset X of V(U) such t h a t X separates 
£ and 77, X 6 X<5 and 
(5) rf(X) = c (£,„). 

If there is such an X , then clearly c^_\(J, 77) = c(£, 77) — 1, so t h a t (4) still 
holds if c(%, 77) is odd. Bu t c(£, 77) cannot now be even, since this, together 
with (5), would imply t h a t X was ^-cr i t ica l and hence F-critical, so t h a t 
X<5 would be a F-critical cincture including X. 

LEMMA 10. If Y C V( U) and some edge X of U belongs to no Y-critical 
cincture, then U has a Y-optimal odd-vertex-pairing. 

Proof. Let a, £ be the vertices joined by X. By the inductive hypothesis, 
we can select an optimal odd-vertex-pairing P of U — X. Since a, /3 each have 
different parities in U — X and Z7, and every other vertex has the same par i ty 
in each graph, an odd-vertex-pairing R of U may be defined as follows: 

(i) if a, 13 are both odd in U, let R = P W {{a, /3}} ; 
(ii) if a is even and /3 odd in U, let R = (P - {{a, a}}) KJ {{/3, 0-}}, where 

0- is the vertex paired with aby P; 
(in) if a is odd and /3 even in £7, let R = (P - [[fi, r}}) U {{a, r}}, where 

r is paired with /3 by P ; 
(iv) if a, 0 are both even in U and {a, 0} 6 P , let P = P - {{a, /3}} ; 
(v) if a, 0 are both even in U and {a, fi} $ P , let 

R= (P-{{a,a},{P,r}})^i{<r,r}}, 

where or, r are paired with a, fi respectively by P . 
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LEMMA 10A5. If S C V(U), \Ra\ < \PS\ + |{{a, 0}} s | . 

Proof. In Cases (i) and (iv), the result is clear. In Case (ii), 

\R8\ = \Pa\ - \{{a,v}}s\ + |{{/3,<r|}s| < \PS\ + \{{a,0\\s\ 

by Lemma 1, and the discussion of Case (iii) is similar. In Case (v), 

\Rs\ = \Ps\ - \\W,a)}a\ - \mr}\s\ + |{{<r,T}}s|, 

which yields the required result since, by two applications of Lemma 1, 

\{{a,a}}s\ + \{{a,ft}s\ + mT}}s\ > |{{<r, r}} a | . 

If 5 C V{U), £ € S r\ Y and rj G S H F, then, since P is opt imal in U - X, 

(6) cc-xtt, v)* = ^ - x ( £ , v) < du^(S) = du-x(S) - \PS\ . 

By Lemmas 9 and 10A and (6), 

c(S, v)* + \Rs\ < cu-x& v)* + \Ps\ + |{{«, ft}s\ 
<du^(S) + \{{a1fi}}s\ =d(S). 

Hence, by Corollary 3C, R is F-opt imal ; and Lemma 10 is proved. 

L E M M A 11. If Y C V(U) and F o F =J= A, then U has a Y-optimal odd-

vertex-pairing. 

Proof. Let X G F o F . If X belongs to no F-critical cincture, Lemma 10 
gives the required result; we may therefore assume t h a t X G Xb for some 
F-critical subset X of V(U). If X were vertical, it would be of the form {co} 
or V(U) — {œ} for some vertex co. Bu t then X would be incident with co since 
X G Xô, and co would belong to F since the F-criticality of X requires X to 
separate two elements of F ; these conclusions contradic t the assumption t h a t 
X G F o F . Hence X must be non-vertical. Therefore, by Lemma 8, U has 
an opt imal , and therefore F-optimal, odd-vertex-pairing. 

LEMMA 12. If Y C V(U) and X is a Y-minimal subset of V{U), then 
(i) c(£, rj) > d{X) for each pair £, 77 0/ distinct elements of F ; 

(ii) c(5) > d (X) for every subset S of V(U) which divides Y. 

Proof. Since X is F-minimal, d{T) > d(X) for every subset T of F ( [ / ) 
which divides F. This fact implies (i), and (i) implies (ii). 

LEMMA 13. If Y C V(U), Y o F = A a»d F ( [ / ) ^a.s a non-vertical Y-

minimal subset, then U has a Y-optimal odd-vertex-pairing. 

Proof. Let X be a non-vertical F-minimal subset of V(U). Then X divides 
F, so t h a t we can select two vertices a£Xr\Y,r£Xr\Y. Then 
c(a, T) > d{X) by Lemma 12 (i), and c(a, r) < <Z(X) since X separates c, r ; 

5We give the names Lemma nA, Lemma wB to lemmas which themselves form part of the 
proof of Lemma n. 
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hence c(a, r) = d{X). It follows that, if d{X) is even, then X is critical, so 
that U has an optimal and therefore F-optimal odd-vertex-pairing by Lemma 
8. We shall therefore assume that d(X) is odd. 

Write Ux = H, Ux = K. Since X divides Y,x =j= A and X =}= A; therefore, 
since X is non-vertical, \X\ > 2 and |X| > 2. Therefore ord i J < ord U and 
ord K < ord £/; hence H, K have, by the inductive hypothesis, optimal odd-
vertex-pairings P , (2 respectively. Since d(X) is odd, X', X ' are odd vertices 
of Hy K respectively; let X', X' be paired with 0, <j> by P , Q respectively. Then, 
since each element of X, X has the same degree in U as in H, K respectively, 

R = (p-{\e, x'}\) w «2 - {{*,x'}\) yj {{e, <j>}\ 
is an odd-vertex-pairing of U. 

LEMMA 13A. If either Z C X or Z C X, then dR{Z) > c(Z)*. 

Proof. This follows from Lemma 4 and the obvious fact that \RZ\ = \PZ\ 
or |QZ| if Z C X or X respectively. 

To prove that R is F-optimal (which will establish Lemma 13), it suffices, 
by Corollary 3C, to prove 

LEMMA 13B. If S C V(U), £ e S r\ Y and v £ S n Y, then 

(7) d*(S) >c&n)*. 

Proof. We shall consider separately the cases (I) S C\ X, S P\ X, S P\ X, 
S H X all meet F; (II) 5 H X C F; (III) 5 H X C F; (IV) £ H X C F; 
(V) S P\ X C F. (It suffices that these cases are jointly exhaustive; that not 
all pairs of them are mutually exclusive does not matter.) 

Proof of (7) in Case I. Let Z\ be whichever of 5 C\ X, 5 C\ X includes £ 
and Z2 be the other. Let Z3 be whichever of S C\ X, >S C\ X includes rj and 
Z\ be the other. Then 

(8) c{Zx) >c&ii),c{Zl) >cfor,) 

since J 6 Zi C Z3 and ?y 6 Z3 C Zi. Moreover, since the Zt all meet F by 
the hypothesis of Case I, they all divide F; therefore 

(9) c(Zt) >d(X) (i = 1,2,3,4) 

by Lemma 12 (ii). Using Lemma 2 (ii), Lemma 13A and (8), and using 
(9) for i = 2, 4, we obtain 

dR(S) + d(X) > l t , dR{Zt) >li: c(Zt)* > c{£, v)* + d(X)*, 

which implies (7) since c(£, 77)* and (by Corollary 3A) dR(S) are even. 

Proof of (7) in Case II. To prove (7) by reductio ad absurdurn, let us suppose 
that (7) is false. Since c(£, 77)* and, by Corollary 3A, dR(S) are even, the 
falsity of (7) implies that 
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(io) dB(S)<c(a,v)*-2. 
Since S r\ X C. Y by the hypothesis of Case II and £ G S Pi F, it follows 

that Ç e S r\ X. But y £ S r\ Y C V(U) - (S r\ X). Therefore c(S H X) > 
c(£> rç) > a n d so, by Lemma 13A, 

(il) d*(snit) >c&r,)*. 
Since X is F-minimal, it divides F; therefore, since S C\ X d Y by the 
hypothesis of Case II, 8nX divides F. Therefore c(S H X) > d{X) by 
Lemma 12 (ii), and so 

(12) dR(sr\X) >d{xy 
by Lemma 13A. By (10), Lemma 2 (hi), (11) and (12), 

d(X) + c(J, 77)* - 2 > dR(S) + d{X) 

(13) > dR(s n i ) + d*o§ n x) - 1 
(14) >d(Xy + c&rir- 1 

= J(X) + c ( ^ ) * - 2 

since we are assuming d(X) to be odd. Hence each inequality in the above 
sequence must in fact be an equality. Equality in (13) implies that 

(15) eesr\x 
(and 4> Ç S C\ X) by Lemma 2 (iii) ; and equality in (14) implies equality 
in (11) and (12), which, in the case of (12), gives 

(16) dR(Sr\X) = d(X)*. 

Since d e Sr\X, Sr\X C Y and F o F = A by (15), the hypothesis of 
Case II and a hypothesis of Lemma 13 respectively, it follows that 

(17) | « ! o ( ( ^ I ) - j « ) ) = A . 

Since X, being F-minimal, divides F and 6 6 F by (15) and the hypothesis 
of Case II, it follows that X - {6} divides F. Therefore d{X - {6}) > d{X), 
since X is F-minimal. But, by (15) and Lemma 2 (i), 

d((s n i ) u {e}) + d(x - {e}) - (d(s n x) + d{X)) 
= 2\{e\ o((sr\x) -{0})|f 

which vanishes by (17). It follows from the last two sentences that 

(18) d((s r\x)yj {e}) < d(8 r\ x). 
By (15) and the facts that {0,0} G R and K Î , 

(19) |^(sn^)U{*}| = l^snxl + L 

Since X, being F-minimal, divides Y, S r\ X d Y by the hypothesis of Case II 
and d e X} it follows that (S C\ X) \J {d) divides F. Therefore, by Lemma 
12 (ii), 
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(20) c((snx)u{0}) >d(x). 
By subtract ing (19) from (18), and using Lemma 13A and (20), 

dR(sr\x) - i >dR((snx)Kj{e}) > c((s n x) u \e)y >d(x)*, 
which contradicts (16). This contradiction proves by reductio ad absurdum 
the t r u th of (7) in Case I I . 

T h e t ru th of (7) in Cases III—V can be proved by arguments similar to t h a t 
given for Case I I . (There is no real asymmetry between X and X in our dis
cussion, since a subset of V(U) is non-vertical [F-minimal] if and only if its 
complement is non-vertical [F-minimal].) We have therefore now completed 
the proof of Lemma 13B and hence also t h a t of Lemma 13. 

LEMMA 14. If Y C V(U) and U has a Z-optimal odd-vertex-pairing for 

every proper subset Z of F, then U has a Y-optimal odd-vertex-pairing. 

Proof. If | Y\ = 0 or 1, any odd-vertex-pairing of U is vacuously F-
opt imal ; we may therefore assume tha t \Y\ > 2. We may also, by Lemmas 11 
and 13, assume tha t 
(21) Y o Y = A 

and t h a t V(U) has no non-vertical F-minimal subset. But V(U) has a F-
minimal subset since \Y\ > 2; hence it must have a vertical one. This clearly 
implies t ha t {co} is F-minimal for some co G V(U). Since {co} is F-minimal, it 
divides F ; therefore co G F. Therefore, by the da t a of Lemma 14, U has a 
( F — {co})-optimal odd-vertex-pairing P. 

LEMMA 14A. If S C V(U), S Pi F = {co} and £ G S, then dp(S) > c(w, £)*. 

Proof. Let r G S - {co}, and let AT = [r\ o (F( [7) - {co, r}), 3 T = 
{T} O {CO}. Since 5 Pi F = {co}, r G F . Bu t {co} divides F since it is F-minimal. 
Therefore {co, r} divides F. Therefore, since {co} is F-minimal, <2({co, r}) > 
d(co), which implies t h a t \AT\ > |J5T|. Moreover, if this last inequality becomes 
an equali ty, r mus t be even, since d(r) = \AT\ + \BT\. Therefore 

(22) \AT\ > \BT\ + € ( r ) . 

Fur thermore , since S r\ Y = {co} and r G 5 — {co}, it follows from (21) t h a t 

(23) AT = {r} o S . 

Since 

d(5) = |{0>}OJS|+ Z |{T}oS|,d(W) = |{W}0iS|+ Z \Br\, 
reS—lb)} TeS—{w} 

it follows from (22) and (23) that 

(24) d(S)>d(w)+ S «W =d(«) +o(S- H) =d(u)* + o(S). 
T€S-{0)} 

But obviously o(S) > | P S | ; and, since {co} separates co, J, we have ci(co) > 
c(co, J) and therefore d(co)* > c(co, £)*. Therefore, by (24), t i p (5) > c(co, {)*. 
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Let 0 be any element of F — {co}. If 

(25) sc v(u),u es,e es, 
then either S H F = {co}, in which case dp(S) > c(a>, 0)* by Lemma 14A, or 
S includes an element \f/ of F— {w}, in which case dp(S) > cp(\p,d) = 
c{yp,B)* since 5 separates i/s 0 and P is ( F — {a?}-)-optimal, c(\p, 6) > d(o?) 
by Lemma 12 (i) and d(co) > c(co, 0) since {co} separates co, 0. Hence (25) 
implies that dp(S) > c(co, 0)*. Therefore cp(co, 0) > c(o>, 0)*, which must of 
course reduce to equality by Corollary 3B. Since this holds for any 0 £ F — 
{œ}, and since P is already ( F — {a>})-optimal, it follows that P is F-optimal. 
Lemma 14 is therefore proved. 

Using induction on |F | , we infer from Lemma 14 that U has an optimal 
odd-vertex-pairing. This, in turn, completes the inductive step in our proof 
of Theorem 2 by induction on the order of the graph. 

3. Proof of Theorem 1. [ / is Eulerian if its vertices are all even. N is 
quasi-symmetrical if x({£}) = e({%}) for every £ Ç V(N). If 5, T C F(.Y)> 
S —* T will denote the number of edges X of ;Y such that X£ £ S,\h £ T. 
If J3" is a subgraph of [/, an orientation Loi U will be said to induce the orienta
tion M of H such that X/M = \tL and X/zM = \hL for every X Ç E(H). 

LEMMA 15. If N is quasi-symmetrical and S C V(N), then x(S) = ^d(S). 

Proof. Since xY is quasi-symmetrical, we have 

S-*V(N) = £ *(M) = S «({«}) = W ) - * S . 

Subtracting S —> S from each side gives 5 —> >S = S —•> 5, which clearly implies 
the required result. 

Given any unoriented graph [/, the following argument now shows that it 
has an admissible orientation. By Theorem 2, we can select an optimal odd-
vertex-pairing P of [/. Construct an unoriented graph i ï such that (i) V(H) = 
V(U), (ii) [/ is a subgraph of H, and (iii) two distinct vertices £, 77 are joined 
in H by exactly one element of E(H) — E(U) if {£, 77} Ç P and by no such 
element otherwise. Since P is an odd-vertex-pairing of [/, i7 is Eulerian and 
therefore (3, p. 30, 11. 4-9) has a quasi-symmetrical orientation Q. Let N, M 
be the induced orientations of [/, F respectively, where F is the subgraph of H 
defined by V{F) = V{H) {= V(U)), E(F) = E(H) - E(U). If 5 C V(U), 
then xQ(S) = %dH(S) by Lemma 15 and xM(S) < dF(S) obviously. Therefore 

xAS) = xQ(S) - xM(S) >UH{S) - dF(S) = Ud(S) - dF(S)) = idp(S). 

Hence, if £, rj are distinct vertices of U and 5 runs through all subsets of 
V(U) which include £ but not rj, we have 

C^N(^ V) = min xN(S) > min %dP(S) = |cP(£, rj) = £c(£, ij)*, 

since P is optimal. Since èc(£> ??)* = [è (̂ê> *?)]> ibis proves that i\T is admissible. 
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I am grateful to the referee for some improvements in the presentation of 
this paper. 
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