A CHARACTERISTIC SUBGROUP AND KERNELS OF BRAUER CHARACTERS

I.M. ISAACS AND GABRIEL NAVARRO

If G is finite group and P is a Sylow p-subgroup of G, we prove that there is a unique largest normal subgroup L of G such that $L \cap P = L \cap N_G(P)$. If G is p-solvable, then L is the intersection of the kernels of the irreducible Brauer characters of G of degree not divisible by p.

1. INTRODUCTION

Our aim in this note is to prove the following two results.

THEOREM A. Let G be an arbitrary finite group and let P be a Sylow p-subgroup of G for some prime p. Then there exists a unique largest normal subgroup L of G such that

$$L \cap P = L \cap \mathbf{N}_G(P)$$
.

Note that the intersection property in Theorem A is equivalent to saying that $N_L(P)$ is a *p*-group. Also, since this property is clearly independent of the choice of P in $Syl_p(G)$, it is clear that L is characteristic in G. Our interest in this characteristic subgroup was motivated by the following.

THEOREM B. Suppose that G is p-solvable and let L be the largest normal subgroup of G such that $L \cap P = L \cap N_G(P)$, where $P \in Syl_p(G)$. Then L is the intersection of the kernels of the irreducible Brauer characters of G with degree not divisible by p.

The assumption that G is p-solvable in Theorem B is essential. Consider, for example, the simple group $G = M_{23}$ and take p = 2. Then G has a self-normalising Sylow 2-subgroup, and thus the characteristic subgroup L of Theorem A is the whole group G. But G has an irreducible Brauer character of degree 11, and hence the conclusion of Theorem B fails in this case.

Received 8th June, 2005

The second author is partially supported by the Ministerio de Educación y Ciencia proyecto MTM2004-06067-C02-01.

Copyright Clearance Centre, Inc. Serial-fee code: 0004-9727/05 \$A2.00+0.00.

2. Proofs

Theorem A is an immediate consequence of, [4, Lemma 5.3], and so we take this opportunity to offer a new and simpler proof of a somewhat more general result. The original lemma is the case of the following where both H and K are normal in G.

LEMMA 2.1. Let G be a finite group and let $P \in Syl_p(G)$, where p is a prime. Let H and K be subgroups of G such that HK, HP and KP are subgroups. Then

$$\mathbf{N}_{HK}(P) = \mathbf{N}_{H}(P)\mathbf{N}_{K}(P)$$

PROOF: We argue by induction on |G:H| |G:K|. Note that $|H:P \cap H| = |HP:$ P| is coprime to p, and so $P \cap H$ is a Sylow p-subgroup of H and similarly, $P \cap K$ is a Sylow p-subgroup of K. It follows that

$$\left| (P \cap H)(P \cap K) \right| = \frac{|P \cap H||P \cap K|}{|P \cap H \cap K|} \ge \frac{|H|_p|K|_p}{|H \cap K|_p} = |HK|_p \ge |P \cap HK|,$$

and thus $(P \cap H)(P \cap K) = P \cap HK$.

Suppose first that P is not contained in H. We can then apply the inductive hypothesis with PH in place of H, and we deduce that

$$\mathbf{N}_{PHK}(P) = \mathbf{N}_{PH}(P)\mathbf{N}_{K}(P) \,.$$

By Dedekind's lemma, $N_{PH}(P) = N_H(P)P$, and thus

$$\mathbf{N}_{PHK}(P) = \mathbf{N}_{H}(P)P\mathbf{N}_{K}(P) \,.$$

Now let $g \in N_{HK}(P)$. We can then write g = xuy, where $x \in N_H(P)$, $u \in P$ and $y \in N_K(P)$. Since g, x and y are all in HK, we see that also $u \in HK$, and therefore $u \in P \cap HK$. By the first paragraph, we can write u = rs, where $r \in P \cap H$ and $s \in P \cap K$. Then

$$g = (xr)(sy) \in \mathcal{N}_H(P)\mathcal{N}_K(P),$$

and we are done in this case. Similarly the lemma is proved if P is not contained in K.

We can now assume P is contained in $H \cap K$, and we denote this intersection by D. Suppose that $g \in N_{HK}(P)$ and write $g = hk^{-1}$, with $h \in H$ and $k \in K$. Since $P^g = P$, we have $P^k = P^h$ and this subgroup is contained in both H and K. By Sylow's theorem in the group $D = H \cap K$, we have $P^h = P^d$ for some element $d \in D$, and thus $hd^{-1} \in N_H(P)$. Also $P^k = P^d$, so $dk^{-1} \in N_K(P)$. We see now that

$$g=(hd^{-1})(dk^{-1})\in \mathbf{N}_H(P)\mathbf{N}_K(P)\,,$$

and the proof is complete.

Now we are ready to prove Theorem A.

PROOF OF THEOREM A: Let $P \in \text{Syl}_p(G)$, and write $N = N_G(P)$. Suppose that H and K are normal subgroups of G, each maximal with the property that its intersection with N is equal to its intersection with P. We must show that H = K. By Lemma 2.1. we have

$$N \cap HK = \mathbf{N}_{HK}(P) = \mathbf{N}_{H}(P)\mathbf{N}_{K}(P)$$
.

Then $N \cap HK$ is a product of two *p*-subgroups, and so it is a *p*-subgroup of *N*. Since *P* is the unique Sylow *p*-subgroup of *N*, it follows that $N \cap HK = P \cap HK$. Now by the maximality of *H* and *K*, we conclude that H = HK = K, and the proof is complete.

To prove Theorem B, we choose to work with the p'-special characters of the p-solvable group G. (Their properties can be found in [1]. In particular, these members of Irr(G) form a set of lifts for the irreducible Brauer characters of G having p'-degree.)

THEOREM 2.2. Let G be a p-solvable group and let K be the intersection of the kernels of the p'-special characters of G. Then K is the largest normal subgroup of G such that $K \cap P = K \cap N_G(P)$, where $P \in Syl_p(G)$.

PROOF: Write $N = N_G(P)$. First, we prove by induction on |G| that $K \cap P = K \cap N$. We may assume that K > 1, and we choose a minimal normal subgroup M of G with $M \subseteq K$. Now, K/M is the intersection of the kernels of the p'-special characters of G/M and PM/M is a Sylow p-subgroup of G/M with normaliser NM/M. By the inductive hypothesis, we deduce that

$$(K/M) \cap (NM/M) = (K/M) \cap (PM/M)$$

or equivalently, $K \cap NM = K \cap PM$. If M is a p-group, then PM = P and NM = N, and we are done in this case. We may therefore assume that M is a p'-group. Since $M \subseteq K$, Dedekind's lemma yields that

$$(K \cap P)M = K \cap PM = K \cap NM = (K \cap N)M.$$

and therefore, if we can show that $(K \cap P) \cap M = (K \cap N) \cap M$, it will follow that $|K \cap P| = |K \cap N|$, and thus $K \cap P = K \cap N$, as required. In particular, since $M \subseteq K$, it suffices to show that $N \cap M = 1$. As M is a normal p'-subgroup of G, it follows that $N \cap M = \mathbf{C}_N(P)$, and if this is nontrivial, then by the Glauberman character correspondence, (see [3, Chapter 13]), there exists a nonprincipal P-invariant character $\theta \in \operatorname{Irr}(M)$. Then there exists a p'-special character $\chi \in \operatorname{Irr}(G)$ lying over θ by [1, Corollary (4.8)]. However, $M \subseteq K \subseteq \ker(\chi)$ and this is a contradiction.

Finally, we need to show that if $K < L \triangleleft G$, then $L \cap P < L \cap N$, and for this purpose, we can assume that L/K is a chief factor of G. Assuming that $L \cap N = L \cap P$, we work to derive a contradiction. Since K < L, there exists a p'-special character $\chi \in Irr(G)$ such that L is not contained in ker(χ). But χ has p'-degree, and this implies that χ_L has a nonprincipal P-invariant irreducible constituent θ , and θ is necessarily p'-special

[4]

since it lies under χ . Also, $K \subseteq \ker(\theta)$, and thus L/K cannot be a *p*-group because it has a nonprincipal *p'*-special character. We deduce that L/K is a *p'*-group, and thus $L \cap N = L \cap P \subseteq K$ and we have $L \cap NK = (L \cap N)K = K$. Observe, however, that NK/K is the full normaliser of PK/K in G/K, and so it follows that $C_{L/K}(P)$ is trivial. By the Glauberman correspondence, however, $C_{L/K}(P)$ must be nontrivial since L/K has a nonprincipal *P*-invariant irreducible character. This is a contradiction and the theorem is proved.

Finally, we complete the proof of Theorem B.

PROOF OF THEOREM B: By [2, Lemma (5.4) and Corollary (10.3)], we know that restriction to *p*-regular elements defines a bijection from the set of p'-special characters of *G* onto the irreducible Brauer characters of *G* having p'-degree. It follows that the intersection *K* of the kernels of all p'- special characters of *G* is contained in the intersection *L* of the kernels of all irreducible Brauer characters having p'-degree. By Theorem 2.2, therefore, it suffices to show that L = K.

Every *p*-regular element of *L* must lie in *K*, and thus L/K is a *p*-group. By Theorem 2.2, we know that $K \cap N = K \cap P$, where $P \in \operatorname{Syl}_p(G)$ and $N = \operatorname{N}_G(P)$. As $N \cap K$ is a *p*-group and L/K is a *p*-group, it is easy to see that $N \cap L$ is also a *p*-group, and thus $N \cap L = P \cap L$. By the maximality of *K* in Theorem 2.2, we conclude that L = K, as desired.

References

- [1] D. Gajendragadkar, 'A characteristic class of characters of finite π -separable groups', J. Algebra 59 (1979), 237-259.
- [2] I.M. Isaacs, 'Characters of π -separable groups', J. Algebra 86 (1984), 98-112.
- [3] I.M. Isaacs, Character theory of finite groups (Dover Publication, New York, 1994).
- [4] G. Navarro, 'A new character correspondence in groups of odd order', J. Algebra 268 (2003), 8-21.

Department of Mathematics University of Wisconsin Madison, WI 53706 United States of America e-mail: isaacs@math.wisc.edu Facultat de Matemàtiques Universitat de València Burjassot, València 46100 Spain e-mail: gabriel@uv.es