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Endomorphisms That Are the Sum of a
Unit and a Root of a Fixed Polynomial

W. K. Nicholson and Y. Zhou

Abstract. If C = C(R) denotes the center of a ring R and g(x) is a polynomial in C[x], Camillo and

Simón called a ring g(x)-clean if every element is the sum of a unit and a root of g(x). If V is a

vector space of countable dimension over a division ring D, they showed that end DV is g(x)-clean

provided that g(x) has two roots in C(D). If g(x) = x − x2 this shows that end DV is clean, a result

of Nicholson and Varadarajan. In this paper we remove the countable condition, and in fact prove

that end RM is g(x)-clean for any semisimple module M over an arbitrary ring R provided that g(x) ∈

(x − a)(x − b)C[x] where a, b ∈ C and both b and b − a are units in R.

An element in a ring R is called clean in R if it is the sum of a unit and an idempo-

tent, and the ring itself is called a clean ring if every element is clean. Camillo and Yu

[2] showed that all semiperfect rings and unit-regular rings are clean, and Nicholson

and Varadarajan [3] showed that endD V is clean for any vector space V of countable

dimension over a division ring D.

More generally, if C = C(R) denotes the center of the ring R, and if g(x) is a

polynomial in C[x], Camillo and Simón [1] called the ring g(x)-clean if each element

r ∈ R has the form r = u + s where u is a unit and g(s) = 0. They went on to

show that end DV is g(x)-clean for any vector space V of countable dimension over

a division ring D. The main result of the present paper is to simultaneously remove

the countable condition on the dimension of V , and to extend the result to the case

when V is any semisimple module. In fact, we prove the following theorem.

Theorem 1 Let R be a ring, let RM be a semisimple module over R, and write C =

C(R). If g(x) ∈ (x − a)(x − b)C[x] where a, b ∈ C are such that b and b − a are both

units in R, then end RM is g(x)-clean .

The following corollary extends a theorem of Camillo and Simón [1] who ob-

tained the countable-dimensional case.

Corollary 2 Let DV be a vector space over a division ring D. If g(x) is a polynomial in

C(D)[x] with at least two roots in C(D), then end DV is g(x)-clean.

Corollary 3 If RM is a semisimple module over a ring R, then end RM is a clean ring.
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Proof of Theorem 1 Write g(x) = c0 + c1x + · · · + cnxn where each ci ∈ C . If

c ∈ C we identify c = c1M ∈ end RM, and note that c ∈ C(end RM). Thus g(α) =

c0 + c1α + · · · + cnα
n ∈ end RM for any α ∈ end RM, and we must show that there

exists an element β ∈ end RM such that g(β) = 0 and α − β is a unit in end RM. To

this end, let S denote the set of ordered pairs (W, β) such that

• W ⊆ RM is α-invariant,
• β ∈ end RW satisfies g(β) = 0, and
• α|W − β is a unit in end RW .

Then (0, a) ∈ S because g(a) = 0, so S is nonempty. Define a partial ordering on

S by setting (W, β) ≤ (W ′, β ′) if W ⊆ W ′ and β ′
|W = β. If {(Wi , βi) : i ∈ I} is a

chain in S, define β ∈ end (
⋃

i
Wi) by β(w) = βi(w) whenever w ∈ Wi . It is easy

to see that (
⋃

i
Wi, β) ∈ S and (Wi , βi) ≤ (

⋃

i
Wi, β) for each i ∈ I. Hence Zorn’s

lemma provides a maximal element (W, ρ) in S; we complete the proof by showing

that W = M.

Claim 4 If 0 6= m ∈ M and W ∩ Rm = 0 then α(m) /∈ W and (α − a)(m) /∈ W .

Proof Suppose on the contrary that (α − c)(m) ∈ W where c denotes either 0 or

a (and so c ∈ C). Then α(m) ∈ W ⊕ Rm so W ⊕ Rm is α-invariant. Extend ρ to

W ⊕ Rm by setting ρ(rm) = brm for all r ∈ R. Then ρ ∈ end R(W ⊕ Rm) because

b ∈ C , and we obtain the desired contradiction by showing that (W ⊕ Rm, ρ) ∈ S.

We have g(ρ) = 0 on W ⊕ Rm because g(ρ) = 0 on W and g(ρ) = g(b) = 0 on Rm.

Hence it remains to show that α|W⊕Rm − ρ is a unit in end R(W ⊕ Rm).

To see that α|W⊕Rm − ρ is monic, let (α − ρ)(w + rm) = 0 where w ∈ W and

r ∈ R. Since (α − c)(m) ∈ W this gives [(α − ρ)(w) + (α − c)rm] + (c − b)rm = 0

in W ⊕ Rm. It follows that (c − b)rm = 0, so rm = 0 because c − b is a unit

in R. Thus (α − ρ)(w) = 0, so w = 0 because α|W − ρ is a unit in end RW . It

follows that α|W⊕Rm − ρ is monic. Finally, (α − ρ)(W ) = W because (W, ρ) ∈ S.

Moreover, (α − ρ)(m) = (α − c)(m) + (c − b)(m) ∈ W ⊕ Rm, so it follows that

(c − b)(m) ∈ im(α|W⊕Rm − ρ). Hence Rm ⊆ im(α|W⊕Rm − ρ) because c− b is a unit

in R. This implies that α|W⊕Rm − ρ is epic in end R(W ⊕Rm), and Claim 4 is proved.

Now suppose that M 6= W ; we show that this leads to a contradiction. Since M

is semisimple, choose 0 6= z such that Rz is a simple module and W ∩ Rz = 0. We

separate the proof into two cases.

Case 1 There exists an integer l ≥ 0 such that there exists a linear combination

d0z + d1(α − a)(z) + · · · + dl(α − a)l(z) ∈ W, di ∈ R,

for which at least one of the terms di(α − a)i(z) is nonzero .

Choose l to be the smallest integer satisfying this condition. Note that l > 0 because

W ∩ Rz = 0, and dl(α − a)l(z) 6= 0 by the choice of l. Define

V = Rz + R(α − a)(z) + · · · + R(α − a)l−1(z).
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Then V 6= 0; indeed d1z + d2(α − a)(z) + · · · + dl(α − a)l−1(z) 6= 0. (Otherwise

dl(α−a)l−1(z) = 0 by the choice of l, so dl(α−a)l(z) = (α−a)[dl(α−a)l−1(z)] = 0,

a contradiction.) Moreover, W ∩V = 0 by the choice of l, and dl(α−a)l(z) ∈ W ⊕V .

Since dl(α−a)l(z) 6= 0 and Rz is simple, we obtain Rdl(α−a)l(z) = (α−a)l(Rdlz) =

(α−a)l(Rz) = R(α−a)l(z). It follows that (α−a)l(z) ∈ W ⊕V and so, since a ∈ C ,

that W ⊕ V is (α − a)-invariant. Thus W ⊕ V is α-invariant (as α = (α − a) + a).

Now extend ρ to W ⊕V by setting ρ(v) = av for all v ∈ V . Then ρ ∈ end R(W ⊕V )

because a ∈ C , and g(ρ) = 0 on W ⊕V because g(ρ) = 0 on W and g(ρ) = g(a) = 0

on V . Hence we contradict the maximality of (W, ρ) by showing that α|W⊕V − ρ is a

unit of end R(W ⊕V ).

Note first that d0z 6= 0. (Otherwise (α − a)(m) ∈ W , where m = d1z +

d2(α − a)(z) + · · · + dl(α − a)l−1(z). But m 6= 0 as verified above, so W ∩ Rm 6= 0

by Claim 4. Thus 0 6= rm ∈ W for some r ∈ R, contradicting the choice of l.) Now

observe that

(α − ρ)(W ⊕V ) = (α − ρ)(W ) + (α − ρ)(V )

= W + (α − a)(V ) = W +
[

l
∑

i=1

R(α − a)i(z)
]

.

Since d0z + d1(α − a)(z) + · · · + dl(α − a)l(z) ∈ W , it follows that

d0z ∈ (α − ρ)(W ⊕V ).

But Rz = Rd0z because d0z 6= 0 and Rz is simple, and it follows that z ∈ (α−ρ)(W ⊕
V ). So α − ρ : W ⊕V → W ⊕V is epic. Let (α − ρ)(w + v) = 0 where w ∈ W and

v ∈ V . Then (α − a)(v) = (α − ρ)(v) = −(α − ρ)(w) ∈ W , so v = 0 by Claim 4. It

follows that (α − ρ)(w) = 0, and so w = 0 because α|W − ρ is a unit in end RW . So

α − ρ : W ⊕V → W ⊕V is monic, as required.

Case 2 For any l ≥ 0, a linear combination d0z + d1(α − a)(z) + · · · + dl(α− a)l(z),

di ∈ R, lies in W if and only if di(α − a)i(z) = 0 for each i = 0, 1, . . . , l.

In this case we have a direct sum U =

⊕∞
i=0

R(α − a)i(z) of R-modules. Clearly

W ∩U = 0, U 6= 0, and U is α-invariant (it is clearly (α − a)-invariant). Moreover,
∑n

i=0
R(α − a)i(z) =

∑n

i=0
Rαi(z) for each n ≥ 0 as is easily verified, and it follows

that

U = Rz ⊕ Rα(z) ⊕ Rα2(z) ⊕ · · · .

We begin by using this representation to construct θ ∈ end RU such that g(θ) = 0

on U and α|U − θ is a unit in end RU . For each n ≥ 0, define

θ2n : Rα2n(z) → U , rα2n(z) 7→ brα2n(z),

θ2n+1 : Rα2n+1(z) → U , rα2n+1(z) 7→ (b − ba)rα2n(z) + arα2n+1(z) + rα2n+2(z).
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To see that θ2n+1 is well defined, let rα2n+1(z) = 0. Then rα2n+2(z) = 0 = arα2n+1(z),

and rα2n(z) = 0 by Claim 4 because α(rα2n(z)) = 0 ∈ W . So θ2n+1 is well defined

and we obtain the map θ ∈ end RU given by θ =

⊕

n≥0
θn. Hence

θ[rαk(z)] = θk[rαk(z)] for all r ∈ R and k ≥ 0.

For each n ≥ 0 we compute:

(θ − a)(θ − b)(α2n+1(z))

= (θ − a)
[

(b − ba)α2n(z) + (a − b)α2n+1(z) + α2n+2(z)
]

= (b − ba)bα2n(z) + (a − b)
[

(b − ba)α2n(z) + aα2n+1(z) + α2n+2(z)
]

+ bα2n+2(z) − (b − ba)aα2n(z) − (a − b)aα2n+1(z) − aα2n+2(z)

= 0.

So (θ − a)(θ − b) = 0 on Rα2n+1(z) for all n ≥ 0. By hypothesis, g(x) = (x − a)

(x − b) f (x) where f (x) ∈ C[x]. So g(θ) = f (θ)(θ − a)(θ − b), and it follows that

g(θ) = 0 on Rα2n+1(z) for all n ≥ 0. It is clear that g(θ) = g(b) = 0 on Rα2n(z) for

all n ≥ 0. Therefore, g(θ) = 0 on U .

To see that α|U −θ : U → U is monic, suppose on the contrary that (α−θ)(u) = 0

where 0 6= u = sα2n(z) + tα2n+1(z) + · · · ∈ U , where s, t, . . . are in R, and where

either sα2n(z) 6= 0 or tα2n+1(z) 6= 0. Thus,

0 = α(u) − θ(u)

= [sα2n+1(z) + tα2n+2(z) + · · · ]

− [sbα2n(z) + t(b − ba)α2n(z) + taα2n+1(z) + tα2n+2(z) + · · · ]

It follows that b[(s − at) + t]α2n(z) = 0 and (s − at)α2n+1(z) = 0. Applying α to the

first of these (and using the second) gives btα2n+1(z) = 0, so tα2n+1(z) = 0 because

b is a unit, whence sα2n+1(z) = 0. Thus α[sα2n(z)] = 0 ∈ W so sα2n(z) = 0 by

Claim 4. This contradiction shows that α|U − θ is monic.

Finally, note that (α− θ)(aα2n(z) + α2n+1(z)) = −bα2n(z) and (α− θ)(α2n(z)) =

α2n+1(z) − bα2n(z). So α2n(z) and α2n+1(z) are in im(α|U − θ) for all n ≥ 0. This

shows that α|U − θ : U → U is epic. Therefore, α|U − θ is a unit in end RU .

Since g(ρ) = 0 on W and g(θ) = 0 on U , g(ρ ⊕ θ) = 0 on W ⊕ U . Moreover

α|W − ρ is a unit in end RW and α|U − θ is a unit in end RU , so α|W⊕U − (ρ ⊕ θ) =

(α|W − ρ) ⊕ (α|U − θ) is a unit in end R(W ⊕ U ). Thus (W ⊕ U , ρ ⊕ θ) ∈ S, once

again contradicting the maximality of (W, ρ) in S. Hence W = M and the proof of

Theorem 1 is complete.
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