Endomorphisms That Are the Sum of a Unit and a Root of a Fixed Polynomial

W. K. Nicholson and Y. Zhou

Abstract

If $C=C(R)$ denotes the center of a ring R and $g(x)$ is a polynomial in $C[x]$, Camillo and Simón called a ring $g(x)$-clean if every element is the sum of a unit and a root of $g(x)$. If V is a vector space of countable dimension over a division ring D, they showed that end ${ }_{D} V$ is $g(x)$-clean provided that $g(x)$ has two roots in $C(D)$. If $g(x)=x-x^{2}$ this shows that end ${ }_{D} V$ is clean, a result of Nicholson and Varadarajan. In this paper we remove the countable condition, and in fact prove that end ${ }_{R} M$ is $g(x)$-clean for any semisimple module M over an arbitrary ring R provided that $g(x) \in$ $(x-a)(x-b) C[x]$ where $a, b \in C$ and both b and $b-a$ are units in R.

An element in a ring R is called clean in R if it is the sum of a unit and an idempotent, and the ring itself is called a clean ring if every element is clean. Camillo and Yu [2] showed that all semiperfect rings and unit-regular rings are clean, and Nicholson and Varadarajan [3] showed that $\operatorname{end}_{D} V$ is clean for any vector space V of countable dimension over a division ring D.

More generally, if $C=C(R)$ denotes the center of the ring R, and if $g(x)$ is a polynomial in $C[x]$, Camillo and Simón [1] called the ring $g(x)$-clean if each element $r \in R$ has the form $r=u+s$ where u is a unit and $g(s)=0$. They went on to show that end ${ }_{D} V$ is $g(x)$-clean for any vector space V of countable dimension over a division ring D. The main result of the present paper is to simultaneously remove the countable condition on the dimension of V, and to extend the result to the case when V is any semisimple module. In fact, we prove the following theorem.

Theorem 1 Let R be a ring, let ${ }_{R} M$ be a semisimple module over R, and write $C=$ $C(R)$. If $g(x) \in(x-a)(x-b) C[x]$ where $a, b \in C$ are such that b and $b-a$ are both units in R, then end ${ }_{R} M$ is $g(x)$-clean.

The following corollary extends a theorem of Camillo and Simón [1] who obtained the countable-dimensional case.

Corollary 2 Let $_{D} V$ be a vector space over a division ring D. If $g(x)$ is a polynomial in $C(D)[x]$ with at least two roots in $C(D)$, then end ${ }_{D} V$ is $g(x)$-clean.

Corollary 3 If $R_{R} M$ is a semisimple module over a ring R, then end $_{R} M$ is a clean ring.

[^0]Proof of Theorem 1 Write $g(x)=c_{0}+c_{1} x+\cdots+c_{n} x^{n}$ where each $c_{i} \in C$. If $c \in C$ we identify $c=c 1_{M} \in \operatorname{end}_{R} M$, and note that $c \in C\left(\operatorname{end}_{R} M\right)$. Thus $g(\alpha)=$ $c_{0}+c_{1} \alpha+\cdots+c_{n} \alpha^{n} \in \operatorname{end}_{R} M$ for any $\alpha \in$ end ${ }_{R} M$, and we must show that there exists an element $\beta \in \operatorname{end}_{R} M$ such that $g(\beta)=0$ and $\alpha-\beta$ is a unit in end ${ }_{R} M$. To this end, let \mathcal{S} denote the set of ordered pairs (W, β) such that

- $W \subseteq{ }_{R} M$ is α-invariant,
- $\beta \in \operatorname{end}_{R} W$ satisfies $g(\beta)=0$, and
- $\alpha_{\mid W}-\beta$ is a unit in end ${ }_{R} W$.

Then $(0, a) \in \mathcal{S}$ because $g(a)=0$, so \mathcal{S} is nonempty. Define a partial ordering on \mathcal{S} by setting $(W, \beta) \leq\left(W^{\prime}, \beta^{\prime}\right)$ if $W \subseteq W^{\prime}$ and $\beta_{\mid W}^{\prime}=\beta$. If $\left\{\left(W_{i}, \beta_{i}\right): i \in I\right\}$ is a chain in \mathcal{S}, define $\beta \in$ end $\left(\bigcup_{i} W_{i}\right)$ by $\beta(w)=\beta_{i}(w)$ whenever $w \in W_{i}$. It is easy to see that $\left(\bigcup_{i} W_{i}, \beta\right) \in \mathcal{S}$ and $\left(W_{i}, \beta_{i}\right) \leq\left(\bigcup_{i} W_{i}, \beta\right)$ for each $i \in I$. Hence Zorn's lemma provides a maximal element (W, ρ) in \mathcal{S}; we complete the proof by showing that $W=M$.

Claim $4 \quad$ If $0 \neq m \in M$ and $W \cap R m=0$ then $\alpha(m) \notin W$ and $(\alpha-a)(m) \notin W$.
Proof Suppose on the contrary that $(\alpha-c)(m) \in W$ where c denotes either 0 or a (and so $c \in C$). Then $\alpha(m) \in W \oplus R m$ so $W \oplus R m$ is α-invariant. Extend ρ to $W \oplus R m$ by setting $\rho(r m)=b r m$ for all $r \in R$. Then $\rho \in$ end $_{R}(W \oplus R m)$ because $b \in C$, and we obtain the desired contradiction by showing that $(W \oplus R m, \rho) \in \mathcal{S}$. We have $g(\rho)=0$ on $W \oplus R m$ because $g(\rho)=0$ on W and $g(\rho)=g(b)=0$ on Rm. Hence it remains to show that $\alpha_{\mid W \oplus R m}-\rho$ is a unit in end ${ }_{R}(W \oplus R m)$.

To see that $\alpha_{\mid W \oplus R m}-\rho$ is monic, let $(\alpha-\rho)(w+r m)=0$ where $w \in W$ and $r \in R$. Since $(\alpha-c)(m) \in W$ this gives $[(\alpha-\rho)(w)+(\alpha-c) r m]+(c-b) r m=0$ in $W \oplus R m$. It follows that $(c-b) r m=0$, so $r m=0$ because $c-b$ is a unit in R. Thus $(\alpha-\rho)(w)=0$, so $w=0$ because $\alpha_{\mid W}-\rho$ is a unit in end ${ }_{R} W$. It follows that $\alpha_{\mid W \oplus R m}-\rho$ is monic. Finally, $(\alpha-\rho)(W)=W$ because $(W, \rho) \in \mathcal{S}$. Moreover, $(\alpha-\rho)(m)=(\alpha-c)(m)+(c-b)(m) \in W \oplus R m$, so it follows that $(c-b)(m) \in \operatorname{im}\left(\alpha_{\mid W \oplus R m}-\rho\right)$. Hence $R m \subseteq i m\left(\alpha_{\mid W \oplus R m}-\rho\right)$ because $c-b$ is a unit in R. This implies that $\alpha_{\mid W \oplus R m}-\rho$ is epic in end ${ }_{R}(W \oplus R m)$, and Claim 4 is proved.

Now suppose that $M \neq W$; we show that this leads to a contradiction. Since M is semisimple, choose $0 \neq z$ such that $R z$ is a simple module and $W \cap R z=0$. We separate the proof into two cases.

Case 1 There exists an integer $l \geq 0$ such that there exists a linear combination

$$
d_{0} z+d_{1}(\alpha-a)(z)+\cdots+d_{l}(\alpha-a)^{l}(z) \in W, \quad d_{i} \in R
$$

for which at least one of the terms $d_{i}(\alpha-a)^{i}(z)$ is nonzero .
Choose l to be the smallest integer satisfying this condition. Note that $l>0$ because $W \cap R z=0$, and $d_{l}(\alpha-a)^{l}(z) \neq 0$ by the choice of l. Define

$$
V=R z+R(\alpha-a)(z)+\cdots+R(\alpha-a)^{l-1}(z)
$$

Then $V \neq 0$; indeed $d_{1} z+d_{2}(\alpha-a)(z)+\cdots+d_{l}(\alpha-a)^{l-1}(z) \neq 0$. (Otherwise $d_{l}(\alpha-a)^{l-1}(z)=0$ by the choice of l, so $d_{l}(\alpha-a)^{l}(z)=(\alpha-a)\left[d_{l}(\alpha-a)^{l-1}(z)\right]=0$, a contradiction.) Moreover, $W \cap V=0$ by the choice of l, and $d_{l}(\alpha-a)^{l}(z) \in W \oplus V$. Since $d_{l}(\alpha-a)^{l}(z) \neq 0$ and $R z$ is simple, we obtain $\operatorname{Rd}_{l}(\alpha-a)^{l}(z)=(\alpha-a)^{l}\left(R d_{l} z\right)=$ $(\alpha-a)^{l}(R z)=R(\alpha-a)^{l}(z)$. It follows that $(\alpha-a)^{l}(z) \in W \oplus V$ and so, since $a \in C$, that $W \oplus V$ is $(\alpha-a)$-invariant. Thus $W \oplus V$ is α-invariant (as $\alpha=(\alpha-a)+a)$. Now extend ρ to $W \oplus V$ by setting $\rho(v)=a v$ for all $v \in V$. Then $\rho \in \operatorname{end}_{R}(W \oplus V)$ because $a \in C$, and $g(\rho)=0$ on $W \oplus V$ because $g(\rho)=0$ on W and $g(\rho)=g(a)=0$ on V. Hence we contradict the maximality of (W, ρ) by showing that $\alpha_{\mid W \oplus V}-\rho$ is a unit of end ${ }_{R}(W \oplus V)$.

Note first that $d_{0} z \neq 0$. (Otherwise $(\alpha-a)(m) \in W$, where $m=d_{1} z+$ $d_{2}(\alpha-a)(z)+\cdots+d_{l}(\alpha-a)^{l-1}(z)$. But $m \neq 0$ as verified above, so $W \cap R m \neq 0$ by Claim 4. Thus $0 \neq r m \in W$ for some $r \in R$, contradicting the choice of l.) Now observe that

$$
\begin{aligned}
(\alpha-\rho)(W \oplus V) & =(\alpha-\rho)(W)+(\alpha-\rho)(V) \\
& =W+(\alpha-a)(V)=W+\left[\sum_{i=1}^{l} R(\alpha-a)^{i}(z)\right]
\end{aligned}
$$

Since $d_{0} z+d_{1}(\alpha-a)(z)+\cdots+d_{l}(\alpha-a)^{l}(z) \in W$, it follows that

$$
d_{0} z \in(\alpha-\rho)(W \oplus V)
$$

But $R z=R d_{0} z$ because $d_{0} z \neq 0$ and $R z$ is simple, and it follows that $z \in(\alpha-\rho)(W \oplus$ V). So $\alpha-\rho: W \oplus V \rightarrow W \oplus V$ is epic. Let $(\alpha-\rho)(w+v)=0$ where $w \in W$ and $v \in V$. Then $(\alpha-a)(v)=(\alpha-\rho)(v)=-(\alpha-\rho)(w) \in W$, so $v=0$ by Claim 4. It follows that $(\alpha-\rho)(w)=0$, and so $w=0$ because $\left.\alpha\right|_{W}-\rho$ is a unit in end ${ }_{R} W$. So $\alpha-\rho: W \oplus V \rightarrow W \oplus V$ is monic, as required.

Case 2 For any $l \geq 0$, a linear combination $d_{0} z+d_{1}(\alpha-a)(z)+\cdots+d_{l}(\alpha-a)^{l}(z)$, $d_{i} \in R$, lies in W if and only if $d_{i}(\alpha-a)^{i}(z)=0$ for each $i=0,1, \ldots, l$.

In this case we have a direct sum $U=\bigoplus_{i=0}^{\infty} R(\alpha-a)^{i}(z)$ of R-modules. Clearly $W \cap U=0, U \neq 0$, and U is α-invariant (it is clearly $(\alpha-a)$-invariant). Moreover, $\sum_{i=0}^{n} R(\alpha-a)^{i}(z)=\sum_{i=0}^{n} R \alpha^{i}(z)$ for each $n \geq 0$ as is easily verified, and it follows that

$$
U=R z \oplus R \alpha(z) \oplus R \alpha^{2}(z) \oplus \cdots
$$

We begin by using this representation to construct $\theta \in$ end ${ }_{R} U$ such that $g(\theta)=0$ on U and $\alpha_{\mid U}-\theta$ is a unit in end ${ }_{R} U$. For each $n \geq 0$, define

$$
\begin{aligned}
\theta_{2 n} & : R \alpha^{2 n}(z) \rightarrow U, \quad r \alpha^{2 n}(z) \mapsto b r \alpha^{2 n}(z) \\
\theta_{2 n+1} & : R \alpha^{2 n+1}(z) \rightarrow U, \quad r \alpha^{2 n+1}(z) \mapsto(b-b a) r \alpha^{2 n}(z)+\operatorname{ard}^{2 n+1}(z)+r \alpha^{2 n+2}(z)
\end{aligned}
$$

To see that $\theta_{2 n+1}$ is well defined, let $r \alpha^{2 n+1}(z)=0$. Then $r \alpha^{2 n+2}(z)=0=\operatorname{ard}^{2 n+1}(z)$, and $r \alpha^{2 n}(z)=0$ by Claim 4 because $\alpha\left(r \alpha^{2 n}(z)\right)=0 \in W$. So $\theta_{2 n+1}$ is well defined and we obtain the map $\theta \in \operatorname{end}_{R} U$ given by $\theta=\bigoplus_{n \geq 0} \theta_{n}$. Hence

$$
\theta\left[r \alpha^{k}(z)\right]=\theta_{k}\left[r \alpha^{k}(z)\right] \quad \text { for all } r \in R \text { and } k \geq 0
$$

For each $n \geq 0$ we compute:

$$
\begin{aligned}
(\theta-a)(\theta-b) & \left(\alpha^{2 n+1}(z)\right) \\
= & (\theta-a)\left[(b-b a) \alpha^{2 n}(z)+(a-b) \alpha^{2 n+1}(z)+\alpha^{2 n+2}(z)\right] \\
= & (b-b a) b \alpha^{2 n}(z)+(a-b)\left[(b-b a) \alpha^{2 n}(z)+a \alpha^{2 n+1}(z)+\alpha^{2 n+2}(z)\right] \\
& \quad+b \alpha^{2 n+2}(z)-(b-b a) a \alpha^{2 n}(z)-(a-b) a \alpha^{2 n+1}(z)-a \alpha^{2 n+2}(z)
\end{aligned}
$$

$$
=0
$$

So $(\theta-a)(\theta-b)=0$ on $R \alpha^{2 n+1}(z)$ for all $n \geq 0$. By hypothesis, $g(x)=(x-a)$ $(x-b) f(x)$ where $f(x) \in C[x]$. So $g(\theta)=f(\theta)(\theta-a)(\theta-b)$, and it follows that $g(\theta)=0$ on $\operatorname{Ra}^{2 n+1}(z)$ for all $n \geq 0$. It is clear that $g(\theta)=g(b)=0$ on $\operatorname{Ra}^{2 n}(z)$ for all $n \geq 0$. Therefore, $g(\theta)=0$ on U.

To see that $\alpha_{\mid U}-\theta: U \rightarrow U$ is monic, suppose on the contrary that $(\alpha-\theta)(u)=0$ where $0 \neq u=s \alpha^{2 n}(z)+t \alpha^{2 n+1}(z)+\cdots \in U$, where s, t, \ldots are in R, and where either $s \alpha^{2 n}(z) \neq 0$ or $t \alpha^{2 n+1}(z) \neq 0$. Thus,

$$
\begin{aligned}
0= & \alpha(u)-\theta(u) \\
= & {\left[s \alpha^{2 n+1}(z)+t \alpha^{2 n+2}(z)+\cdots\right] } \\
& -\left[s b \alpha^{2 n}(z)+t(b-b a) \alpha^{2 n}(z)+t a \alpha^{2 n+1}(z)+t \alpha^{2 n+2}(z)+\cdots\right]
\end{aligned}
$$

It follows that $b[(s-a t)+t] \alpha^{2 n}(z)=0$ and $(s-a t) \alpha^{2 n+1}(z)=0$. Applying α to the first of these (and using the second) gives $b t \alpha^{2 n+1}(z)=0$, so $t \alpha^{2 n+1}(z)=0$ because b is a unit, whence $s \alpha^{2 n+1}(z)=0$. Thus $\alpha\left[s \alpha^{2 n}(z)\right]=0 \in W$ so $s \alpha^{2 n}(z)=0$ by Claim 4. This contradiction shows that $\alpha_{\mid U}-\theta$ is monic.

Finally, note that $(\alpha-\theta)\left(a \alpha^{2 n}(z)+\alpha^{2 n+1}(z)\right)=-b \alpha^{2 n}(z)$ and $(\alpha-\theta)\left(\alpha^{2 n}(z)\right)=$ $\alpha^{2 n+1}(z)-b \alpha^{2 n}(z)$. So $\alpha^{2 n}(z)$ and $\alpha^{2 n+1}(z)$ are in $\operatorname{im}\left(\alpha_{\mid U}-\theta\right)$ for all $n \geq 0$. This shows that $\alpha_{\mid U}-\theta: U \rightarrow U$ is epic. Therefore, $\alpha_{\mid U}-\theta$ is a unit in end ${ }_{R} U$.

Since $g(\rho)=0$ on W and $g(\theta)=0$ on $U, g(\rho \oplus \theta)=0$ on $W \oplus U$. Moreover $\alpha_{\mid W}-\rho$ is a unit in end ${ }_{R} W$ and $\alpha_{\mid U}-\theta$ is a unit in end ${ }_{R} U$, so $\alpha_{\mid W \oplus U}-(\rho \oplus \theta)=$ $\left(\alpha_{\mid W}-\rho\right) \oplus\left(\alpha_{\mid U}-\theta\right)$ is a unit in end ${ }_{R}(W \oplus U)$. Thus $(W \oplus U, \rho \oplus \theta) \in \mathcal{S}$, once again contradicting the maximality of (W, ρ) in \mathcal{S}. Hence $W=M$ and the proof of Theorem 1 is complete.

References

[1] V. P. Camillo and J. J. Simón, The Nicholson-Varadarajan theorem on clean linear transformations. Glasg. Math. J. 44 (2002), 365-369.
[2] V. P. Camillo and H. P. Yu, Exchange rings, units and idempotents. Comm. Algebra 22(1994), no. 12, 4737-4749.
[3] W. K. Nicholson and K. Varadarajan, Countable linear transformations are clean. Proc. Amer. Math. Soc. 126 (1998), no. 1, 61-64.

Department of Mathematics
University of Calgary
Calgary T2N 1N4, Canada
e-mail: wknichol@ucalgary.ca

Department of Mathematics
Memorial University of Newfoundland
St. John's A1C 5S7, Canada
e-mail: zhou@math.mun.ca

[^0]: Received by the editors June 1, 2004; revised January 10, 2005.
 The authors were supported by NSERC Grant A8075 and Grant OGP0194196 respectively. The second author is grateful for the hospitality provided by the University of Calgary. AMS subject classification: Primary: 16S50; secondary: 16E50.
 Keywords: Clean rings, linear transformations, endomorphism rings.
 (c)Canadian Mathematical Society 2006.

