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EQUATIONAL CLASSES OF DISTRIBUTIVE 
PSEUDO-COMPLEMENTED LATTICES 

K. B. LEE 

1, Introduction. A pseudo-complemented lattice is a lattice L with zero 
such that for every a £ L there exists a* £ L such that, for all x £ L, a A x = 0 
if and only if # ^ a*, a* is called a pseudo-complement of a. It is clear that for 
each element a of a pseudo-complemented lattice L, a* is uniquely determined 
by a. Thus * can be regarded as a unary operation on L. Moreover, each 
pseudo-complemented lattice contains the unit, namely 0*. It follows that 
every pseudo-complemented lattice L can be regarded as an algebra 
(L; (V, A, *, 0, 1)) of type (2, 2, 1, 0, 0). In this paper, we consider only 
distributive pseudo-complemented lattices. For simplicity, we call such a 
lattice a ^-algebra. Thus, a ^-algebra is an algebra (yl ; ( V, A, *, 0, 1) ) of type 
(2, 2, 1, 0, 0) such that (A; (V, A)) is a distributive lattice, 0 and 1 are the 
zero (smallest element) and the unit (largest element) of A, respectively, 
and * is the pseudo-complementation. A ^-algebra satisfying the equation 
#* V #** = 1 is called Stone algebra (see [6]). 

In this paper, we shall show that the class of all ^-algebras is generated by its 
finite members and a complete description of the lattice of equational classes 
of ^-algebras is given. We shall also show that each class of the lattice can be 
described by a single equation, in addition to the equations characterizing 
^-algebras, which generalizes the equation for Stone algebras. Furthermore, we 
shall characterize each class in the lattice in terms of prime filters and in terms 
of minimal prime ideals generalizing Nachbin's result for Boolean algebras [8] 
and the results on Stone algebras by Grâtzer and Schmidt [6] and Varlet [10]. 

2. Characterizations of the classes (E„)*. 

THEOREM 1. An algebra (A; (V, A, *, 0, 1)) of type ( 2 ,2 ,1 ,0 ,0 ) is a 
p-algebra if and only if {A ; (V, A, 0, 1)) is a distributive lattice with zero 0 
and unit 1 and satisfying the following equations: 

(1) a A a* = 0, 
(2) a V a** = a**, 
(3) (a V 6)* = a* A b*, 
(4) (a A &)** = a** A 6**, 
(5) 0* = 1. 

In particular y the class of all p-algebras is equational. 

Proof. It is well known that ^-algebras satisfy the conditions. Assume, 
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conversely, that ( l ) - (5) are satisfied in a distributive lattice A with zero 0 
and unit 1. We have to show that for all a, x G A, a A x = 0 if and only if 
x S ci*. Clearly, by (1), x S a* implies a A x = 0. Assume now that 
a A x = 0; then we have 

g X** (by (2)) 

= x** A 1 

= x** A 0* (by (5)) 

= x** A (a* A a**)* (by(D) 
= x** A (a V a*)** (by (3)) 

= (x A (a V a*))** (by (4)) 

= ((x A a) V (x A a*))** (by distributivity) 

= (x A a*)** (since x A a — 0) 

= x** A a*** (by (4)) 

= x** A a* (since a* = a*** by (2) and (3)) 

^ a*. 

Remark. Balbes and Horn [1] have shown that an algebra (L; (A, *, 0)) of 
type (2, 1, 0) is a pseudo-complemented semi-lattice if and only if it satisfies 
the following equations: 

(1) a A b = b A a, 
(2) a A (& A c) = (a A ô) A c, 
(3) a A a = a, 
(4) 0 A a = 0, 
(5) a A (a Ab)* = a Ab*, 
(6) a A 0* = a, 
(7)0** = 0. 

In particular, the class of all ^-algebras is equational. 

For ^-algebras we consider the following equations (n ^ 1): 

n 

(En) (*i A . . . A xn)* V V (xi A . . . A xt* A . . . A xn)* = 1. 

It is clear that for n = 1, the equation (Ere) becomes 

(Ei) x* V x** = 1. 

Thus ^-algebras that satisfy the equations (Ew) are generalizations of Stone 
algebras. 

We denote by (En)* the class of all ^-algebras which satisfy (En). 
The problem of characterizing the class of ^-algebras satisfying the equation 

(Ei) was first raised by M. H. Stone, and since then several solutions have 
been offered, the first being by Grâtzer and Schmidt [6] who named this class 
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of ^-algebras Stone algebras. Later solutions were given by Varlet [10], 
Frink [4], Grâtzer [5], and Bruns [3]. In the following theorems, several 
characterizations of (Ew)* are given. 

THEOREM 2. For a p-algebra A, the following two conditions are equivalent 
(n è 1): 

(1) A G (En)*/ 
(2) for every prime filter P in A there exist at most n {distinct) maximal proper 

filters containing P . 

Proof. (1) =» (2). Assume that (2) is not true. Then there would exist a 
prime filter P and n+ 1 distinct maximal (proper) filters M\, . . . , Mn+i 
containing P . By distributivity and maximality, we have, for i = 1 , 2 , . . . , 
n + 1, Dj^iMj <£ Mi. Take 

ate n Mt-Mt (i= 1 , 2 , . . . , » ) . 

Then 
af £ Mt (i = 1, 2, . . . , n) 

and 
at G Afj (i = 1, . . . , w;7 = 1,..., '» + 1; i ?* j ) . 

It follows that 

ai A . . . A an G Mn+1, ax A . . . A a? A . . . A an G Af < (i = 1, 2, . . . , » ) ; 

therefore 
( f l i A . . . A a»)* $ P 

and 
(ax A . . . A a,* A . . . A an)* g P (* = 1, 2, . . ., n). 

Since P is prime, it follows that 

n 

(ai A . . . A a»)* V V > i A . . . A a* A . . . A an)* (P. 

But 1 G P , thus the equation (En) is not satisfied. 
(2) =» (1). Assume that 4̂ does not satisfy the equation (Ew). Then there 

would exist ai, . . . , an £ A such that 

c = (ai A . . . A a»)* V V (ax A . . . A a* A . . . A an)* < 1. 

By Stone's lemma, there exists a prime filter P not containing c. Put 

bn+i = c i A . . . A f l » . 

and 
bt = ax A . . - A at* A . . . A On (i = 1, 2, . . . ,n) 

and define F, = P V [&<, 1] (*' = 1, 2, . . , , w + .1). We have ft, $ F* for i ^ j , 
since bj £ Ft would imply 0 = bt A bj G Ft and there would exist p» G P 
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such that p A bi = 0, i.e. p ^ b*, contradicting the fact that c (? P. This 
shows that each Ft is proper. Also Ft V Fù = A (i 5* j) by the definition of Ft. 
Let Mi be a maximal proper filter containing Ft (i = 1, 2, . . . , n + 1). Then 
Mi, . . . , Afn+i are w + 1 distinct maximal proper filters containing P, i.e. (2) 
is not fulfilled. 

We recall that a Boolean algebra is an algebra (B; (V, A, ', 0, e)) of type 
(2, 2, 1,0, 0) such that (B; (V, A, 0, e)) is a distributive lattice with zero 
element 0 and unit e, and ' is the complementation, i.e. for each a Ç B, we have 
a A a' = 0, a V a' = e. One can construct a ^-algebra ( 5 ; (V, A, *, 0, 1)) 
from a given Boolean algebra (B\ ( V, A, ', 0, e)) by adjoining a new unit 1 as 
follows: Put B = B VJ {1}, where x < 1 for all x G J3 and define 

(*', i f O ^ x Ç ^ ; 
x* = J l , if x = 0; 

(0, if x = 1. 

It is clear that ( 5 ; (V, A,* , 0, 1)) is, in fact, a ^-algebra. (5 , (V, A, *, 0, 1)) 
(or simply B) is called the ^-algebra obtained from the Boolean algebra B by 
adjoining a new unit. 

Let Bn (n ^ 0) be the ^-algebras obtained from the 2w-element Boolean 
algebras Bn by adjoining a new unit 1, e.g. 

-Bo = ' El "~ Y e' ^2 ~ 

We have the following result. 

LEMMA 1. Let Abe a p-algebra, P a prime filter in A, and let Mi,..., Mn (n ^ 0) 
be all distinct maximal (proper) filters properly containing P; let ai, . . . , an 

be the atoms of the 2n-element Boolean algebra Bn (n ^ 0 ) . Define <p: A —» Bn by 

/ N / l , ifxe P; 
(P[X) \\/{at\xeMt}, ifx iP. 

Then <p is a p-algebra homomorphism of A onto Bn. 

Proof. (1) <p(x V y) = <p(x) V <p(y). 
It is trivial if <p(x V y) = 1. If <p(x V y) ^ e, then x V y $_ P and 

<p(x) V <p(y) = (V{a,| x 6 M,}) V (V{a,| y € M,}) 

= V{a*| x e Mt or y g M*} = V{a*| x V ^ I i ) = <p(x V ;y). 

Similarly, we can show that 

(2) <p(x Ay) = <P(X) A cp(y), 
(3) < (̂0) = 0, <p(l) = 1 by definition of <p, 
(4) <p(x*) = <p(x)*. 
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If x G P , then clearly <p(x)* = 0 = <p(x*). H x & Mt (i = 1, 2, . . . , n), 
then x* G P , for otherwise we would have p $ x* for all p G P , i.e. | ) A x ^ 0 
for all p £ P, which would imply that the filter P V [x, 1] is proper. But then 
every maximal (proper) filter M 3 P V [x, 1] would be different from all 
Mi (i = 1 , 2 , . . . , n), a contradiction. Hence <p(x)* = 1 = v(x*). Assume 
that x G Mi — P for some i. Since the pseudo-complementation in Bn of an 
element y satisfying 0 < y ^ e is the complement of y in the Boolean algebra 
Bn = [0, e] and since this is the join of all atoms not contained in y, we have 

¥>(*)* = (V{a,| x G Mt})* = V{a<| x (£ Mt} = V{at\ x* G M,} = ^(x*). 

(5) <p is onto. 
We have to show that for every a G Bn, there exists x Ç A such that 

<p(x) = a. It is trivial for a = 0 or 1. If n = 0, then P is a maximal (proper) 
filter in A and <p is a ^-algebra homomorphism of 4̂ onto Bo. Now assume that 
w > 0. li a = e, then take xt G Af* — P and put x = V?=iX*. Clearly, 
x G Mi (i = 1, 2, . . . , n) andx € P . It follows that <p(x) = \Z{at\ x£Mt\ = e. 
Finally, if 0 < a < e, then there exist at, a,j such that dj ^ a, at ^ a 
(i,j = 1,2, ... ,n;i ^ j) and H{Af ,| aj ^ a) ^ jlf f for all i such that 
«i ^ a. Pick y i G nfMjl dj ^ a} — M* for all î with at ^ a, and put 
x = A{^t| a* $ a}. Then <p(x) = V{Û^| x G Af;} = V{a ; | a;- ^ a} = a. 

THEOREM 3. Le£ A be a p-algebra. Then the following two conditions are 
equivalent (n ^ 1): 

(1) A G (E0*. 
(2) 4̂ is isomorphic with a subdirect product of copies of B0, B\, . . . , Bn. 

Proof. (1) => (2). Take a, K i with a 9^ b. We have to show that there 
exists a ^-algebra homomorphism <p of A onto Bk (0 ^ k ^ n) such that 
<p(a) 7̂  <?(&). We can assume, without loss of generality, that a ^ b. By 
Stone's lemma, there exists a prime filter P such that a G P and 6 $ P . By 
Theorem 2, there exist at most n distinct maximal (proper) filters containing 
P , say Mi, . . . , ikffc (0 ^ k ^ n). By Lemma 1, there exists a ^-algebra 
homomorphism <p of A onto 5fc (0 ^ k ^ w) such that <p(a) ^ <?(&). 

(2) => (1). It is trivial that B0 satisfies (En) (n ^ 1). Since each Ï (w ^ 1) 
has exactly n maximal filters, namely the principal filters generated by atoms 
of Bn, it follows from Theorem 2 that B\, . . . , Bn all satisfy (En). Consequently, 
A G (Ew)*. 

Notation. 3§-\ = the class of all one-element ^-algebras; 
3§n = HSP(J8 W ) = the equational class of ^-algebras generated by Bn (n ^ 0); 
3!F = the class of all finite ^-algebras; 
£§ ̂  = the class of all ^-algebras; 
^ w = {A\ A G <â?oo and every prime filter in A is contained in at most n 

distinct maximal proper filters} (n ^ 1); 
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Jn = [A\ A G Se^ and every proper prime ideal in A contains at most n 
distinct mimimal prime ideals} (» ^ 1). 

COROLLARY. For n ^ \,we have 

(EJ* = @n = 0>n. 

Proof. (En)* = SPn follows directly from Theorem 2. Since B0, . . . , Bn are 
subalgebras of Bn, it follows from Theorem 3 that (En)* C 3in. But 3è\ C (Ew)* 
by virtue of the fact that Bn G (Ew)*. Thus we have (En)* = S8n. 

The following theorem gives another characterization of (En)*. 

THEOREM 4. Let L be a distributive lattice with 0 and 1. Then the following 
three conditions are equivalent: 

(1) every prime filter in L is contained in at most n distinct maximal {proper) 
filters; 

(2) every (proper) prime ideal in L contains at most n distinct minimal prime 
ideals; 

(3) The lattice-theoretical join of any n + 1 distinct minimal prime ideals in L 
is L. 

Proof. (1) <=» (2). Trivial. 
(2) =» (3). If not, then there would exist n + 1 distinct minimal prime 

ideals Pi , . . . , Pn+i such that V?«i l jP* < L- It follows from Stone's lemma 
that there exists a prime filter F disjoint from ^J^tl P^ Clearly, L — F is a 
prime ideal containing P * ( i = l , . . . , w + l ) , a contradiction. 

(3) =* (2). If not, there would exist a prime (proper) ideal P containing 
n + I distinct minimal prime ideals ( ? ! , . . . , en + i . Hence V**i Qt Q P < L, 
contradicting (3). 

Combining the results of Theorems 2, 3, 4 and the corollary of Theorem 3, 
we have the following. 

THEOREM 5. Let A be a p-algebra. Then the following conditions are equivalent 
in ^ 1): 

(l)Ae(En)*; 
(2) A G 3ên; 
(3) A G ^n; 
(4) A G A ; 
(5) ^ e lattice-theoretical join of any n + 1 distinct minimal prime ideals in 

A is A. 

3. The lattice. In this section we shall show that the lattice of equational 
classes of ^-algebras is a chain of type œ + 1. We shall also prove that the class 
of all ^-algebras is generated by its finite members. As a first result in this 
respect, we have the following. 
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THEOREM 6. âf-i C ^ o C ^ i C ' . . . C ^ C . . ' . C ^ » ( " C " meaning 
proper inclusion). 

Proof. It is clear that J ' . i C <^o C &$\. For « e l , we have clearly 
«̂ w £ «^n+i. It remains to show that ^ y£ &n+i- But this follows immediately 
from the fact that Sn+i £ .^n+i contains a prime filter {1} which is contained 
in exactly n + 1 distinct maximal filters. 

LEMMA 2. Le/ 4̂ fre a p-algebra and e\, . . . , em (m ^ 1) elements of A 
satisfying 

et A ej, = 0 ( i s* j ; i , j = 1, 2, . . . , m), 

et** = et (i = 1, 2, . . . , w). 
Pw* 

5 = {0, 1} u \ A e*\ <l>7* JQ {l,...,m}\ 
il \ I ^ 

U | ( A e/j \4>?£JQAh-..,fn}J 

and T — {x\ V . . . V xn\ xt G 5, « ^ 1}. Pftew T is the sub algebra of A generated 
by {ei, . . . , em}. In particular, T is finite. 

Proof. It is obvious that 5 is closed under *. 
We claim that S is closed under A. To do this, it suffices to show that 

( A eA A ( A e A € 5 and ( A e A A ( A e A € S, 

where J\ and Ji are non-empty subsets of {1, . . . , m]. Indeed, we have 

(A^kflvflv,)" 
= (v J * * * A ( V J** 

. ((A «. . )A(V „ ) ) " 
\ W. /1 / X^€/2 / / 

= ( V L A A «.•))•* 

f 10, if /* ç / i ; 

( A eA , if J» g J i , where J = Jt - Ji. 
\.\ 0ÇJ / 
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(A *.)*A(A ,.)'-(v^Y-A^Y-
\aCJ-l / \$£J2 / ^a£Jl ' V6- /2 / 

= ( ( V e.) A ( V eff))** 

= (V{«. A « * | a € Ji,Pe J*})** 

= (Vte,|«€ / in / , } ) • • 

- ( A * • ) * • 

Evidently 0, 1 £ JT, {^I, . . . , em] Q S Q T. Also T is closed under V by 
definition, and T is closed under A by distributivity. Furthermore, T is closed 
under *, since (xi V . . . V xn)* — x* A . . . A xn* £ S C T. Thus we see 
that r is a subalgebra of 4 containing {ei, . . . , em} and T is evidently the 
subalgebra generated by {#i, . . . , em}. 

LEMMA 3. Let X be an equational class of p-algebras and X $£ 31 n in ^ — 1). 
Then ^ w + 1 C X. 

Proof. \in = — 1, then X contains a non-trivial algebra A since J f $£ <^-i-
But then 4̂ contains B0 as a subalgebra and hence £$0 Ç J^ . If J f ÇÈ £$§, then 
there exists an algebra A £ J ^ which is not Boolean. Hence there exists an 
element a G A such that a V a* < I and it follows that {0, a V a*, 1} is a 
subalgebra of A isomorphic with Bi, and this implies that Sex Q X. Now 
assume that n ^ 1 and take A £ X — 31 n. By the corollary of Theorem 3, 
there exist ai, . . . , an £ A such that 

n 

(ai A . . . A O * V V (ai A . . . A at* A . . . A an) * < 1. 

Put 

*< = (fli A ... A a* A . . . A an)** 

= ai** A . . . A a,* A . . . A a / * (i = 1, 2, . . . , «), 

^ + i = ( A a j = A a,**. 

Clearly, et A e3- = 0 (i, j = 1 , . . . , n + 1; i ^ j)> e*** = e, (i = 1 , . . . , n + 1). 
By Lemma 2, the subalgebra B generated by \elf . . . , en+i) is finite. Now, for 
1 ^ * <£ n, we have e** = (ax A . . . A at* A . . . A a„)* ^ a*** so that 

/ n \ * * * 

(*• A . . . A O * < (ax** A . . . A a / * ) * = (̂  A a, J = ^ + 1 . 

Moreover, we have (ef A . . . A et A . . . A en*)* = et*. We assert that 
B g (En)*. Indeed, if we put xt = e? (i = 1, 2, . . . , »), we have 
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( Â xX V ty (Xl A . . . A x* A . . . A *„)* 

= ( Â eA* V </ (ei* A . . . A et A . . . A e*)* ^ e*n+1 V ty e4* 

= ( A aX V V (fll A . . . A ai* A . . . A a„)* < 1. 

By Theorem 2, there exist a natural number k ^ n + 1 and a prime filter P 
in i? which is contained in exactly k distinct maximal filters. Hence Bk G J ^ 
by Lemma 1, and this implies that <5̂ w+i Q 3§k C j f . 

The next theorem shows that the class of all ^-algebras is generated by its 
finite members. 

THEOREM 7. Seœ = H S P ( ^ F ) . 

Proof. We have to show that every equation which does not hold in some 
^-algebra A does not hold in some finite ^-algebra B. Let J r

T ( F ) be an algebra 
of the type r of ̂ -algebras, absolutely freely generated by some countable set V. 
Let p, q (z ̂ T(V) and assume that the equation (p, q) does not hold in some 
^-algebra ^4, i.e. thereisahomomorphism (p: ^~T(V)—>A such that <p(p) 9^(p{q). 
There exists a finite sequence of finite sets Fo Ç F\ C . . . ÇZ Fn such that 
^o Q V, p, q G Fn and for every i — 1,2, . . . ,n and every a G Fu one of the 
following holds: 

(a) there exist b, c G Ft-\ such that a = b V c or a = b A c; 
(b) there exists b G F*_i such that a = b*\ 
(c) a = 0 or a = 1. 

Define I f = <p(Fn) U {*>(a*)| a G Fw} U {0A, 1A}. Let B be the sublattice 
(not sub-^-algebra) of A generated by M. Then B as a finite distributive 
lattice is pseudo-complemented, and hence can be regarded as a ^-algebra. 
Furthermore, since the pseudo-complement of every element x G <p(Fn) 
belongs to M, the pseudo-complement of every element x G <p(Fn) is the 
same in both A and B. Now let ^: ^"T(V) —> B be a homomorphism 
extending <p\Fo. We shall show by induction on i that \f/\Fi = <p\Fi for all 
i = 0, 1, . . . , n. It is trivial for i = 0. Assume that it is true for i - 1 (i ^ 1). 
Take a G Ft. We have to show that ^(a) = <p(a). It is trivial for a = 0 or 
a = 1. If a = b V c, where &, c G JF<-I, then <p(a) = <p(6 V c ) = ^>(6) VA <p(c) = 
lK&) VAt(c) = iK&) V B ^ W = iK& V c ) = ^(a) . Similarly, <p(a) = ^(a) 
for a = b A c, where b, c Ç. Fi-i. Finally, if a = b* for some o c rt—\, 
then (p(a) = <?(&*) = $>(&)* = ^(&)* = $(b*) = ^(a) . It follows, in particular, 
that ^(£) = <p(£) T^ <p(g) = ^(q). This shows that the equation (p, q) does 
not hold in B. 

THEOREM 8. The chain of Theorem 6 is the whole lattice of equational classes of 
p-algebras. 
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Proof. We first show that # „ = V{@n\ n = 0, 1, . . .} ( V is the join in the 
lattice of equational classes of ^-algebras). Let A be a finite ^-algebra. Then A 
has finitely many maximal (proper) filters, and hence A £ (Ew)* = Sën for 
some n by Theorem 2. It follows that every finite ^-algebra is contained in 
V{ SoW n = 0, 1, . . .} which in turn means that, by Theorem 7, 

Sëœ = y\@n\n = 0,l,:...}. 

Finally, let JT be an arbitrary equational class of ^-algebras. If J f "D SSn 

for all n = 0, 1, . . . , then, by what we have just proved, J f = Se œ. Otherwise 
there exists a largest natural number w such that S§n C j f . But then we have 
^ = J^ , for otherwise we would have Ctf Ç£ Sën which would imply that, 
by Lemma 3, S$n+i C J^ . This contradicts the choice of n. 

COROLLARY. The algebras Bn (n ^ 0) are exactly the finite subdirectly 
irreducible p-algebras. 

Proof. We first show that every ^-algebra B obtained from an arbitrary 
Boolean algebra B by adjoining a new unit 1 is subdirectly irreducible. In 
fact, the binary relation 0O = A \J {(1, e), (e, 1)}, where A = {(x, x) | x Ç B) 
and e is the unit of B; on B, is clearly a ^-algebra congruence relation. If 6 
is a ^-algebra congruence on B such that d > A, then x 0 y for some x, y £ B 
with x ?£ y. If either x or y is 1, then we have e 6 1 and hence #o £ 0. If neither 
x nor 3> is 1, then x, y G B and thus we have x V y* 0 e and x* V y 6 e. We 
claim that either x V J* or x* V 3/ is not e, for otherwise we would have 
x = x A e = x A (x* V y) — x A y and y=yAe=yA (x V y*) = y A x, 
i.e. x = 3>, a contradiction. This shows that a 6 e for some e 7^ a £ J5. It 
follows that a = a** 0 e** = 1, hence 0O £ 0. This shows that B is subdirectly 
irreducible. In particular, Bn (n ^ 0) are finite subdirectly irreducible 
^-algebras. 

Next, let L be a finite subdirectly irreducible ^-algebra. We claim that 
L = Bn for some n. Indeed, there is a natural number n such that 

\Bn\ ^ \L\ < \Bn+1\ 

(\A\is the cardinality of ,4). Put i f = HSP(L). If SSn C S§n V i f , then 
i f ^ ^ n and hence S§n+i Ç i f by Lemma 3. In particular, Bn+i Ç HSP(L). 
By Corollary 3.4, Bn+1 £ HS(L) [7]. This is impossible. Thus we have 
Wn = Sën V oSf, i.e. i^7 G ' ^ n . But then L G H S ( 5 J and hence L 9* 5„. 

4. Concluding remark. A lattice L is said to be a relative Stone lattice 
if every closed interval of L is a Stone algebra [6]. By applying the methods of 
Gratzer and Schmidt [6] and Varlet [10], we obtain the following theorem 
generalizing the results of Grâtzer and Schmidt [6] and Varlet [10]. 

THEOREM 9. Let L be a distributive lattice in which every closed interval (as a 
sublattice) is pseudo-complemented. Then the following three conditions are 
equivalent (n ^ 1); 
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(1) every closed interval [a, b] in L satisfies the equation (Ew); 
(2) L is the lattice-theoretical-join of any n + 1 pairwise incomparable prime 

ideals; 
(3) Bn+i is not a lattice-homomorphic image of L. 
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