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Many environmental flows arise due to natural convection at a vertical surface, from
flows in buildings to dissolving ice faces at marine-terminating glaciers. We use
three-dimensional direct numerical simulations of a vertical channel with differentially
heated walls to investigate such convective, turbulent boundary layers. Through the
implementation of a multiple-resolution technique, we are able to perform simulations at a
wide range of Prandtl numbers Pr. This allows us to distinguish the parameter dependences
of the horizontal heat flux and the boundary layer widths in terms of the Rayleigh
number Ra and Prandtl number Pr. For the considered parameter range 1 ≤ Pr ≤ 100,
106 ≤ Ra ≤ 109, we find the flow to be consistent with a ‘buoyancy-controlled’ regime
where the heat flux is independent of the wall separation. For given Pr, the heat flux is
found to scale linearly with the friction velocity V∗. Finally, we discuss the implications of
our results for the parameterisation of heat and salt fluxes at vertical ice–ocean interfaces.

Key words: turbulent convection, turbulent boundary layers, buoyant boundary layers

1. Introduction

When a fluid is heated from a side boundary, buoyancy drives a flow up the boundary
via convection. The laminar flow along a heated surface has long been understood
(Batchelor 1954; Kuiken 1968; Shishkina 2016) but there is no formal solution for the
case where the flow becomes turbulent. This occurs when the Rayleigh number Ra of
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the flow is sufficiently high. In many environmental applications of this so-called vertical
convection (VC), such as the flow in a cavity wall, high Rayleigh numbers imply that an
accurate understanding of the turbulent flow is needed to describe the heat transfer to the
environment.

Such convective boundary layers are not only generated by surface heating. For example,
a vertical ice face submerged in salty water will drive convection due to the generation of
fresh meltwater at the ice–water interface as it melts or dissolves (McConnochie & Kerr
2015; Malyarenko et al. 2020). In this case, the buoyancy driving the flow is primarily
due to the salinity difference between the meltwater and the ambient water. One key
difference between the two applications mentioned so far is the ratio of the diffusivities
of momentum and heat (or salt), known as the Prandtl (or Schmidt) number Pr. In air the
Prandtl number is Pr ≈ 0.7, whereas for salt diffusion in cold water the relevant parameter
is Pr ≈ 2000.

Numerical simulations are often restricted to Pr = O(1) because high spatial resolution
is needed at high Pr to resolve sharp scalar gradients that diffuse more slowly than the
velocity gradients. However, understanding the role of the Prandtl number is vital for
interpreting the results of such research for environmental or geophysical applications.
We shall therefore investigate boundary layers in turbulent vertical convection at Pr � 1
with the aim of bridging the gap from classical studies of convection to geophysical
applications.

In this study, we use direct numerical simulations to investigate turbulent convective
boundary layers for a range of Rayleigh and Prandtl numbers. By using the
multiple-resolution technique of Ostilla-Monico et al. (2015), we can efficiently simulate
flows at high Pr, and we vary Pr from 1 to 100. Although this is still considerably lower
than the Pr ≈ 2000 applicable to salt diffusion in the ocean, it is large enough to extract
scaling laws in the large Pr regime, which we expect to also hold in oceanographic
flows.

Many different set-ups have been used to investigate VC boundary layers in numerical
studies. Wang et al. (2021) recently simulated VC in a closed box, but the presence of walls
in that domain means that turbulent boundary layers are only observed at very high Ra, at
which only two-dimensional simulations are computationally feasible. We instead simulate
the flow in a vertical channel with periodic boundary conditions in the wall-parallel
directions. As originally described by Batchelor (1954), this domain approximates the flow
at mid-heights in a tall vertical cell. A recent study by Ke et al. (2020) used this domain
to simulate the temporally evolving boundary layer at a single heated wall, but in order to
obtain converged statistics for a wide range of parameters, we instead consider the vertical
channel set-up where one wall is heated and the other is cooled. This flow configuration
achieves a statistically steady state with an anti-symmetric velocity profile and has been
the subject of numerous numerical studies at Pr = O(1) (e.g. Versteegh & Nieuwstadt
1999; Pallares et al. 2010; Ng et al. 2015).

The remainder of this paper is organised as follows. In § 2 we outline the numerical
model and the set-up of the simulations. This is followed by flow visualisations in § 3 and
a qualitative discussion of Pr-dependence of this flow. In § 4 we describe how various
parameterisations for turbulent heat flux perform when applied to our simulations, and
in § 5 we identify appropriate scaling laws for the boundary layer thicknesses. Finally,
we conclude and discuss important remaining open questions for convective boundary
layers in VC in § 6. The paper is supplemented by a concrete translation of our results into
the geophysical context, focusing on the transition from laminar-type to turbulent-type
boundary layers (Appendix A) and a detailed analysis of the energy dissipation and
thermal dissipation budgets.
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Figure 1. (a) A schematic of the simulation domain. (b,c) Mean profiles of the vertical velocity and the
temperature for Ra = 108 and a range of Pr. Recall that the mean profiles are anti-symmetric such that
v̄(x) = −v̄(H − x).

2. Numerical set-up, simulations and control and response parameters

2.1. Dynamical equations and control parameters
We consider the Navier–Stokes equations subject to the Oberbeck–Boussinesq
approximation, where changes in density ρ are only relevant in the buoyancy and a
linear equation of state relates the density changes to temperature T . These equations read
∇ · u = 0 and

∂tu + (u · ∇)u = − 1
ρ0

∇p + ν∇2u + gαT ŷ, (2.1)

∂tT + u · ∇T = κ∇2T, (2.2)

where u = (u, v, w) is the velocity field, p the kinematic pressure, ν kinematic viscosity,
κ the molecular diffusivity of heat, g gravitational acceleration, α the thermal expansion
coefficient and ρ0 a reference density. We solve these equations in a vertical channel
domain between two no-slip, impermeable, isothermal walls. These walls are separated
by a distance H and the temperature difference between them is Δ. As in Ng et al. (2015)
and shown in figure 1, we consider a domain of length 8H in the vertical (y) and length 4H
in the spanwise (z) direction, and impose periodic boundary conditions on u, p and T in
these directions, y and z. In a convective system, we can scale the velocity by the free-fall
velocity UT = √

gαΔH so that the dynamics of the system is solely determined by the
Rayleigh and Prandtl numbers

Ra = gαH3Δ

νκ
, Pr = ν

κ
. (2.3a,b)

These are the only control parameters of the system, aside from parameters
characterising the geometry of the flow domain. Their ratio Gr = Ra/Pr = gαH3Δ/ν2

is also called the Grashof number.
The governing equations (2.1) and (2.2) are solved numerically using a second-order

finite difference scheme for spatial derivatives and a third-order Runge–Kutta scheme for
time stepping, as described in Verzicco & Orlandi (1996) and van der Poel et al. (2015).
For high values of Pr, the temperature field must be resolved at smaller scales than the
velocity field because the temperature field diffuses on the time scale of the order of Pr−1
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Prandtl number Pr Rayleigh numbers Ra Max. base resolution Max. scalar resolution

1 106–108 384 × 1536 × 768 768 × 3072 × 1536
2 106–108 192 × 1024 × 512 384 × 2048 × 1024
5 106–108 192 × 1024 × 512 576 × 3072 × 1536
10 106–109 256 × 1024 × 512 768 × 3072 × 1536
100 107–109 256 × 1024 × 512 768 × 3072 × 1536

Table 1. Overview of the dimensionless parameters and grid resolutions used in the numerical simulations.
Grid resolutions are listed here for the cases at highest Ra, and we distinguish between the base grid used to
evolve the velocity and the refined grid used to evolve the temperature field.

compared with the velocity field. We therefore also use the multiple-resolution technique
of Ostilla-Monico et al. (2015) to evolve the scalar T on a refined grid. Interpolation
between the two grids is achieved through a four-point Hermitian method. Grid stretching
is also implemented in the wall-normal (x) direction using a clipped Chebyshev-type
clustering. Uniform grid spacing is used in the y and z directions, and the base grid of
all simulations are resolved down to a factor of 2 times the Kolmogorov scale. The refined
grid is such that the wall-normal grid spacing satisfies Δx < 0.5LB at the boundaries,
and the grid spacing in the bulk satisfies Δx,y,z < 4.5LB, where LB = (νκ2/ε)1/4 is the
Batchelor scale.

The range of dimensionless control parameters simulated is shown in table 1.
Simulations at Ra = 106 are initialised using the laminar, purely conductive solution of
Batchelor (1954) with the addition of small amplitude random noise to trigger a transition
to turbulence. Simulations at higher Ra are initialised using the final state of the simulation
at Ra = 106 and Pr = 1, interpolated onto a new grid. Each computation is performed for
at least 300 free-fall times, where H/UT is the free-fall time unit. We average statistics
over the last 250 time units once the system has reached a statistically steady state.

2.2. Response parameters and theoretical scaling laws
Before presenting the results of the simulations, we now provide an overview of the key
quantities of interest and existing theoretical frameworks used for their prediction.

Understanding how the global horizontal heat transport in vertical convection depends
on the control parameters of (2.3a,b) is vital for many applications. Varying the control
parameters also leads to changes in the peak velocity of the rising flow and the mean
shear stress on the boundary. These can be quantified through the following dimensionless
response parameters: the Nusselt number, the Reynolds number and the shear Reynolds
number

Nu = HqT

κΔ
, Re = VmaxH

ν
, Reτ = V∗H

ν
, (2.4a–c)

where qT = κ|dT/dx|wall is the horizontal heat flux, Vmax is the peak value of the time-
and spatially averaged vertical velocity v(x) and V∗ = √

τw/ρ0 is the friction velocity
associated with the mean wall shear stress τw = μ dv/dx|wall = ρ0V∗2.

In turbulent convection, many studies follow the so-called ‘classical’ regime as a
theoretical starting point. This regime relies on the assumption that the thermal driving is
sufficiently strong such that the heat flux becomes independent of the plate separation H.
Assuming a power-law relation between Nu and the Rayleigh number, dimensional analysis
(e.g. Turner 1979) then requires the scaling Nu ∼ Ra1/3f (Pr). This has been consistent
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with various experiments up to Ra = 1012 (Warner & Arpaci 1968; Tsuji & Nagano 1988)
and is often provided in engineering reference texts such as Holman (2010).

However, recent analysis of numerical simulations by Ng et al. (2017) suggests that
a power-law description may be insufficient and that the ‘classical’ scaling does not
accurately describe the data even in this range. Furthermore, there are open questions
regarding the relevant scaling at even higher Ra, at which precise, controlled experiments
and numerical simulations are extremely difficult to perform. Finally, the Prandtl number
dependence has hardly been addressed.

One important application for boundary layers in VC is to predict the dissolution or
melting of a vertical ice face in the ocean. This is why parameterising the heat and salt
fluxes is crucial. In regional ocean models, the heat flux through the turbulent boundary
layer at such locations is often parameterised by invoking the heat flux balance qT ∼
velocity × temperature change. Following Holland & Jenkins (1999), the parameterisation
for the horizontal heat flux takes the form

qT = CTC1/2
D U(T − Tb), (2.5)

where U is the vertical velocity of the rising plume, and T − Tb is the temperature
difference between the ocean and the ice boundary.

Taking U = Vmax and T − Tb = Δ/2, we note that the drag coefficient CD and ‘transfer
coefficient’ CT from (2.5) are fully determined by the response parameters of (2.4a–c)
through

CD =
(

V∗
Vmax

)2

= Reτ
2

Re2 , CT = 2qT

V∗Δ
= 2Nu

Reτ Pr
. (2.6a,b)

Accurate scaling laws for the quantities in (2.4a–c) are thus crucial for determining CD
and CT . The transfer coefficient CT is equivalent to a modified Stanton number where
V∗ is used for the velocity scale. In the ice–ocean literature, the transfer coefficient is
often denoted ΓT although we use CT here to avoid confusion with the aspect ratio Γ

used throughout literature on convection. Both CD and CT are typically set to constant
values in melt parameterisations (see e.g. Jackson et al. 2020) based on the reasoning
that the boundary layers in ice–ocean applications are strongly shear driven, and are in
accordance with the classical results of Kader & Yaglom (1972). However, recent analysis
by Malyarenko et al. (2020) of ice shelf observations suggests that the Reynolds numbers
may not always be large enough to justify this shear-driven boundary layer assumption. An
equivalent equation to (2.5) is often used to parameterise the salt flux, where CD keeps the
same value, but CT is reduced to reflect its dependence on the Schmidt number.

For CT , CD being constant, the dimensionless form of (2.5) is Nu ∼ RePr. Such
a scaling is reminiscent of the ‘ultimate’ or ‘diffusion-free’ scaling hypothesised for
Rayleigh–Bénard convection (RBC) at very high Ra (e.g. Kraichnan 1962; Spiegel 1971;
Lohse & Toschi 2003; Ahlers, Grossmann & Lohse 2009). In that case, the heat flux is
assumed independent of the molecular diffusivities ν and κ , such that dimensional analysis
implies Nu ∼ (RaPr)1/2. In physical terms, this regime is associated with a dominant
large-scale circulation that leads to shear-driven turbulent boundary layers. The dominant
mean flow arising in VC is analogous to such a coherent large-scale circulation (Shishkina
& Horn 2016). RBC provides a useful comparison with VC thanks to its identical geometry
(except for the direction of gravity) and its dependence on the same control parameters.

In the case of RBC, a unifying theory describing the transitions between various regimes
in RBC was proposed by Grossmann & Lohse (2000, 2001). This theory has shown
excellent agreement with subsequent experimental and numerical investigations over a
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large range of Ra and Pr (Ahlers et al. 2009; Stevens et al. 2013). Although VC lacks the
global relation between the Nusselt number and the mean dissipation rate of kinetic energy
required to close the equations corresponding to those of the Grossmann–Lohse (GL)
theory, it remains appealing to search for parallels between RBC and VC to understand how
the heat flux can be parameterised as the boundary layers evolve. Wells & Worster (2008)
applied ideas from the GL theory about boundary layer transition to geophysical-scale
convection at a vertical wall, and Ng et al. (2015, 2017) considered how changes in the
boundary layer structure relate to an increased bulk contribution to turbulent dissipation.
However, these studies left the issue of Pr-dependence largely unresolved. In this study,
we aim to gain insight into how the Prandtl number affects (a) the scaling of the above
response parameters in the currently accessible range of Ra, and (b) any subsequent
transition in the nature of the boundary layers.

3. Flow visualisation

To illustrate how the boundary layers in the flow change with Pr and Ra, we present a
snapshot of the local dimensionless vertical shear stress τ̂ and heat flux q̂ at the heated
wall x = 0 in figure 2. These quantities are defined as

τ̂ ( y, z) = H
UT

∂v

∂x

∣∣∣∣
x=0

, q̂( y, z) = −H
Δ

∂T
∂x

∣∣∣∣
x=0

. (3.1a,b)

We note that averaging q̂ over the plane and over time gives the Nusselt number
〈q̂( y, z, t)〉y,z,t = Nu. In this sense, q̂ can be thought of as a ‘local and instantaneous
Nusselt number’. The snapshots, taken at the end time of each simulation, highlight the
striking localisation of the heat flux at the wall. Consistent with the analysis of Pallares
et al. (2010), the regions of strongest heat flux (being the dark patches in the panels of q̂)
are frequently co-located with instantaneous flow reversals (evidenced by white and blue
patches appearing in the panels for τ̂ ).

Figure 2(a–c) highlights the effect of increasing Pr in this set-up while keeping Ra fixed
(in this case at 108). As seen from the colour scales, although the range of the local Nusselt
number q̂ remains similar as Pr increases, a significant decrease in the mean dimensionless
shear stress is observed at high Pr. This is due to a drop in the Grashof number Gr
as Pr is increased for fixed Ra. The Grashof number quantifies the ratio of buoyancy
effects to viscosity, and is analogous to a squared Reynolds number based on the free-fall
velocity.

This analogy with the Reynolds number provides some further intuition for the
snapshots of figure 2, where a much wider range of length scales can be observed in
the τ̂ field for the high Gr snapshot of (a) compared with the lower Gr snapshot of (c).
By contrast, comparing panels (b,d) allows us to visualise the effect of changing Pr while
keeping Gr fixed. Qualitatively the structures in both the τ̂ and q̂ snapshots appear similar.
However, the mean values of both quantities vary as Pr increases. To obtain a more
quantitative evaluation of the boundary layer structures and to more quantitatively extract
length scales, we have also calculated the relevant power spectra for each of the simulations
shown in figure 2. These results (not shown here) emphasise the similarity of structures
for constant Gr at the walls, although this similarity does not extend outside of the viscous
boundary layer.

Compared with RBC, where large-scale thermal structures do not exhibit a preferred
direction, the mean shear at the wall in VC introduces significant anisotropy to the
wall structures. Streaky structures elongated in the vertical (y) direction are prominent

930 A32-6

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

95
2 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2021.952


Boundary layers in vertical convection at high Pr

0

8

y/
H

y/
H

6

4

2

0

8

(a) Ra = 108, Pr = 1, Gr = 108 Ra = 108, Pr = 10, Gr = 107

(c)

(b)

(d )Ra = 108, Pr = 100, Gr = 106 Ra = 109, Pr = 100, Gr = 107

6

4

2

2

–20 20 –25 25 0

–120 120 0 5025 –40 40 0 5025

80500 25

z/H
4 0 2

z/H
4 0 2

z/H
4 0 2

z/H
4

τ̂ τ̂q̂ q̂

τ̂ τ̂q̂ q̂

Figure 2. Final-time snapshots of the dimensionless horizontal shear stress τ̂ and the local dimensionless heat
flux q̂ at the heated wall x = 0 for a range of Ra and Pr. It can be seen how large Pr smooths the fields, even at
a large Ra = 108.

in figure 2, similar to those seen in the sheared RBC set-up of Blass et al. (2021).
Furthermore, in that study, an increased Pr (for fixed Ra and Re) was found to
enhance momentum transport from the walls, allowing the wall shear to affect the
flow structures in the bulk more easily. However, as mentioned in § 2, the wall
shear in VC is not pre-determined and instead arises as a response parameter of the
system.

The snapshots of figure 2 highlight the complex multi-parameter dependence in the
VC set-up. Indeed, the simple analogy between the Grashof number and the square
of the Reynolds number should not be overstated. As shown in figure 1(b), the peak
value of the time-averaged vertical velocity does not simply scale with the free-fall
velocity UT , but varies depending on Pr. In the following section, we shall investigate
the multi-parameter dependence more quantitatively by identifying scaling relations for
key response parameters of the system.
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Response parameters Two parameter regression Shishkina (2016) GL IVu

Nusselt number Nu Ra0.321±0.006Pr−0.083±0.010 Ra1/4 Ra1/3

Reynolds number Re Ra0.489±0.007Pr−0.738±0.010 Ra1/2Pr−1 Ra4/9Pr−2/3

Shear Reynolds number Reτ Ra0.362±0.002Pr−0.446±0.003 Ra3/8Pr−1/2 Ra1/3Pr−1/2

Drag coefficient CD Ra−0.253±0.010Pr0.584±0.015 Ra−1/4Pr Ra−2/9Pr1/3

Transfer coefficient CT Ra−0.041±0.006Pr−0.637±0.009 Ra−1/8Pr−1/2 Pr−1/2

Table 2. Observed effective scalings laws for various dimensionless response parameters. Only simulations
with Re > 150 are included in the linear regression. The uncertainty shown is the standard deviation of the
estimated slopes, as described in the text of § 4. Theoretical scaling relations for laminar VC and turbulent
RBC from Shishkina (2016) for VC and Grossmann & Lohse (2000) for RBC in the so-called IVu are provided
for comparison. Reτ is calculated for these scaling relations using the similarity variable of Shishkina (2016)
and using the Blasius drag law CD ∼ Re−1/2 for the GL theory.

4. Heat flux and Reynolds number parameterisation

In table 2 we report the observed Ra- and Pr-dependence of the response parameters from
(2.4a–c) and (2.6a,b) in our simulations. An effective power-law dependence is assumed
and two-parameter linear regression is used to obtain the effective scaling exponents.
Precisely, we compute b = X−1y, where b = (b1, b2, b3)

T and

xi1 = log Rai, xi2 = log Pri, xi3 = 1, yi = log Ri, i = 1, . . . , n (4.1a–d)

are constructed from the n simulations for each response parameter R, giving a linear fit
R = Rab1Prb210b3 . We calculate the uncertainty of the power-law exponents b1 and b2

through the variance matrix of b given by V = σ 2(XTX)−1, where σ 2 is the variance of
y − Xb. The standard deviations of the slopes, given by

√
v11 and

√
v22 are presented in

table 2.
The Nusselt number is consistent with the theoretical scaling relation Nu ∼ Ra1/3f (Pr)

that arises when the heat flux is assumed to be independent of the plate separation (Malkus
1954). Ng et al. (2017) suggested that for Pr ≈ 1, a regime transition to a shear-dominated
boundary layer is underway at Ra = 109, but following Grossmann & Lohse (2000), this
transitional Ra can be expected to increase with Pr, as the smaller Reynolds number
stabilises the flow. Our results contrast with the effective scaling laws for laminar VC
derived by Shishkina (2016), where Nu ∼ Ra1/4 and Re ∼ Ra1/2Pr−1 for Pr � 1. This
difference is to be expected since our set-up is far from the laminar state for which the
scaling laws have been observed to hold (e.g. Wang et al. 2021).

In figure 3 we plot Nu against both Ra and the shear Reynolds number Reτ . Figure 3(a)
highlights the weak dependence of Nu on Pr, with higher Pr typically reducing Nu for a
fixed value of Ra. Note that a simple, single power-law fit is unlikely to adequately describe
the heat transfer outside of the currently accessible parameter range. Even within the data
presented here, the Pr = 1 cases appear to trend downwards relative to the Ra1/3 line on
figure 3(a) at higher values of Ra. This observation is consistent with Ng et al. (2017), who
attribute the decrease to a lower heat flux contribution from regions of weak shear. Later
in this section, and in Appendix A, we shall discuss at which parameter values we may
expect a transition to shear-driven turbulent boundary layers and how this would affect the
scaling of the Nusselt number.

Against Reτ in figure 3(b), we obtain a reasonable collapse for Nu by scaling with
Pr1/3 and observe a scaling close to Nu ∼ Reτ Pr1/3. Since this is consistent with the
high Pr limit of passive heat transport in turbulent boundary layers from Kader &
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Figure 3. Nusselt number against (a) Rayleigh number (compensated by Ra1/3), and (b) against shear
Reynolds number (compensated by Pr1/3).

Yaglom (1972), we are motivated to compare with passive scalar transport in other
turbulent flows. A recently proposed a scaling theory for passive scalar transport in plane
Couette flow suggests that Nu ∼ Re6/7

τ Pr1/2 (Yerragolam, Stevens, Verzicco, Lohse &
Shishkina, personal communication). This somewhat contrasts with the Pr1/3 collapse
observed in figure 3(b), although the higher Reτ values of our data do exhibit a local
scaling exponent less than one and close to 6/7.

We note that the Reynolds number scaling in table 2 is close to that reported by Lam
et al. (2002) from experiments of RBC with a range of large Prandtl numbers. Lam et al.
(2002) suggested that their results were consistent with the theoretical scaling relation
Re ∼ Ra4/9Pr−2/3 proposed for the regime (IVu) associated with Nu ∼ Ra1/3 in the ‘GL
theory’ of Grossmann & Lohse (2000, 2001), although Lam et al. (2002) acknowledge that
this measured effective Pr exponent shows a relatively large deviation from the theory.
Furthermore, these deviations varied depending on the definition of the Reynolds number
inferred from their experiments. We note that the Re ∼ Ra4/9Pr−2/3 scaling can also be
derived from dimensional analysis by assuming that the vertical velocity Vmax is solely
determined by the buoyancy flux per unit area Φ = gαqT and the plate separation H (as in
the ‘outer’ scaling of George & Capp 1979), and also assuming the Malkus (1954) scaling
Nu ∼ Ra1/3. As seen from table 2, this Re scaling does not perfectly capture the observed
data, and we cannot rule out the effect of multiple regimes on the effective scaling
exponent, as in the GL theory for RBC. More work is needed to provide a theoretical
understanding for these results.

As highlighted by McConnochie & Kerr (2017), the scaling relation Nu ∼ Ra1/3f (Pr)
implies a dimensional form for the heat flux that scales as FT ∼ ΔT4/3 for fixed fluid
properties. The heat flux is therefore independent of the bulk velocity Vmax, making the
shear-based model of (2.5) an inappropriate parameterisation for this regime. Indeed, as
shown in figure 4, we observe significant variation in the drag coefficient CD with both
Ra and Pr. In all cases we find a value much larger than the high-Re limit of CD = 2.5 ×
10−3, as used by Holland & Jenkins (1999). However, the scaling observed for the transfer
coefficient CT ≈ 0.1Pr−2/3 is consistent with the values used for parameterising heat and
salt fluxes in that work and subsequent melting studies. Using the definition from e.g.
(2.6a,b), we can express this result in terms of the Nusselt number as Nu ∼ Reτ Pr1/3 or
with dimensional quantities as qT ∼ Pr−2/3V∗Δ.

It may be tempting to associate the scaling Nu ∼ Reτ Pr1/3 with the appearance of
turbulent boundary layers in the sense of Prandtl and von Kàrmàn, where log-law profiles
appear in the mean velocity and temperature profiles. However, this is not the case for our
simulations. In figure 5 we plot these mean profiles from the simulations at Ra = 108, 109

with a logarithmic x-axis. From figure 5(a), it is clear that log layers are absent from the
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Figure 5. Mean profiles of (a) vertical velocity and (b) temperature on a logarithmic x axis. The x-axis is
scaled in terms of viscous wall units, such that x+ = xV∗/ν. Vertical velocity is scaled by the friction velocity
V∗, and temperature is scaled by the equivalent ‘friction temperature’ scale T∗ = qT/V∗. Solid lines denote
simulations at Ra = 108, whereas dotted lines represent the two simulations at Ra = 109. The dashed black
lines denote the linear profiles v̄ = V∗x+ and T̄ = T∗Prx+ in (a) and (b), respectively. The inset in (b) is a
zoom out of the main figure highlighting the results for Pr = 100.

velocity profile. Indeed, we are far from the critical Reynolds number for transition to such
a shear-driven boundary layer. As we explore in Appendix A, Rayleigh numbers above
1011 are likely to be necessary for this transition and such critical values only increase with
Pr. By contrast, the temperature profiles of figure 5(b) appear consistent with logarithmic
profiles. This observation is somewhat unsurprising, given the appearance of such profiles
in the ‘classical’ regime of RBC by Ahlers et al. (2012). A logarithmic profile in the
temperature field does not imply the presence of a shear-driven turbulent boundary layer.

Holland & Jenkins (1999) associate the scaling relation CT ∼ Pr−2/3 with the strong
influence of a molecular sublayer where conduction is the dominant mechanism of heat
transport. Motivated by this result, we proceed by investigating how the width of this
boundary layer depends on the control parameters of the VC system.

5. Conductive thermal boundary layer

In a statistically steady state, the mean velocity and temperature profiles of the system
satisfy

d
dx

u′u′ = ν
d2ū
dx2 + T̄ ŷ,

d
dx

u′T ′ = κ
d2T̄
dx2 , (5.1a,b)
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Figure 6. (a) Dimensionless conductive thermal boundary layer width δT/H against Reynolds number.
(b) Plot of the same data compensated by Re2/3Pr1/3. (c) Measured sublayer Rayleigh number Raδ as a function
of Prandtl number. Dashed lines in panel (a) mark the suggested Re−2/3Pr−1/3 scaling.

where an overbar denotes an average in y, z and time. Incompressibility ensures that ū ≡ 0,
so the mean velocity ū only has components in the wall-parallel directions. The second
equation of (5.1a,b) implies that the heat flux at any wall-normal location must be constant,
or in dimensionless terms

Nu = H
κΔ

(
u′T ′ − κ

dT̄
dx

)
= constant. (5.2)

Following Wells & Worster (2008) and in the spirit of Grossmann & Lohse (2000),
we divide the flow into thermal boundary layers, where the heat flux is dominated by
molecular diffusion of the mean, and bulk regions, where the heat flux is due to the ‘wind’
of turbulence. Precisely, we define the conductive thermal boundary layer width δT as the
wall-normal location where the conductive heat flux −κ dT̄/dx is equal to the turbulent
heat flux u′T ′.

In RBC at moderate Ra, there is a general consensus from existing literature (Ahlers
et al. 2009; Ching et al. 2019) that, scaling-wise, the thickness of the boundary layers
follows a laminar-like scaling according to Prandtl, Blasius and Pohlhausen, that is

δT

H
∼ Re−1/2f (Pr). (5.3)

For VC, Ng et al. (2015) suggested the application of the same form as (5.3) at moderate
Reynolds number, although only cited ‘fair’ agreement with their direct numerical
simulations reporting an effective Re-exponent of −0.60. The scaling (5.3) is applicable
in the case of a fully laminar flow as studied by Kuiken (1968), who derived an equivalent
scaling of δT/H ∼ Gr−1/4 in the limit of high Pr. The scaling laws Nu ∼ Ra1/4, Re ∼
Ra1/2Pr−1 proposed by Shishkina (2016) are also consistent with (5.3).

From our new simulations, we find a collapse of the data such that δT/H ∼ Pr−1/3f (Re),
as shown in figure 6. This Pr-dependence is well known from the similarity scaling of a
laminar boundary layer at a horizontal wall (e.g. Schlichting & Gersten 2016), applied to
the regimes of Grossmann & Lohse (2000) where the thermal dissipation rate is dominated
by boundary layer contributions. However, the Pr−1/3 factor does not arise in the laminar
solutions for VC considered by Kuiken (1968) and Shishkina (2016). The Pr−1/3 scaling is
often also observed in empirical data for turbulent flows (e.g. Kader 1981). Indeed, rather
than observing a laminar-like Re−1/2 scaling, our data are more consistent with

δT

H
∼ Re−2/3Pr−1/3, (5.4)

as shown in figure 6(b).
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For the case where Vmax ∼ UT , the scaling of (5.4) is equivalent to δT/H ∼ Ra−1/3 and
one can interpret the boundary layer width as being set by a critical Rayleigh number. This
is the ‘buoyancy-controlled sublayer’ scaling as described by Wells & Worster (2008),
similar to the marginally stable boundary layer argument of Malkus (1954) for RBC.
However, as we already mentioned earlier, Vmax does not simply scale with UT in our
simulations. In figure 6(c), we plot the ‘sublayer Rayleigh number’ Raδ = gαδ3

TΔ/νκ ,
and find that this value is not constant, but instead strongly depends on the Prandtl number.
Further studies are certainly needed to understand how to interpret these results. It remains
an open question whether a Pr-dependent critical Rayleigh number is appropriate for
limiting the conductive boundary layer width or whether the Reynolds number plays a
more significant role. The addition of a spanwise mean flow to the system, forming a
three-dimensional mixed convection set-up, would allow Re and Ra to be decoupled, and
reveal the inherent parameter dependence of the boundary layer.

6. Conclusions

Through three-dimensional direct numerical simulations, we have investigated the
multi-parameter dependence of convection in a vertical channel for Prandtl 1 ≤ Pr ≤ 100
and Rayleigh numbers 106 ≤ Ra ≤ 109. We observe Nusselt numbers consistent with the
classical Ra1/3 scaling combined with some weak but non-trivial dependence on the
Prandtl number. The Reynolds number associated with the large-scale ‘wind’ exhibits a
scaling of Ra0.491Pr−0.735, similar to that measured by Lam et al. (2002) in experiments
of RBC. The discrepancy between the observed scaling and the theoretical prediction of
Re ∼ Ra4/9Pr−2/3 from Grossmann & Lohse (2000, 2001) for RBC, however, suggests
there is more work to be done to build a theoretical understanding for the behaviour of
turbulent VC. We cannot rule out the possibility that our observations arise due to a mixed
scaling with contributions from multiple flow regimes.

As previously highlighted by McConnochie & Kerr (2017), such a scaling for Nu is
inconsistent with the commonly used heat flux parameterisation of Holland & Jenkins
(1999). Our simulations highlight that this discrepancy is due to a highly variable drag
coefficient in VC that depends on both of the control parameters Ra and Pr. The absence
of logarithmic velocity profiles suggests that the lack of shear-driven turbulent boundary
layers is to blame for the large variation in the drag coefficient. By considering the critical
Reynolds number of Landau & Lifshitz (1987) in Appendix A, we infer that transition
to such turbulent boundary layers will only occur for Ra > 4 × 1011 × Pr1.89. However,
more work is needed to understand how this transition occurs, and whether local scaling
exponents for Nu become impacted by multiple regimes and logarithmic corrections,
as is the case for RBC (Grossmann & Lohse 2011) and convection from rough walls
(MacDonald et al. 2019).

In contrast to the variation in the drag coefficient, the transfer coefficient (or
modified Stanton number) satisfies CT ≈ 0.1Pr−2/3, matching values used in ice–ocean
parameterisations. In other words, the friction velocity V∗ in this flow seems to adjust such
that the heat flux scales as qT ∼ V∗Δ for each given value of Pr. The strong dependence
of CT on Pr suggests that the conductive sublayer at the wall plays an important role in
the total heat flux. We diagnose the width of this sublayer from the simulations and find
the scaling δT/H ∼ Re−2/3Pr−1/3 to be consistent with our data. The emergent Rayleigh
number Raδ associated with this sublayer is found to depend strongly on Prandtl number,
questioning the notion of marginal stability at a critical value of Raδ . This is similar to
RBC, where the marginal stability theory of Malkus (1954) is also insufficient to fully
describe the control parameter dependence of the heat flux (Ahlers et al. 2009).
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Understanding how generic these results are will be vital for environmental applications.
For example, Jackson et al. (2020) recently highlighted the role of mean horizontal flows in
enhancing heat and salt transport at melting ice faces. In such a mixed convection scenario,
Re is not necessarily coupled to Ra as it is in vertical convection. Thus understanding the
underlying parameter dependence is an important topic for future research. As reviewed
by Malyarenko et al. (2020), many factors not considered here can also be important for
the ablation of ice in the ocean. In particular, the presence of both temperature and salinity
variations and the dynamic melting condition may modify the nature of the boundary
layers in this geophysical setting.
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Appendix A. Boundary layer transition prediction

In this appendix, we provide an estimate for the Pr-dependence of the transition to a
shear-driven turbulent boundary layer, based on the critical Reynolds number criterion
of Landau & Lifshitz (1987). From each simulation, we can calculate a Reynolds number
Reδ∗ based on the displacement thickness δ∗ by

δ∗ =
∫ xmax

0
1 − v̄(x)

Vmax
dx, Reδ∗ = Vmaxδ

∗

ν
, (A1a,b)

where Vmax is the maximum vertical velocity and xmax is the wall-normal location of this
maximum. Performing the same linear regression as described in § 4 on this data, we
obtain the power-law relation

Reδ∗ = 0.159Ra0.294Pr−0.557. (A2)

Assuming (somewhat ambitiously) that this scaling remains valid up to a critical Reynolds
number of Reδ∗ = Rec = 420, we infer a Pr-dependent critical Rayleigh number of

Rac = 4.27 × 1011 × Pr1.89. (A3)

For Pr = 1, this gives a value within the transition range of 3.8 × 1010 � Rac � 1012

predicted by Ng et al. (2017) in figure 10 of that paper.
In the context of a melting vertical ice face in the ocean, we can use (A3) to estimate the

length scales at which a shear-driven boundary layer may be relevant in describing the salt
flux towards the ice due to natural convection. Although the ice can be considered salt free,
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at a water temperature of 2 ◦C the interfacial concentration of salinity is approximately
15 g kg−1 (see e.g. Kerr & McConnochie 2015). Combined with an ambient ocean salinity
of 35 g kg−1, a haline contraction coefficient of β = 7.86 × 10−4 (g kg−1)−1, a kinematic
viscosity of ν = 1 × 10−6 m2 s−1 and a Schmidt number Sc = ν/κS = 2600, we find

Rac = gβH3
c ΔS

νκS
≈ 1018 ≈ 4 × 1014H3

c , implying that Hc ≈ 13.5 m. (A4)

Note that Hc is the critical horizontal length scale. In the context of convection at an ice
face, where the domain is essentially unbounded in one direction, this is best compared
with the local plume width. Following Wells & Worster (2008), the plume width H can be
linearly related to the height Z from the base of the ice by H ≈ 0.1Z. This relation is based
on the constant entrainment rate assumption of classical plume theory as developed by
Morton, Taylor & Turner (1956). The critical vertical position for a shear-driven boundary
layer is then Zc = 135 m, associated with a Rayleigh number of Raz = 1021. This matches
the prediction of Kerr & McConnochie (2015) who used GL theory to estimate the
transition. Over such large vertical distances, other physical phenomena are likely to play
an important role in the dynamics, such as ambient stratification (McConnochie & Kerr
2016) or the pressure dependence of the melt condition at the boundary of the ice (Hewitt
2020). It is therefore unlikely that a shear-driven boundary layer would develop at an ice
face solely due to natural convection, without some external forcing such as subglacial
discharge or a mean horizontal current.

Appendix B. Turbulence budgets

Finally, to gain more insight into the nature of the flow as Ra and Pr vary, we present results
from the turbulence budgets of our simulations and describe how the turbulent kinetic and
thermal dissipation rates are related to the heat flux in the system. From the governing
equations, we can construct evolution equations for the kinetic energy of the mean flow
EK , the turbulent kinetic energy E′

K , and the equivalent quantities for the temperature field

EK = 1
2

〈
|ū|2

〉
, EK

′ = 1
2

〈∣∣u′∣∣2
〉
, ET = 1

2

〈
|T̄|2

〉
, ET

′ = 1
2

〈
|T ′|2

〉
, (B1a–d)

whereas in the main text an overbar denotes an average over y and z, and angle brackets
denote a domain average. The evolution equations for the kinetic energies read

dEK

dt
= −PS − ε̄ + q̄,

dEK
′

dt
= PS − ε′ + q′, (B2a,b)

where the shear production PS, which transfers energy between turbulence and the mean
flow, is defined as

PS = −u′u′ · ∂ū
∂x

, (B3)

the dissipation rates of mean KE and TKE are

ε̄ = ν

〈∣∣∣∣∂ū
∂x

∣∣∣∣
2
〉

, ε′ = ν

〈
∂ui

∂xj

∂ui

∂xj

〉
, (B4a,b)

and the vertical heat fluxes due to the mean and turbulent profiles are given by

q̄ = gα
〈
v̄T̄

〉
, q′ = gα

〈
v′T ′〉 . (B5a,b)
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Figure 7. Relative contributions to the heat flux due to the energy budget terms. (a,b) Plot of the kinetic energy
budget terms as a fraction of the total vertical heat flux; (c,d) plot of the thermal dissipation rates as a fraction
of the total horizontal heat flux. (a,c) Show variation with Rayleigh number for simulations at fixed Pr = 10,
(b,d) show variation with Prandtl number for simulations at fixed Ra = 108.

The mean square temperature and the temperature variance evolve according to similar
equations, namely

dET

dt
= −PT − χ̄ + qT ,

dET
′

dt
= PT − χ ′. (B6a,b)

Here, PT is an analogous term to the shear production described above, and quantifies the
interaction between the mean temperature profile and the turbulent fluctuations

PT = −
〈
u′T ′ ∂T̄

∂x

〉
. (B7)

The thermal dissipation rates are given by

χ = κ

〈(
∂T̄
∂x

)2〉
, χ ′ = κ

〈
|∇T|2

〉
, (B8a,b)

and qb is the mean horizontal heat flux through the boundaries

qT = κ

2

(
∂T̄
∂x

∣∣∣∣
x=0

+ ∂T̄
∂x

∣∣∣∣
x=H

)
= NuH

κΔT
. (B9)

In the statistically steady states reached by our simulations, the energies become
constant in time, such that we get the following relations: from (B2a,b) and (B6a,b)

q̄ = PS + ε̄, ε′ = PS + q′, qT = PT + χ̄ , PT = χ ′. (B10a–d)
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These equations highlight how the total vertical heat flux qv = q̄ + q′ can be related to the
kinetic energy dissipation rate, and how the horizontal heat flux qT can be related to the
thermal dissipation rate

qv = q̄ + q′ = ε̄ + ε′, qT = χ̄ + χ ′. (B11a,b)
Figure 7 plots the relative contributions of each of these budget terms to the heat fluxes

as a function of Ra and Pr. For the kinetic energy budget terms (shown in (a,b)), we
observe that the relative contributions of ε′ and q̄ increase with Ra and decrease with Pr.
This also coincides with an increase in the relative magnitude of the shear production PS.
Since PS is positive in all our simulations, this means that energy is always (on average)
transferred from the mean flow to the turbulent perturbations. The trends observed in
figure 7(a,b) suggest that the kinetic energy budget terms may be most sensitive to
the Reynolds number of the flow. By contrast, the relative contributions of the thermal
dissipation rates plotted in figure 7(c) show very weak dependence on Ra. For Pr fixed at
10, the dissipation of the mean temperature accounts for 60 % of the horizontal heat flux,
and this fraction changes by less than 3 % over three decades of Ra. As Pr increases the
relative contribution of χ̄ becomes greater. This highlights once again the key role that the
thin, conductive boundary layers, whose strong gradients contribute to χ̄ , have on the heat
flux in VC at high Pr.
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