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A CHARACTERISTIC SUBGROUP AND KERNELS OF
BRAUER CHARACTERS

I.M. ISAACS AND GABRIEL NAVARRO

If G is finite group and P is a Sylow p-subgroup of G, we prove that there is a unique
largest normal subgroup L of G such that L n P = L ("I N G ( P ) . If G is p-solvable,
then L is the intersection of the kernels of the irreducible Brauer characters of G of
degree not divisible by p.

1. INTRODUCTION

Our aim in this note is to prove the following two results.

THEOREM A. Let G be an arbitrary finite group and let P be a Sylow p-subgroup
ofG for some prime p. Then there exists a unique largest normal subgroup LofG such
that

L n P = L n NG(P).

Note that the intersection property in Theorem A is equivalent to saying that N
is a p-group. Also, since this property is clearly independent of the choice of P in Sylp(G),
it is clear that L is characteristic in G. Our interest in this characteristic subgroup was
motivated by the following.

THEOREM B. Suppose that G is p-solvable and let L be the largest normal sub-
group ofG such that LDP - LnNG(P), where P e Sylp(G). Then L is the intersection
of the kernels of the irreducible Brauer characters ofG with degree not divisible by p.

The assumption that G is p-solvable in Theorem B is essential. Consider, for exam-
ple, the simple group G = M23 and take p = 2. Then G has a self-normalising Sylow
2-subgroup, and thus the characteristic subgroup L of Theorem A is the whole group
G. But G has an irreducible Brauer character of degree 11, and hence the conclusion of
Theorem B fails in this case.
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2. PROOFS

Theorem A is an immediate consequence of, [4, Lemma 5.3], and so we take this
opportunity to offer a new and simpler proof of a somewhat more general result. The
original lemma is the case of the following where both H and K are normal in G.

LEMMA 2 . 1 . Let G be a finite group and let P € Sylp(G), where p is a prime. Let
H and K be subgroups ofG such that HK, HP and KP are subgroups. Then

PROOF: We argue by induction on \G : H\\G : K\. Note that \H :PdH\ = \HP :
P\ is coprime to p, and so P C\ H is a Sylow p-subgroup of H and similarly, P D K is a
Sylow p-subgroup of K. It follows that

i rmrnrrn/nl \PnH\\Pr\K\ \H\V\K\V _\(PnH)(PnK)\ - lPnHnKl > JHT^; -

and thus (P n H)(P n K) = P n HK.

Suppose first that P is not contained in H. We can then apply the inductive hy-
pothesis with PH in place of H, and we deduce that

= NP f f(P)N*(P).

By Dedekind's lemma, NPH(P) = NH(P)P, and thus

Now let g € N^^(P) . We can then write g = xuy, where x € N#(P), u € P and
y € NK- (P ) . Since g, x and y are all in HK, we see that also u 6 HK, and therefore
u € P n HK. By the first paragraph, we can write u = rs, where r € P n H and
s G P n K. Then

and we are done in this case. Similarly the lemma is proved if P is not contained in K.
We can now assume P is contained in H D K, and we denote this intersection by

D. Suppose that g 6 NHK(P) and write g = hk'1, with h € H and A; e K. Since
p» = p , we have Pk — Ph and this subgroup is contained in both H and K. By Sylow's
theorem in the group D = H n K, we have PA = P d for some element d E D, and thus
/w/-1 € N H (P) . Also P* = Pd, so dk~l € NK(P). We see now that

g = (hd-^idk-1) 6 N*(P)N*(P),

and the proof is complete. D

Now we are ready to prove Theorem A.
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P R O O F OF T H E O R E M A: Let P e Sylp(G), and write N = N G ( P ) . Suppose that
H and K are normal subgroups of G, each maximal with the property that its intersection
with N is equal to its intersection with P. We must show that H — K. By Lemma 2.1.
we have

NnHK = NHK(P) = NH(P)NK(P).

Then TV D HK is a product of two p-subgroups, and so it is a p-subgroup of N. Since P
is the unique Sylow p-subgroup of N, it follows that N n HK = P n HK. Now by the
maximality of H and K, we conclude that H — HK = K, and the proof is complete. D

To prove Theorem B, we choose to work with the p'-special characters of the p-
solvable group G. (Their properties can be found in [1]. In particular, these members of
Irr(G) form a set of lifts for the irreducible Brauer characters of G having p'-degree.)

THEOREM 2 . 2 . Let G be a p-solvable group and let K be the intersection of the
kernels of the p'-special characters of G. Then K is the largest normal subgroup of G
such that KnP = Kn~Nc(P), where P e Sylp(G).

PROOF: Write N = NG(P). First, we prove by induction on \G\ that K ("I P
— K C\N. We may assume that K > 1, and we choose a minimal normal subgroup M of
G with M C K. Now, K/M is the intersection of the kernels of the p'-special characters
of G/M and PM/M is a Sylow p-subgroup of G/M with normaliser NM/M. By the
inductive hypothesis, we deduce that

(K/M) n (NM/M) = (K/M) n (PM/M),

or equivalent^, K D NM = K f~l PM. If M is a p-group, then PM = P and NM = N,
and we are done in this case. We may therefore assume that M is a p'-group. Since
M C K, Dedekind's lemma yields that

(K D P)M = KD PM = K n NM = (K D N)M.

and therefore, if we can show that (K D P) D M = (K n N) D M, it will follow that
\KnP\ = \KnN\, and thus KnP = KnN, as required. In particular, since M C K,
it suffices to show that JVnM = 1. As M is a normal p'-subgroup of G, it follows
that N D M = CJV(P), and if this is nontrivial, then by the Glauberman character
correspondence, (see [3, Chapter 13]), there exists a nonprincipal P-invariant character
6 £ Irr(M). Then there exists a p'-special character x € Irr(G) lying over 6 by [l,
Corollary (4.8)]. However, M C K C ker(x) and this is a contradiction.

Finally, we need to show that if K < L< G, then LnP < LnN, and for this purpose,
we can assume that L/K is a chief factor of G. Assuming that LnN = LnP, we work
to derive a contradiction. Since K < L, there exists a p'-special character x £ frr(G)
such that L is not contained in ker(x). But x has p'-degree, and this implies that XL
has a nonprincipal P-invariant irreducible constituent 9, and 6 is necessarily p'-special
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since it lies under x- Also, K C ker(0), and thus L/K cannot be a p-group because
it has a nonprincipal p'-special character. We deduce that L/K is a p'-group, and thus
LC\ N = Ln P C K and we have L n NK = ( i n N)K = K. Observe, however,
that NK/K is the full normaliser of PK/K in G/K, and so it follows that CL/K(P) is
trivial. By the Glauberman correspondence, however, CL/K(P) must be nontrivial since
L/K has a nonprincipal P-invariant irreducible character. This is a contradiction and
the theorem is proved. Q

Finally, we complete the proof of Theorem B.

P R O O F OF T H E O R E M B: By [2, Lemma (5.4) and Corollary (10.3)], we know that
restriction to p-regular elements defines a bijection from the set of p'-special characters of
G onto the irreducible Brauer characters of G having p'-degree. It follows that the inter-
section K of the kernels of all p'- special characters of G is contained in the intersection
L of the kernels of all irreducible Brauer characters having p'-degree. By Theorem 2.2,
therefore, it suffices to show that L = K.

Every p-regular element of L must lie in K, and thus L/K is a p-group. By Theo-
rem 2.2, we know that KnN = KnP, where P e Sylp(G) and N = NG(P) . AsJVnA"
is a p-group and L/K is a p-group, it is easy to see that N n L is also a p-group, and
thus NC\L = PC\L. By the maximality of K in Theorem 2.2, we conclude that L = K,
as desired. D
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