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Abstract

In Reinert and Röllin (2009) a new approach—called the ‘embedding method’—was
introduced, which allows us to make use of exchangeable pairs for normal and multivariate
normal approximations with Stein’s method in cases where the corresponding couplings
do not satisfy a certain linearity condition. The key idea is to embed the problem into a
higher-dimensional space in such a way that the linearity condition is then satisfied. Here
we apply the embedding to U -statistics as well as to subgraph counts in random graphs.
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1. Introduction

Stein’s method, first introduced in the 1970s [15], has proved a powerful tool for assessing
distributional distances, such as the normal distribution, in the presence of dependence. When
considering sumsW of random variables, the dependence between these random variables needs
to be weak in order for the distance to a normal distribution to be small. For quantifying weak
dependence, Stein [16] introduced the method of exchangeable pairs: construct a sumW ′ such
that (W,W ′) form an exchangeable pair, and such that EW(W ′ −W) is (at least approximately)
linear in W . This linearity condition arises naturally when thinking of correlated bivariate
normals. The generalisation of this approach to a multivariate setting remained untackled until
recently when Chatterjee and Meckes [4] solved the problem in the case of exchangeable vectors
(W,W ′) such that EW(W ′ −W) = −λW +R, where λ is a scalar and R is a remainder vector,
with E |R| small. This is a rather special case; in [11] we considered the general setting where

EW(W ′ −W) = −�W + R (1)

for a matrix� and a vector R with small E |R|. In a follow-up paper by Meckes [8] the results
of [4] and [11] are combined using slightly different smoothness conditions on test functions as
compared to [11]; nonsmooth test functions are not treated by Meckes, but the bounds obtained
there improve on those from [11] for the example of d-runs with respect to smooth test functions.
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Multivariate normal approximation and embedding 379

A surprising finding in [11] was that it is often possible to embed a random vector W into
a random vector Ŵ of larger, but still finite, dimension, such that (1) holds with R = 0; this
embedding does not directly correspond to Hoeffding projections, although it is related to
them. Here we explore the embedding method further, by illustrating its use in two important
examples. In the first example we consider complete nondegenerate U -statistics, and in the
second example we consider the joint count of edges and triangles in Bernoulli random graphs.
In both examples the limiting covariance matrix is not of full rank, yet the bounds on the normal
approximation are of the expected order.

The paper is organised as follows. In Section 2 we review the theoretical results in [11],
giving bounds on the distance to normal distributions under the linearity condition (1), both for
smooth test functions and nonsmooth test functions. In Section 3 we discuss the embedding
method, and point out a link to Rademacher integrals and chaos decompositions. In Section 4
we illustrate the embedding method for complete nondegenerate U -statistics; the embedding
vector contains lower-order U -statistics which are obtained via fixing components. Section 5
gives a normal approximation for the joint counts of the number of edges and the number of
triangles in a Bernoulli random graph; to the authors’ knowledge, these are the first explicit
bounds for this multivariate problem. The embedding method suggests counting the number of
2-stars as well, which makes the results not only more informative but also, surprisingly, easier
to derive.

2. Theoretical bounds for a multivariate normal approximation

2.1. Notation

Denote byW = (W1,W2, . . . ,Wd)
� random vectors in R

d , whereWi are R-valued random
variables for i = 1, . . . , d. We denote by � symmetric, nonnegative definite matrices, and,
hence, by�1/2 the unique symmetric square root of�. Denote by Id the identity matrix, where
we omit the dimension d . Throughout this paper, Z denotes a random variable having standard
d-dimensional multivariate normal distribution. We abbreviate the transpose of the inverse of
a matrix � as �−� := (�−1)�.

For derivatives of smooth functions h : R
d → R, we use the notation ∇ for the gradient

operator. Denote by ‖ · ‖ the supremum norm for both functions and matrices. If the
corresponding derivatives exist for some function h : R

d → R, we abbreviate

|h|1 := sup
i

∥∥∥∥ ∂

∂xi
h

∥∥∥∥, |h|2 := sup
i,j

∥∥∥∥ ∂2

∂xi∂xj
h

∥∥∥∥,
and so on.

We start by considering smooth test functions.

Theorem 1. (Cf. [11, Theoem 2.1].) Assume that (W,W ′) is an exchangeable pair of R
d -

valued random variables such that

EW = 0, EWW� = �,

with � ∈ R
d×d symmetric and positive definite. Suppose further that (1) is satisfied for an

invertible matrix� and a σ(W)-measurable random variableR. Then, ifZ has d-dimensional
standard normal distribution, we have, for every three times differentiable function h,

|Eh(W)− E h(�1/2Z)| ≤ |h|2
4
A+ |h|3

12
B +

(
|h|1 + 1

2
d‖�‖1/2|h|2

)
C, (2)
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380 G. REINERT AND A. RÖLLIN

where, with λ(i) = ∑d
m=1 |(�−1)m,i |,

A =
d∑

i,j=1

λ(i)
√

var EW(W ′
i −Wi)(W

′
j −Wj),

B =
d∑

i,j,k=1

λ(i) E |(W ′
i −Wi)(W

′
j −Wj)(W

′
k −Wk)|,

C =
∑
i

λ(i)
√

ER2
i .

Note that Theorem 1 is a nonasymptotic result and, therefore, yields bounds for any finite n.
These bounds do not require underlying independence of the random variables, although
our examples will illustrate that in order to assess the quantities A, B, and C, the explicit
structure of the problem needs to be taken into account. With respect to the requirements on
the derivatives of the test functions, bounds of the form (2) are comparable with those that
could be obtained from Lindeberg’s proof of the central limit theorem; see, for example, [3]
for the one-dimensional case. Lindeberg’s original proof for independent summands allows for
a straightforward adaptation to temporal dependence structures, such as martingales; cf., for
example, [1] and [14]. Stein’s method, however, makes no assumption about the ordering of the
index set. In applications such as U -statistics, this ordering is typically introduced ‘artificially’
(see [7, p. 118ff.] and also [5] for a graph related example), and, hence, bounds of the form
of our Theorem 1 appear more natural in this context, as the order of the index set does not
influence the bounds. In particular, to obtain optimal bounds in the Kolmogorov metric, Stein’s
method is typically better suited than a martingale approach in cases where martingales are
only an auxiliary construct and are not intrinsic to the particular problem.

The proof of Theorem 1 is based on the Stein characterization of the normal distribution
which states that Y ∈ R

d is multivariate normal, MVN(0, �), if and only if

E Y�∇f (Y ) = E ∇��∇f (Y ) for all smooth f : R
d → R.

In Meckes [8] a different norm for functions and operators is used to obtain a similar result,
and the difference in the bounds depending on the chosen norm is illustrated for the example
of runs on the line.

Theorem 1 can be extended to allow for covariance matrices which are not full rank, using
the triangle inequality in conjunction with the following proposition.

Proposition 1. (Cf. [11, Proposition 2.8].) Let X and Y be R
d -valued normal variables with

distributions X ∼ MVN(0, �) and Y ∼ MVN(0, �0), where � = (σi,j )i,j=1,...,d has full
rank and �0 = (σ 0

i,j )i,j=1,...,d is nonnegative definite. Let h : R
d → R have two bounded

derivatives. Then

|Eh(X)− E h(Y )| ≤ 1

2
|h|2

d∑
i,j=1

|σi,j − σ 0
i,j |.

For nonsmooth test functions, following [12], let� denote the standard normal distribution
in R

d , and let φ be the corresponding density function. For h : R
d → R, set

h+
δ (x) = sup{h(x + y) : |y| ≤ δ}, h−

δ (x) = inf{h(x + y) : |y| ≤ δ},
and h̃(x, δ) = h+

δ (x)− h−
δ (x).
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Multivariate normal approximation and embedding 381

Let H be a class of measurable functions R
d → R which are uniformly bounded by 1.

Suppose that, for any h ∈ H and any δ > 0, h+
δ (x) and h−

δ (x) are in H ; for any d × d

matrix A and any vector b ∈ R
d , h(Ax + b) ∈ H ; and, for some constant a = a(H , δ),

suph∈H {∫
Rd
h̃(x, δ)�(dx)} ≤ aδ. Obviously, we may assume that a ≥ 1. The class of

indicators of measurable convex sets is a class where a ≤ 2
√
d; see [2].

LetW have mean vector 0 and covariance matrix�. If� and R are such that (1) is satisfied
for W , then Y = �−1/2W satisfies (1) with �̂ = �−1/2��1/2 and R′ = �−1/2R.With

λ̂(i) =
d∑

m=1

|(�−1/2�−1�1/2)m,i |

and

A′ =
∑
i,j

λ̂(i)
√

var EY
∑
k,	

�
−1/2
i,k �

−1/2
j,	 (W ′

k −Wk)(W
′
	 −W	),

B ′ =
∑
i,j,k

λ̂(i) E

∣∣∣∣∑
r,s,t

�
−1/2
i,r �

−1/2
j,s �

−1/2
k,t (W ′

r −Wr)(W
′
s −Ws)(W

′
t −Wt)

∣∣∣∣,
C′ =

∑
i

λ̂(i)

√
E
(∑
k

�
−1/2
i,k Rk

)2
,

we have the following result [11].

Corollary 1. LetW be as in Theorem 1. Then, for all h ∈ H with |h| ≤ 1, there exist γ = γ (d)

and a > 1 such that

sup
h∈H

|Eh(W)− E h(Z)| ≤ γ 2
(

−D′ log(T ′)+ B ′

2
√
T ′ + C′ + a

√
T ′

)
,

where

T ′ = 1

a2

(
D′ +

√
aB ′

2
+D′2

)2

and D′ = A′

2
+ C′d.

Remark 1. We can simplify the above bound further. Using Minkowski’s inequality, we have
var

∑k
i=1Xi ≤ k2 supi varXi . Thus, we obtain the simple estimate

var EY
∑
k,	

�
−1/2
i,k �

−1/2
j,	 (W ′

k −Wk)(W
′
	 −W	)

≤ d4‖�−1/2‖4 sup
k,	

var EW {(W ′
k −Wk)(W

′
	 −W	)},

and, hence,

A′ ≤ d3‖�−1/2‖2
∑
i

λ̂(i) sup
k,	

√
var EW {(W ′

k −Wk)(W
′
	 −W	)};

in B ′ and C′ we could similarly bound�−1/2
i,k by ‖�−1/2‖ to obtain a simpler bound. There are

however examples, such as the random graph example in Section 5, where ‖�−1/2‖ provides
a noninformative bound.
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382 G. REINERT AND A. RÖLLIN

Remark 2. Note that, if (W,W ′) is exchangeable and (1) is satisfied, we have

E(W ′ −W)(W ′ −W)� = 2 EW(�W)� = 2���. (3)

On the other hand, if we only have L(W) = L(W ′), we obtain

E(W ′ −W)(W ′ −W)� = �� +���. (4)

Hence, to check in an application whether the often tedious calculation of � and � has been
carried out correctly, we can combine (3) and (4) to conclude that, under the conditions of
Theorem 1, we must have �� = ���.

3. The embedding method

Assume that an 	-dimensional random vectorW(	) of interest is given. Often, the construction
of an exchangeable pair (W(	),W

′
(	)) is straightforward. If, say, W(	) = W(	)(X) is a function

of independent and identically distributed (i.i.d.) random variables X = (X1, . . . , Xn), we can
uniformly choose an index I from 1 to n, replace XI by an independent copy X′

I , and define
W ′
(	) := W(	)(X

′), where X
′ is now the vector X but with XI replaced by X′

I .

In general, there is no guarantee that (W(	),W
′
(	)) will satisfy condition (1) when R is of the

required smaller order or even equal to 0; hence, in this case Theorem 1 would not yield useful
bounds.

Surprisingly, it is often possible to extendW(	) to a vectorW ∈ R
d such that we can construct

an exchangeable pair (W,W ′) which satisfies condition (1) with R = 0. If we can bound the
distance of the distribution L(W) to a d-dimensional multivariate normal distribution then a
bound on the distance of the distribution L(W(	)) to an 	-dimensional multivariate normal
distribution follows immediately.

In order to obtain useful bounds in Theorem 1, the embedding dimension d should not be too
large. In the examples below it will be obvious how to chooseW(d−	) to make the construction
work.

As a first illustration of the method, it was observed in [9] that, for functions which depend
on the first d coordinates of an infinite Rademacher sequence, that is, a sequence of symmetric
{−1, 1} random variables, the natural embedding vector is a vector of Rademacher integrals
of lower order. A similar construction works fairly generally as follows. Assume that F =
F(X1, . . . , Xd) is a random variable that depends uniquely on the first d coordinates of a
sequence X of i.i.d. mean 0 random variables, with E(F ) = 0 and E(F 2) = 1, of the form

F =
d∑
n=1

∑
1≤i1<···<in≤d

n! fn(i1, . . . , in)Xi1 · · ·Xin =:
d∑
n=1

Jn(fn); (5)

such representations occur as chaotic decompositions for functionals of Rademacher sequences.
A natural exchangeable pair construction is as follows. Pick an index I so that P(I = i) = 1/d
for i = 1, . . . , d, independently of X1, . . . , Xd , and if I = i, replace Xi by an independent
copy X∗

i in all sums in decomposition (5) which involve Xi . Call the resulting expression F ′,
and the corresponding sums J ′

n(fn), n = 1, . . . , d. Now choosing W = (J1(f1), . . . , Jd(fd))
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as the embedding vector, we check that, for all n = 1, . . . , d,

E(J ′
n(fn)− Jn(fn) | W)

= − 1

d

d∑
i=1

∑
1≤i1<···<in≤d

1{i1,...,in}(i)n! fn(i1, . . . , in)E(Xi1 · · ·Xin | W)

= −n
d
Jn(fn).

Thus, with W ′ = (J ′
1(f1), . . . , J

′
d(fd)), condition (1) is satisfied, with the matrix � =

(λi,j )1≤i,j≤d having all of its off-diagonal entries equal to 0 and its diagonal entries, λn,n,
equal to n/d for n = 1, . . . , d. Note that, although diagonal, the diagonal entries of this �
are not equal. It is not possible to correct this by simple coordinatewise scaling of W , as this
will change � only and leave � unaffected; see also the discussion in [11, Section 5]. Hence,
again, the generality of (1) is essential here.

4. Complete nondegenerate U -statistics

Using the exchangeable pairs coupling, Rinott and Rotar [13] proved a univariate normal
approximation theorem for nondegenerate weighted U -statistics with symmetric weight func-
tion under fairly mild conditions on the weights. Using the typical coupling, where uniformly
a random variable Xi is chosen and replaced by an independent copy, they showed that (1)
is satisfied for the one-dimensional case and a nontrivial remainder term, corresponding to
Hoeffding projections of smaller order. It should not be difficult (but nevertheless cumbersome)
to generalise their result to the multivariate case, where d different U -statistics are regarded
based on the same sample of independent random variables, such that (1) is satisfied with
� = I and a nontrivial remainder term, again of lower order; for multivariate approximations
of several U -statistics, see also the book by Lee [7]. However, as we want to emphasize the
use of Theorem 1 for nondiagonal �, we take a different approach.

LetX1, . . . , Xn be a sequence of i.i.d. random elements taking values in a measure space X.
Let ψ be a measurable and symmetric function from Xd to R, and, for each k = 1, . . . , d, let

ψk(X1, . . . , Xk) := E(ψ(X1, . . . , Xd) | X1, . . . , Xk).

Assume without loss of generality that Eψ(X1, . . . , Xd) = 0. For any subset α ⊂ {1, . . . , n}
of size k, write ψk(α) := ψ(Xi1 , . . . , Xik ), where the ij are the elements of α. Define the
statistics

Uk :=
∑
|α|=k

ψk(α),

where
∑
E(α) denotes summation over all subsets α ⊂ {1, . . . , n} which satisfy the propertyE.

ThenUd coincides with the usualU -statistics with kernelψ . Assume thatUd is nondegenerate,
that is, P(ψ1(X1) = 0) < 1. Set

Wk := n1/2
(
n

k

)−1

Uk.

It is well known that varWk  1 (see, e.g. [7, p. 10ff.]). Note also that, as n → ∞,
� := E(WW�) will converge to a covariance matrix with all entries equal to varψ1(X1) and
which is thus of rank 1, as we assume nondegeneracy and, hence, U1 = ∑n

i=1 ψ1(Xi) will
dominate the behaviour of each Uk .
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384 G. REINERT AND A. RÖLLIN

We can make the connection with Hoeffding projections more explicit. If H(j) denotes
the j th Hoeffding projections of

(
n
k

)−1
Uk (for a detailed discussion, we refer the reader to [7,

p. 25ff.]), then we have the representation

Wk = n1/2
k∑
j=1

(
k

j

)
H(j)

for each k = 1, . . . , d. Thus, for completeU -statistics and with the coupling used in Theorem 2,
below, the embedding vector forUd consists of weighted averages of the Hoeffding projections.
However, whereas the Hoeffding projections are unique, our embedding is not and will depend
on the specific coupling.

Using Stein’s method and the approach of decomposable random variables, Raič [10] proved
rates of convergence for vectors of U -statistics, where the coordinates are assumed to be
uncorrelated (but nevertheless based upon the same sample X1, . . . , Xn). The next theorem
can be seen as a complement to Raič’s results, as in our case, a normalization is not appropriate.

Theorem 2. With the above notation, and if ρ := Eψ(X1, . . . , Xd)
4 < ∞, we have, for every

three times differentiable function h,

|Eh(W)− E h(�1/2Z)| ≤ n−1/2(4ρ1/2d6|h|2 + ρ3/4d7|h|3).
Proof. Let X′

1, . . . , X
′
n be independent copies of X1, . . . , Xn. For any subset α ⊂

{1, . . . , n} of size k, define the random variablesψ ′
j,k(α) analogously toψk(α) but based on the

sequence X1, . . . , Xj−1, X
′
j , Xj+1, . . . , Xn. Define the coupling as in [13], that is, uniformly

pick an index J from {1, . . . , n} and replace XJ by X′
J , so that U ′

k = ∑
|α|=k ψ ′

J,k(α); it is
easy to see that (U ′, U) is exchangeable. Now note that, if j �∈ α, ψ ′

j,k(α) = ψk(α), and, with
X = (X1, . . . , Xn), that EX ψ ′

j,k(α) = ψk−1(α \ {j}) if j ∈ α. Thus,

EX(U ′
k − Uk) = 1

n

n∑
j=1

∑
|α|=k
α�j

EX(ψ ′
j,k(α)− ψk(α))

= − k
n
Uk + 1

n

n∑
j=1

∑
|α|=k
α�j

ψk−1(α \ {j})

= − k
n
Uk + n− k + 1

n

∑
|β|=k−1

ψk−1(β)

= − k
n
Uk + n− k + 1

n
Uk−1, (6)

where the third equality follows from the observation that∑
|α|=k
α�j

ψk−1(α \ {j}) =
∑

|β|=k−1
β ��j

ψk−1(β),

and, thus, in the corresponding double sum of (6), every set β of size k − 1 appears exactly
n− (k − 1) times. Thus,

EX(W ′
k −Wk) = − k

n
(Wk −Wk−1).
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Hence, (1) is satisfied for R = 0 and

� = 1

n

⎡
⎢⎢⎢⎢⎢⎣

1
−2 2

−3 3
. . .

. . .

−d d

⎤
⎥⎥⎥⎥⎥⎦ ,

with lower triangular �−1 such that, if l ≤ k,

(�−1)k,l = n

l
;

thus, for l = 1, . . . , d,
λ(l) ≤ dn. (7)

Now define ηj,k(α) := ψ ′
j,k(α)− ψk(α). Then we have, for every k, l = 1, . . . , d,

EX,X
′
((U ′

k − Uk)(U
′
l − Ul)) = 1

n

n∑
j=1

( ∑
|α|=k, |β|=l
α∩β�j

ηj,k(α)ηj,l(β)

)
(8)

and

E(EX,X
′
((U ′

k − Uk)(U
′
l − Ul)))

2

= 1

n2

n∑
i,j=1

∑
|α|=k, |β|=l
α∩β�i

∑
|γ |=k, |δ|=l
γ∩δ�j

E(ηi,k(α)ηi,l(β)ηj,k(γ )ηj,l(δ)). (9)

Now note that, if the sets α ∪ β and γ ∪ δ are disjoint (which can only happen if i �= j ),

E(ηi,k(α)ηi,k(β)ηj,l(γ )ηj,l(δ)) = E(ηi,k(α)ηi,k(β))E(ηj,l(γ )ηj,l(δ)),

due to independence. The variance of (8), that is (9) minus the square of the expectation
of (8), contains only summands where α ∪ β and γ ∪ δ are not disjoint. Recall now that
ρ = Eψ(X1, . . . , Xd)

4. Bounding all the nonvanishing terms simply by 32ρ, it only remains
to count the number of nonvanishing terms. Thus,

var EX,X
′
(U ′

k − Uk)(U
′
l − Ul)

≤ 1

n2

n∑
i,j=1

∑
|α|=k, |β|=l
α∩β�i

∑
|γ |=k, |δ|=l

γ∩δ�j, (γ∪δ)∩(α∪β)�=∅

32ρ

= 1

n2

n∑
i=1

∑
|α|=k, |β|=l
α∩β�i

( ∑
j∈α∪β

∑
|γ |=k, |δ|=l
γ∩δ�j

32ρ +
∑
j �∈α∪β

∑
|γ |=k, |δ|=l

γ∩δ�j, (γ∪δ)∩(α∪β)�=∅

32ρ

)

=: Ak,l + Bk,l,

where the equality is just a split of the sum over j into the cases j ∈ α ∪ β and j /∈ α ∪ β.
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In the former case we automatically have (α ∪ β) ∩ (γ ∪ δ) �= ∅. It is now not difficult to see
that

Ak,l ≤ 32ρ(k + l − 1)

n

(
n− 1

k − 1

)2(
n− 1

l − 1

)2

.

Noting that, for fixed j , k, l, α, and β,

{|γ | = k, |δ| = l : γ ∩ δ � j, (γ ∪ δ) ∩ (α ∪ β) �= ∅}
= {|γ | = k, |δ| = l : γ ∩ δ � j} \ {|γ | = k, |δ| = l : γ ∩ δ � j, (γ ∪ δ) ∩ (α ∪ β) = ∅},

we further have

Bk,l ≤ 32ρ(n− 1)

n

(
n− 1

k − 1

)(
n− 1

l − 1

)

×
{(
n− 1

k − 1

)(
n− 1

l − 1

)
−

(
n− k − l + 1

k − 1

)(
n− k − l + 1

l − 1

)}
,

where we have also used the fact that(
n− |α ∪ β|
k − 1

)
≥

(
n− k − l + 1

k − 1

)
.

The following statements are straightforward to prove:(
n− 1

k − 1

)(
n

k

)−1

= k

n
, (10)

(
n− k − l + 1

k − 1

)(
n

k

)−1

≥ k

n

(
n− 2k − l + 3

n

)k
≥ k

n

(
1 − k(2k + l − 3)

n

)
. (11)

Thus, from (10),

n2
(
n

k

)−2(
n

l

)−2

Ak,l ≤ 32ρ(k + l − 1)k2l2

n3 ≤ 64ρd5

n3 .

From (10) and (11),

n2
(
n

k

)−2(
n

l

)−2

Bk,l ≤ 32ρk2l2(k(2k + l − 3)+ l(k + 2l − 3))

n3 ≤ 192ρd6

n3 .

Thus, for all k and l,

var EW(W ′
k −Wk)(W

′
l −Wl) ≤ var EX,X

′
(W ′

k −Wk)(W
′
l −Wl)

≤ 256ρd6

n3 . (12)

Note further that, for any m = 1, . . . , d,

E |U ′
m − Um|3 = 1

n

n∑
j=1

E

∣∣∣∣ ∑
|α|=|β|=|γ |=m
α∩β∩γ�j

ηj,m(α)ηj,m(β)ηj,m(γ )

∣∣∣∣

≤ 8ρ3/4
(
n− 1

m− 1

)3

,
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using (16), below; hence, along with (10),

E |(W ′
i −Wi)(W

′
k −Wk)(W

′
l −Wl)| ≤ max

m=i,k,l E |W ′
m −Wm|3

≤ 8ρ3/4n3/2 max
m=i,k,l

(
n

m

)−3(
n− 1

m− 1

)3

≤ 8ρ3/4d3n−3/2. (13)

Applying Theorem 1 with the estimates (7), (12), and (13) proves the claim.

Remark 3. Using the operator norm as used by Meckes [8], we would be able to achieve
a bound of n log(d + 1) instead of (7), but using bounds for the total derivatives of the test
functions, supx∈Rk ‖Drh(x)‖op, instead of bounds for |h|r .

5. Edge and triangle counts in Bernoulli random graphs

Typical summaries for random graphs are the degree distribution and the number of triangles,
as a proxy for the clustering coefficient in a random graph, which is the expected ratio of the
number of triangles over the number of 2-stars a randomly chosen vertex is involved with.
Conditional uniform graph tests are based on fixing the degree distribution and randomising
over the edges, conditional on keeping the degree distribution fixed. Our next example shows
that even when fixing only the number of edges, not even the degree distribution, under a normal
asymptotic regime, the number of triangles, or the number of 2-stars, is already asymptotically
determined. LetG(n, p) denote a Bernoulli random graph on n vertices, with edge probabilities
p; we assume that n ≥ 4 and that 0 < p < 1. Let Ii,j = Ij,i be the Bernoulli(p) indicator that
edge (i, j) is present in the graph; these indicators are independent. Our interest is in the joint
distribution of the total number of edges, described by

T = 1

2

∑
i,j

Ii,j =
∑
i<j

Ii,j ,

and the number of triangles,

U = 1

6

∑
i,j,k distinct

Ii,j Ij,kIi,k =
∑
i<j<k

Ii,j Ij,kIi,k.

Here and in what follows, ‘i, j, k distinct’ is short for ‘(i, j, k) : i �= j �= k �= i’; later we will
also use ‘i, j, k, 	 distinct’, which is the analogous abbreviation for four indices.

In view of the embedding method, we also include the auxiliary statistic related to the number
of 2-stars,

V := 1

2

∑
i,j,k distinct

Ii,j Ij,k =
∑
i<j<k

(Ii,j Ij,k + Ii,j Ii,k + Ij,kIi,k).

We note that

E T =
(
n

2

)
p, EV = 3

(
n

3

)
p2, and EU =

(
n

3

)
p3.
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With some calculation, we find that the variances are not all of the same order. Hence, we
rescale our variables (cf. [6]), setting

T1 = n− 2

n2 T , V1 = 1

n2V, and U1 = 1

n2U.

For these rescaled variables, the covariance matrix �1 for W1 = (T1 − E T1, V1 − EV1, U1 −
EU1) equals

�1 = 3(n− 2)

n4

(
n

3

)
p(1 − p)

⎛
⎜⎜⎜⎜⎜⎜⎝

1 2p p2

2p 4p2 + p(1 − p)

n− 2
2p3 + p2(1 − p)

n− 2

p2 2p3 + p2(1 − p)

n− 2
p4 + p2(1 + p − 2p2)

3(n− 2)

⎞
⎟⎟⎟⎟⎟⎟⎠
. (14)

Remark 4. With n → ∞, we obtain as the approximating covariance matrix

�0 = 1

2
p(1 − p)

⎛
⎝ 1 2p p2

2p 4p2 2p3

p2 2p3 p4

⎞
⎠ . (15)

As also observed in [6], this matrix has rank 1. It is not difficult to see that the maximal diagonal
entry of the inverse �−1 tends to ∞ as n → ∞, so that a uniform bound on the square root of
�−1

1 , as suggested in Remark 1, will not be useful.

Janson and Nowicki [6] derived a normal limit forW1, but no bounds on the approximation
were given. Using Theorem 1, we obtain explicit bounds, as follows.

Proposition 2. Let W1 = (T1 − E T1, V1 − EV1, U1 − EU1) be the centralized count vector
of the number of edges, two-stars, and triangles in a Bernoulli(p) random graph. Let �1 be
given as in (14). Then, for every three times differentiable function h,

|Eh(W)− E h(�1/2
1 Z)| ≤ |h|2

n

(
35

4
+ 9n−1

)
+ 8|h|3

3n
(1 + n−1 + n−2).

While we do not claim that the constants in the bound are sharp, as we have
(
n
2

)
random edges

in the model, the order O(n−1) of the bound is as expected. While, for simplicity, our other
bounds are given as expressions which are uniform in p, bounds dependent on p are derived
on the way. In this example, we were not able to obtain any improvement on the bounds using
the operator bounds [8].

Proof of Proposition 2. The proof consists of two stages. Firstly, we construct an exchange-
able pair; it will turn out that R = 0 in (1) and, hence, C in Theorem 1 will vanish. In the
second stage we bound the terms A and B in Theorem 1.

Construction of an exchangeable pair. Our vector of interest is now W = (T − E T , V −
EV,U − EU), rescaled to W1 = (T1 − E T1, V1 − EV1, U1 − EU1). We build an exchange-
able pair by choosing a potential edge (i, j) uniformly at random, and replacing Ii,j by an
independent copy I ′

i,j . More formally, pick (I, J ) according to

P(I = i, J = j) =
(
n

2

)−1

, 1 ≤ i < j ≤ n.
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If I = i and J = j , we replace Ii,j = Ij,i by an independent copy I ′
i,j = I ′

j,i and set

T ′ = T − (II,J − I ′
I,J ),

V ′ = V −
∑

{k : k �=I,J }
(II,J − I ′

I,J )(IJ,k + II,k),

U ′ = U −
∑

{k : k �=I,J }
(II,J − I ′

I,J )IJ,kII,k.

Set W ′ = (T ′ − E T , V ′ − EV,U ′ − EU). Then (W,W ′) forms an exchangeable pair. We
rescale W ′ as W to obtain T ′

1, V ′
1, and U ′

1, so that (W1,W
′
1) is also exchangeable.

Calculation of �. For the conditional expectations EW(W ′ −W), firstly we have

EW(T ′
1 − T1) = 2(n− 2)

n3(n− 1)

∑
i<j

EW(I ′
i,j − Ii,j | I = i, J = j)

= n− 2

n2 p − 2(n− 2)

n3(n− 1)
T

= −
(
n

2

)−1

(T1 − E T1).

Furthermore,

− EW(V ′
1 − V1) = 1

n2

(
n

2

)−1 ∑
i<j

EW
∑

k : k �=i,j
(Ii,j − I ′

i,j )(Ij,k + Ii,k)

= 2
1

n2

(
n

2

)−1

V − 2p
1

n2

(
n

2

)−1

(n− 2)T

= −2

(
n

2

)−1

(V1 − EV1)+ 2p

(
n

2

)−1

(T1 − E T1),

where the last equality follows from E(V ′
1 − V1) = 0. Similarly,

− EW(U ′
1 − U1) = −3

(
n

2

)−1

(U1 − EU1)+ p

(
n

2

)−1

(V1 − EV1).

Using our rescaling, (1) is satisfied with R = 0 and � given by

� =
(
n

2

)−1
⎛
⎝ 1 0 0

−2p 2 0
0 −p 3

⎞
⎠ .

Bounding A. The inverse matrix �−1 is easy to calculate; for simplicity, we will apply the
uniform bound for λ(i) = ∑d

m=1 |(�−1)m,i |,

|λ(i)| ≤ 3
2n

2, i = 1, 2, 3.

The bounding of the conditional variances is somewhat laborious. The conditional variances
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involving T ′ − T can be calculated exactly. As I 2
i,j = Ii,j ,

EW(T ′ − T )2 =
(
n

2

)−1 ∑
i<j

EW(I ′
i,j − Ii,j )

2

=
(
n

2

)−1 ∑
i<j

{p − p EW Ii,j + (1 − p)EW Ii,j }

= p + (1 − 2p)

(
n

2

)−1

T ,

so that with var T given through (14), var(EW(T ′ − T )2) = (
n
2

)−1
(1 − 2p)2p(1 − p) and

var(EW(T ′
1 − T1)

2) = (n− 2)4

n8

(
n

2

)−1

(1 − 2p)2p(1 − p) < n−6,

where we have used the fact that p(1 − p) ≤ 1
4 for all p. Thus,

√
var(EW(T ′

1 − T1)2) < n−3.

Similarly,

EW(T ′ − T )(U ′ − U) =
(
n

2

)−1

(pV + 3(1 − 2p)U);

hence, √
var EW(T ′ − T )(U ′ − U) < n−3.

Straightforward calculations show that

EW(V ′ − V )2 =
(
n

2

)−1{
2p(n− 4)T + 2V (np − 10p + 2)+ 6(1 − 2p)U + 4pT 2

+ (1 − 2p)
∑

i,j,k,	 distinct

EW Ii,j Ii,k(Ii,	 + Ij,	)

}
.

With the notation T̃ for the centralized variable, we have

var EW(V ′ − V )2

≤ 5

(
n

2

)−2{
p2(2n− 8 + 4pn2 − 4pn)2 var(T )+ 4(np − 10p + 2)2 var(V )

+ 36(1 − 2p)2 var(U)+ 16p2 var(T̃ 2)

+ (1 − 2p)2 var

( ∑
i,j,k,	 distinct

EW Ii,j Ii,k(Ii,	 + Ij,	)

)}
,

where we have used the fact that in general var
∑k
i=1Xi ≤ k

∑k
i=1 varXi . Here, the variances

for T , V , and U are given through (14).
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We have the bounds

p2(2n− 8 + 4pn2 − 4pn)2 var(T ) ≤ 27

64

(
n

2

)
n2(n+ 2)2,

4(np − 10p + 2)2 var(V ) ≤ 16

27
n3(n− 1)(n− 2)(n+ 1),

36(1 − 2p)2 var(U) ≤ 81

256
n(n− 1)(n− 2)(3n+ 2),

16p2 var T̃ 2 ≤ 27

32
n3(n− 1),

var
∑
i �=j

∑
{k : k �=i,j}

∑
{	 : 	�=i,j,k}

EW Ii,j Ii,k(Ii,	 + Ij,	) ≤ 3n2
(
n

4

)
.

We also have

EW(V ′ − V )(U ′ − U) =
(
n

2

)−1(
2pV + 6(1 − 2p)U + p

∑
i,j,k,	 distinct

Ii,kIk,j Ii,	

+ (1 − 2p)
∑

i,j,k,	 distinct

Ii,j Ii,kIi,	I	,j

)
.

Now,

var
∑

i,j,k,	 distinct

Ii,kIk,j Ii,	 <

(
n

4

)
n2

and

var
∑

i,j,k,	 distinct

Ii,j Ii,kIi,	Ij,	 <

(
n

4

)(
1

256
+ 1

16

(
n

2

))
,

so that √
var EW(V ′

1 − V1)(U
′
1 − U1) < n−3 + 11n−4.

Finally,

EW(U ′ − U)2 = 1

2

(
n

2

)−1{
2pV + 6(1 − 2p)U + p

∑
i,j,k,	 distinct

EW Ii,kIk,j Ii,	I	,j

+ (1 − 2p)
∑

i,j,k,	 distinct

EW Ii,j Ii,kIk,j Ii,	I	,j

}
.

With

var
∑

i,j,k,	 distinct

EW Ii,kIk,j Ii,	Ij,	 ≤
(
n

4

)(
p4(1 − p4)+ 6

(
n

2

)
p2(1 − p6)

)

and

var
∑

i,j,k,	 distinct

EW Ii,j Ii,kIk,j Ii,	Ij,	 ≤
(
n

4

)(
p5(1 − p5)+ 6

(
n

2

)
p2(1 − p8)

)
,
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we obtain √
var(EW(U ′

1 − U1)2) < 5n−3 + 2n−4.

Collecting these bounds we obtain

A < 35n−1 + 36n−2.

Bounding B. We use the generalized Hölder inequality

E
3∏
i=1

|Xi | ≤
3∏
i=1

{E |Xi |3}1/3 ≤ max
i=1,2,3

E |Xi |3. (16)

First, E |T ′ − T |3 = (
n
2

)−1 ∑
i<j E |Ii,j − I ′

i,j |3 = 2p(1 − p) < 1
2 , so that

E |T ′
1 − T1|3 = (n− 2)3

n6 2p(1 − p) <
1

2
n−3.

Similarly,

E |V ′ − V |3 =
(
n

2

)−1 ∑
i<j

E |Ii,j − I ′
i,j |3

∑
{k,	,s : k,	,s �=i,j}

(Ij,k + Ii,k)(Ij,	 + Ii,	)(Ij,s + Ii,s)

= 2p(1 − p)(n− 2)

× (8p2 + 2p(1 − p)+ 2(n− 3)(2p2 + 2p3)+ 8(n− 3)(n− 4)p3),

so that
E |V ′

1 − V1|3 < 64
27 (n

−3 + n−4 + n−5).

Lastly,

E |U ′ − U |3 =
(
n

2

)−1 ∑
i<j

E |Ii,j − I ′
i,j |3

∑
{k : k �=i,j}

∑
{	 : 	�=i,j}

∑
{s : s �=i,j}

Ij,kIi,kIj,	Ii,	Ij,sIi,s

= 2p(1 − p)(n− 2)(p2 + (n− 3)p4 + (n− 3)(n− 4)p6),

so that
E |U ′

1 − U1|3 < 54
256 (n

−3 + n−4 + n−5).

Thus, for B, we have

B < 3
2n

2 × 9 × 64
27 (n

−3 + n−4 + n−5) = 32(n−1 + n−2 + n−3).

Collecting the bounds gives the result.

Remark 5. Had we not introduced V , conditioning would yield

− ET ,U (U ′ − U) = 2

n(n− 1)

∑
i<j

ET ,U
∑

{k:k �=i,j}
(Ii,j Ij,kIi,k − I ′

i,j Ij,kIi,k)

= 3
2

n(n− 1)
U − p

2

n(n− 1)
ET ,U

∑
i<j, k �=i,j

Ij,kIi,k.

The expression
∑
i<j, k �=i,j ET ,U Ij,kIj,k would result in a nonlinear remainder termR in (1).

The introduction of V not only avoids this remainder term, indeed R = 0 in (1), but also yields
a more detailed result. This observation that the 2-stars form a useful auxiliary statistic can
also be found in [6]; there it is related to Hoeffding-type projections.
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Using Proposition 1, we also obtain a normal approximation for �0 given in (15).

Corollary 2. Under the assumptions of Proposition 2, for every three times differentiable
function h,

|Eh(W)− E h(�1/2
0 Z)| ≤ |h|2

2n
(44 + 21n−1 + 32n−2 + 4n−3)

+ 8|h|3
3n

(1 + n−1 + n−2).
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[10] Raič, M. (2004). A multivariate CLT for decomposable random vectors with finite second moments. J. Theoret.
Prob. 17, 573–603.

[11] Reinert, G. and Röllin, A. (2009). Multivariate normal approximation with Stein’s method of exchangeable
pairs under a general linearity condition. Ann. Prob. 37, 2150–2173.

[12] Rinott, Y. and Rotar′, V. (1996). A multivariate CLT for local dependence with n−1/2 log n rate and
applications to multivariate graph related statistics. J. Multivariate Anal. 56, 333–350.

[13] Rinott, Y. and Rotar′, V. (1997). On coupling constructions and rates in the CLT for dependent summands
with applications to the antivoter model and weighted U -statistics. Ann. Appl. Prob. 7, 1080–1105.

[14] Rinott, I. and Rotar′, V. I. (1998). Some estimates for the rate of convergence in the CLT for martingales. I.
Theory Prob. Appl. 43, 604–619.

[15] Stein, C. (1972). A bound for the error in the normal approximation to the distribution of a sum of dependent
random variables. In Proc. 6th Berkeley Symp. Math. Statist. Prob., Vol. II, University California Press, pp. 583–
602.

[16] Stein, C. (1986). Approximate Computation of Expectations (Inst. Math. Statist. Lecture Notes Monogr. Ser. 7).
Institute of Mathematical Statistics, Hayward, CA.

https://doi.org/10.1239/jap/1276784898 Published online by Cambridge University Press

https://doi.org/10.1239/jap/1276784898

	1 Introduction
	2 Theoretical bounds for a multivariate normal approximation
	2.1 Notation

	3 The embedding method
	4 Complete nondegenerate U-statistics
	5 Edge and triangle counts in Bernoulli random graphs
	Acknowledgement
	References

