Hostname: page-component-8448b6f56d-qsmjn Total loading time: 0 Render date: 2024-04-18T05:26:57.203Z Has data issue: false hasContentIssue false

Cognitive Control, Learning, and Clinical Motor Ratings Are Most Highly Associated with Basal Ganglia Brain Volumes in the Premanifest Huntington’s Disease Phenotype

Published online by Cambridge University Press:  16 February 2017

Maria B. Misiura
Affiliation:
Department of Psychology, Georgia State University, Atlanta, Georgia
Spencer Lourens
Affiliation:
University of Iowa Carver College of Medicine, Iowa City, Iowa
Vince D. Calhoun
Affiliation:
The Mind Research Network, Albuquerque, New Mexico Department of Electrical and Computer Engineering, The University of New Mexico, Albuquerque, New Mexico
Jeffrey Long
Affiliation:
University of Iowa Carver College of Medicine, Iowa City, Iowa
Jeremy Bockholt
Affiliation:
University of Iowa Carver College of Medicine, Iowa City, Iowa
Hans Johnson
Affiliation:
University of Iowa Carver College of Medicine, Iowa City, Iowa
Ying Zhang
Affiliation:
University of Iowa Carver College of Medicine, Iowa City, Iowa
Jane S. Paulsen*
Affiliation:
University of Iowa Carver College of Medicine, Iowa City, Iowa
Jessica A. Turner
Affiliation:
Department of Psychology, Georgia State University, Atlanta, Georgia
Jingyu Liu
Affiliation:
The Mind Research Network, Albuquerque, New Mexico
Betul Kara
Affiliation:
Department of Biology, Georgia State University, Atlanta, Georgia
Elizabeth Fall
Affiliation:
Department of Psychology, Georgia State University, Atlanta, Georgia
*
Correspondence and reprint requests to: Jane S. Paulsen,305 Medical Education Building, 200 Newton Road, Iowa City, IA 52242. E-mail:jane-paulsen@uiowa.edu

Abstract

Objectives: Huntington’s disease (HD) is a debilitating genetic disorder characterized by motor, cognitive and psychiatric abnormalities associated with neuropathological decline. HD pathology is the result of an extended chain of CAG (cytosine, adenine, guanine) trinucleotide repetitions in the HTT gene. Clinical diagnosis of HD requires the presence of an otherwise unexplained extrapyramidal movement disorder in a participant at risk for HD. Over the past 15 years, evidence has shown that cognitive, psychiatric, and subtle motor dysfunction is evident decades before traditional motor diagnosis. This study examines the relationships among subcortical brain volumes and measures of emerging disease phenotype in prodromal HD, before clinical diagnosis. Methods: The dataset includes 34 cognitive, motor, psychiatric, and functional variables and five subcortical brain volumes from 984 prodromal HD individuals enrolled in the PREDICT HD study. Using cluster analyses, seven distinct clusters encompassing cognitive, motor, psychiatric, and functional domains were identified. Individual cluster scores were then regressed against the subcortical brain volumetric measurements. Results: Accounting for site and genetic burden (the interaction of age and CAG repeat length) smaller caudate and putamen volumes were related to clusters reflecting motor symptom severity, cognitive control, and verbal learning. Conclusions: Variable reduction of the HD phenotype using cluster analysis revealed biologically related domains of HD and are suitable for future research with this population. Our cognitive control cluster scores show sensitivity to changes in basal ganglia both within and outside the striatum that may not be captured by examining only motor scores. (JINS, 2017, 23, 159–170)

Type
Research Articles
Copyright
Copyright © The International Neuropsychological Society 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alexander, G.E., & Crutcher, M.D. (1990). Functional architecture of basal ganglia circuits: Neural substrates of parallel processing. Trends in Neurosciences, 13(7), 266271.Google Scholar
Aylward, E.H., Harrington, D.L., Mills, J.A., Nopoulos, P.C., Ross, C.A., Long, J.D., & the PREDICT-HD Investigators and Coordinators of the Huntington Study Group. (2013). Regional atrophy associated with cognitive and motor function in prodromal Huntington disease. Journal of Huntington’s Disease, 2(4), 477489. https://doi.org/10.3233/JHD-130076 Google Scholar
Aylward, E.H., Liu, D., Nopoulos, P.C., Ross, C.A., Pierson, R.K., Mills, J.A., & Paulsen, J.S. (2011). Striatal volume contributes to the prediction of onset of Huntington disease in incident cases. Biological Psychiatry, 71(9), 822828. https://doi.org/10.1016/j.biopsych.2011.07.030 Google Scholar
Aylward, E.H., Nopoulos, P.C., Ross, C.A., Langbehn, D.R., Pierson, R.K., … Mills, J.A., Coordinators of Huntington Study, G. (2011). Longitudinal change in regional brain volumes in prodromal Huntington disease. Journal of Neurology, Neurosurgery, and Psychiatry, 82(4), 405410. https://doi.org/10.1136/jnnp.2010.208264 Google Scholar
Beglinger, L.J., Paulsen, J.S., Watson, D.B., Wang, M.C., Duff, K., Langbehn, D.R., … Stout, J.C. (2008). Obsessive and compulsive symptoms in prediagnosed Huntington’s disease. The Journal of Clinical Psychiatry, 69(11), 17581765.Google Scholar
Dalley, J.W., Everitt, B.J., & Robbins, T.W. (2011). Impulsivity, compulsivity, and top-down cognitive control. Neuron, 69(4), 680694. https://doi.org/http://dx.doi.org/10.1016/j.neuron.2011.01.020 Google Scholar
Duff, K., Paulsen, J.S., Beglinger, L.J., Langbehn, D.R., Stout, J.C., & Predict-HD Investigators of the Huntington Study Group. (2007). Psychiatric symptoms in Huntington’s disease before diagnosis: The predict-HD study. Biological Psychiatry, 62(12), 13411346. https://doi.org/10.1016/j.biopsych.2006.11.034 CrossRefGoogle ScholarPubMed
Elliott, R. (2003). Executive functions and their disorders: Imaging in clinical neuroscience. British Medical Bulletin, 65(1), 4959. https://doi.org/10.1093/bmb/65.1.49 Google Scholar
Epping, E.A., Kim, J.-I., Craufurd, D., Brashers-Krug, T.M., Anderson, K.E., McCusker, E., & Paulsen, J. (2015). Longitudinal psychiatric symptoms in prodromal Huntington’s disease: A decade of data. American Journal of Psychiatry, 173(2), 184192. https://doi.org/10.1176/appi.ajp.2015.14121551 Google Scholar
Epping, E.A., Mills, J.A., Beglinger, L.J., Fiedorowicz, J.G., Craufurd, D., Smith, M.M., & Paulsen, J.S. (2013). Characterization of depression in prodromal Huntington disease in the neurobiological predictors of HD (PREDICT-HD) study. Journal of Psychiatric Research, 47(10), 14231431. https://doi.org/10.1016/j.jpsychires.2013.05.026 Google Scholar
Evans, S.J., Douglas, I., Rawlins, M.D., Wexler, N.S., Tabrizi, S.J., & Smeeth, L. (2013). Prevalence of adult Huntington’s disease in the UK based on diagnoses recorded in general practice records. Journal of Neurology, Neurosurgery, & Psychiatry, 84(10), 11561160. https://doi.org/10.1136/jnnp-2012-304636 Google Scholar
Fennema-Notestine, C., Gamst, A.C., Quinn, B.T., Pacheco, J., Jernigan, T.L., Thal, L., & Gollub, R.L. (2007). Feasibility of multi-site clinical structural neuroimaging studies of aging using legacy data. Neuroinformatics, 5(4), 235245. https://doi.org/10.1007/s12021-007-9003-9 Google Scholar
Fisher, E.R., & Hayden, M.R. (2014). Multisource ascertainment of Huntington disease in Canada: Prevalence and population at risk. Movement Disorders, 29(1), 105114. https://doi.org/10.1002/mds.25717 Google Scholar
Ghayoor, A., Vaidya, J.G., & Johnson, H.J. (2013). Development of a novel constellation based landmark detection algorithm. Proc SPIE, 8669, 86693F86693F–6.CrossRefGoogle Scholar
Halliday, G.M., McRitchie, D.A., Macdonald, V., Double, K.L., Trent, R.J., & McCusker, E. (1998). Regional specificity of brain atrophy in Huntington’s disease. Experimental Neurology, 154(2), 663672. https://doi.org/10.1006/exnr.1998.6919 Google Scholar
Harrington, D.L., Liu, D., Smith, M.M., Mills, J.A., Long, J.D., Aylward, E.H., &&Paulsen, J.S. (2014). Neuroanatomical correlates of cognitive functioning in prodromal Huntington disease. Brain and Behavior, 4(1), 2940. https://doi.org/10.1002/brb3.185 Google Scholar
Harrington, D.L., Rubinov, M., Durgerian, S., Mourany, L., Reece, C., Koenig, K., & Rao, S.M. (2015). Network topology and functional connectivity disturbances precede the onset of Huntington’s disease. Brain, 138(8), 23322346. https://doi.org/10.1093/brain/awv145 CrossRefGoogle ScholarPubMed
Harrington, D.L., Smith, M.M., Zhang, Y., Carlozzi, N.E., Paulsen, J.S., & PREDICT-HD Investigators of the Huntington Study Group. (2012). Cognitive domains that predict time to diagnosis in prodromal Huntington disease. Journal of Neurology, Neurosurgery, & Psychiatry, 83(6), 612619. https://doi.org/10.1136/jnnp-2011-301732 CrossRefGoogle ScholarPubMed
Herben-Dekker, M., van Oostrom, J. C.H., Roos, R.A.C., Jurgens, C.K., Witjes-Ané, M.-N.W., Kremer, H.P.H., … Spikman, J.M. (2014). Striatal metabolism and psychomotor speed as predictors of motor onset in Huntington’s disease. Journal of Neurology, 261(7), 13871397.Google Scholar
Jech, R., Klempir, J., Vymazal, J., Zidovska, J., Klempirova, O., Ruzicka, E., && Roth, J. (2007). Variation of selective gray and white matter atrophy in Huntington’s disease. Movement Disorders, 22(12), 17831789. https://doi.org/10.1002/mds.21620 Google Scholar
Joost, M.H., Raymund, C.H.V.O., Leenders, K.L., & Spikman, J.M. (2014). Striatal metabolism and psychomotor speed as predictors of motor onset in Huntington’s disease, 1387–1397. https://doi.org/10.1007/s00415-014-7350-7.Google Scholar
Jovicich, J., Czanner, S., Han, X., Salat, D., van der Kouwe, A., Quinn, B., & Fischl, B. (2009). MRI-derived measurements of human subcortical, ventricular and intracranial brain volumes: Reliability effects of scan sessions, acquisition sequences, data analyses, scanner upgrade, scanner vendors and field strengths. Neuroimage, 46(1), 177192. https://doi.org/10.1016/j.neuroimage.2009.02.010 Google Scholar
Julien, C.L., Thompson, J.C., Wild, S., Yardumian, P., Snowden, J.S., Turner, G., &&Craufurd, D. (2007). Psychiatric disorders in preclinical Huntington’s disease. Journal of Neurology, Neurosurgery, and Psychiatry, 78(9), 939943. https://doi.org/10.1136/jnnp.2006.103309 Google Scholar
Kim, E.Y., Magnotta, V.A., Liu, D., & Johnson, H.J. (2014). Stable Atlas-based Mapped Prior (STAMP) machine-learning segmentation for multicenter large-scale MRI data. Magnetic Resonance Imaging, 32(7), 832844. https://doi.org/http://dx.doi.org/10.1016/j.mri.2014.04.016 Google Scholar
Kloppel, S., Chu, C., Tan, G.C., Draganski, B., Johnson, H., Paulsen, J.S., & PREDICT-HD Investigators of the Huntington Study Group. (2009). Automatic detection of preclinical neurodegeneration: Presymptomatic Huntington disease. Neurology, 72(5), 426431. https://doi.org/10.1212/01.wnl.0000341768.28646.b6 Google Scholar
Klöppel, S., Stonnington, C.M., Petrovic, P., Mobbs, D., Tüscher, O., Craufurd, D., & Frackowiak, R.S. (2010). Irritability in pre-clinical Huntington’s disease. Neuropsychologia, 48(2), 549557. https://doi.org/10.1016/j.neuropsychologia.2009.10.016 CrossRefGoogle ScholarPubMed
Koenig, K.A., Lowe, M.J., Harrington, D.L., Lin, J., Durgerian, S., Mourany, L., & Rao, S.M. (2014). Functional connectivity of primary motor cortex is dependent on genetic burden in prodromal Huntington disease. Brain Connectivity, 4(7), 535546. https://doi.org/10.1089/brain.2014.0271 Google Scholar
Leisman, G., Braun-Benjamin, O., & Melillo, R. (2014). Cognitive-motor interactions of the basal ganglia in development. Frontiers in Systems Neuroscience, 8, 16. https://doi.org/10.3389/fnsys.2014.00016 Google Scholar
Levy, M.L., Cummings, J.L., Fairbanks, L.A., Masterman, D., Miller, B.L., Craig, A.H., & Litvan, I. (1998). Apathy is not depression. The Journal of Neuropsychiatry and Clinical Neurosciences, 10(3), 314319.Google Scholar
Litvan, I., Paulsen, J.S., Mega, M.S., & Cummings, J.L. (1998). Neuropsychiatric assessment of patients with hyperkinetic and hypokinetic movement disorders. Archives of Neurology, 55(10), 13131319. https://doi.org/10.1001/archneur.55.10.1313 Google Scholar
Malejko, K., Weydt, P., Sussmuth, S.D., Gron, G., Landwehrmeyer, B.G., & Abler, B. (2014). Prodromal Huntington disease as a model for functional compensation of early neurodegeneration. PLoS One, 9(12), e114569. https://doi.org/10.1371/journal.pone.0114569 CrossRefGoogle Scholar
Marin, R.S. (1991). Apathy: A neuropsychiatric syndrome. The Journal of Neuropsychiatry and Clinical Neurosciences, 3(3), 243254.Google Scholar
Martinez-Horta, S., Perez-Perez, J., van Duijn, E., Fernandez-Bobadilla, R., Carceller, M., Pagonabarraga, J., & Kulisevsky, J. (2016). Neuropsychiatric symptoms are very common in premanifest and early stage Huntington’s Disease. Parkinsonism & Related Disorders, 25, 5864. https://doi.org/10.1016/j.parkreldis.2016.02.008 Google Scholar
Meyer, A., Zimmermann, R., Gschwandtner, U., Hatz, F., Bousleiman, H., Schwarz, N., && Fuhr, P. (2014). Apathy in Parkinson’s disease is related to executive function, gender and age but not to depression. Frontiers in Aging Neuroscience, 6, 350. https://doi.org/10.3389/fnagi.2014.00350 Google Scholar
Moorhead, T.W., Gountouna, V.E., Job, D.E., McIntosh, A.M., Romaniuk, L., Lymer, G.K., & Lawrie, S.M. (2009). Prospective multi-centre Voxel Based Morphometry study employing scanner specific segmentations: Procedure development using CaliBrain structural MRI data. BMC Medical Imaging, 9(1), 8. https://doi.org/10.1186/1471-2342-9-8 Google Scholar
Naarding, P., Janzing, J.G.E., Eling, P., van der Werf, S., & Kremer, B. (2009). Apathy is not depression in Huntington’s disease. The Journal of Neuropsychiatry and Clinical Neurosciences, 21(3), 266270. https://doi.org/10.1176/appi.neuropsych.21.3.266 CrossRefGoogle Scholar
O’Rourke, J.J., Beglinger, L.J., Smith, M.M., Mills, J., Moser, D.J., Rowe, K.C., & the PREDICT-HD Investigators of the Huntington Study Group. (2011). The Trail Making Test in Prodromal Huntington Disease: Contributions of disease progression to test performance. Journal of Clinical and Experimental Neuropsychology, 33(5), 567579. https://doi.org/10.1080/13803395.2010.541228 Google Scholar
Papp, K.V., Snyder, P.J., Mills, J.A., Duff, K., Westervelt, H.J., Long, J.D., & Paulsen, J.S. (2013). Measuring executive dysfunction longitudinally and in relation to genetic burden, brain volumetrics, and depression in prodromal Huntington disease. Archives of Clinical Neuropsychology, 28(2), 156168. https://doi.org/10.1093/arclin/acs105 CrossRefGoogle ScholarPubMed
Paulsen, J.S. (2010). Early detection of Huntington disease. Future Neurology, 5(1). 10.2217/fnl.09.78. https://doi.org/10.2217/fnl.09.78 Google Scholar
Paulsen, J.S., Langbehn, D.R., Stout, J.C., Aylward, E., Ross, C.A., Nance, M., & Hayden, M. (2008). Detection of Huntington’s disease decades before diagnosis: The Predict-HD study. Journal of Neurology, Neurosurgery, and Psychiatry, 79(8), 874880. https://doi.org/10.1136/jnnp.2007.128728 Google Scholar
Paulsen, J.S., Long, J.D., Johnson, H.J., Aylward, E.H., Ross, C.A., … Williams, J.K., PREDICT-HD Investigators and Coordinators of the Huntington Study Group. (2014). Clinical and biomarker changes in premanifest Huntington disease show trial feasibility: A decade of the PREDICT-HD study. Frontiers in Aging Neuroscience, 6, 78. https://doi.org/10.3389/fnagi.2014.00078 Google Scholar
Paulsen, J.S., Long, J.D., Ross, C.A., Harrington, D.L., Erwin, C.J., Williams, J.K., & Barker, R.A. (2014). Prediction of manifest Huntington’s disease with clinical and imaging measures: A prospective observational study. The Lancet Neurology, 13(12), 11931201. https://doi.org/10.1016/s1474-4422(14)70238-8 Google Scholar
Paulsen, J.S., Magnotta, V.A., Mikos, A.E., Paulson, H.L., Penziner, E., Andreasen, N.C., && Nopoulos, P.C. (2006). Brain structure in preclinical Huntington’s disease. Biological Psychiatry, 59(1), 5763. https://doi.org/10.1016/j.biopsych.2005.06.003 Google Scholar
Paulsen, J.S., Nopoulos, P.C., Aylward, E., Ross, C.A., Johnson, H., Magnotta, V.A., & Nance, M. (2010). Striatal and white matter predictors of estimated diagnosis for Huntington disease. Brain Research Bulletin, 82(3-4), 201207. https://doi.org/10.1016/j.brainresbull.2010.04.003 Google Scholar
Paulsen, J.S., Zhao, H., Stout, J.C., Brinkman, R.R., Guttman, M., Ross, C.A., & Shoulson, I. (2001). Clinical markers of early disease in persons near onset of Huntington’s disease. Neurology, 57(4), 658662.Google Scholar
Pla, P., Orvoen, S., Saudou, F., David, D.J., & Humbert, S. (2014). Mood disorders in Huntington’s disease: From behavior to cellular and molecular mechanisms. Frontiers in Behavioral Neuroscience, 8, 135. https://doi.org/10.3389/fnbeh.2014.00135 Google Scholar
R: A language and environment for statistical computing . (2015). Vienna, Austria: R Foundation for Statistical Computing. Retrieved from http://www.R-project.org/ Google Scholar
Reilmann, R., Leavitt, B.R., & Ross, C.A. (2014). Diagnostic criteria for Huntington’s disease based on natural history. Movement Disorders, 29(11), 13351341. https://doi.org/10.1002/mds.26011 Google Scholar
Snowden, J.S., Craufurd, D., Thompson, J., & Neary, D. (2002). Psychomotor, executive, and memory function in preclinical Huntington’s disease. Journal of Clinical & Experimental Neuropsychology, 24(2), 133.Google Scholar
Stout, J.C., Paulsen, J.S., Queller, S., Solomon, A.C., Whitlock, K.B., Campbell, J.C., & Aylward, E.H. (2011). Neurocognitive signs in prodromal Huntington disease. Neuropsychology, 25(1), 114. https://doi.org/10.1037/a0020937 Google Scholar
Tabrizi, S.J., Scahill, R.I., Durr, A., Roos, R.A.C., Leavitt, B.R., Jones, R., & Stout, J.C. (2011). Biological and clinical changes in premanifest and early stage Huntington’s disease in the TRACK-HD study: The 12-month longitudinal analysis. The Lancet Neurology, 10(1), 3142. https://doi.org/10.1016/s1474-4422(10)70276-3 CrossRefGoogle Scholar
Unschuld, P.G., Joel, S.E., Liu, X., Shanahan, M., Margolis, R.L., Biglan, K.M., & Ross, C.A. (2012). Impaired cortico-striatal functional connectivity in prodromal Huntington’s Disease. Neuroscience Letters, 514(2), 204209. https://doi.org/10.1016/j.neulet.2012.02.095 CrossRefGoogle ScholarPubMed
Vaccarino, A.L., Sills, T., Anderson, K.E., Bachoud-Levi, A.C., Borowsky, B., Craufurd, D., & Evans, K. (2011). Assessment of depression, anxiety and apathy in prodromal and early Huntington disease. PLoS Currents, 3, RRN1242. https://doi.org/10.1371/currents.RRN1242 Google Scholar
van den Bogaard, S.J.A., Dumas, E.M., Acharya, T.P., Johnson, H., Langbehn, D.R., Scahill, R.I., & TRACK-HD Investigator Group. (2011). Early atrophy of pallidum and accumbens nucleus in Huntington’s disease. Journal of Neurology, 258(3), 412420. https://doi.org/10.1007/s00415-010-5768-0 Google Scholar
Verbeke, G., & Molenberghs, G. (2000). Linear mixed models for longitudinal data. New York: Springer.Google Scholar
Walker, F.O. (20). Huntington’s disease. The Lancet, 369(9557), 218228. https://doi.org/10.1016/S0140-6736(07)60111-1 Google Scholar
Ward, J.H. (1963). Hierarchical grouping to optimize an objective function. Journal of the American Statistical Association, 58(301), 236244.CrossRefGoogle Scholar
Whalley, C.H., & Wardlaw, M.J. (2001). Accuracy and reproducibility of simple cross-sectional linear and area measurements of brain structures and their comparison with volume measurements. Neuroradiology, 43(4), 263271. https://doi.org/10.1007/s002340000437 Google Scholar
Williams, J.K., Kim, J.-I., Downing, N., Farias, S., Harrington, D.L., Long, J.D., & Paulsen, J.S. (2015). Everyday cognition in prodromal Huntington disease. Neuropsychology, 29(2), 255267. https://doi.org/10.1037/neu0000102 Google Scholar
Wolf, R.C., Thomann, P.A., Thomann, A.K., Vasic, N., Wolf, N.D., Landwehrmeyer, G.B., && Orth, M. (2013). Brain structure in preclinical Huntington’s disease: A multi-method approach. Neurodegenerative Diseases, 12(1), 1322.Google Scholar
Young Kim, E., & Johnson, H.J. (2013). Robust multi-site MR data processing: Iterative optimization of bias correction, tissue classification, and registration. Frontiers in Neuroinformatics, 7, 29. https://doi.org/10.3389/fninf.2013.00029 CrossRefGoogle ScholarPubMed
Zhang, Y., Long, J.D., Mills, J.A., Warner, J.H., Lu, W., & Paulsen, J.S., PREDICT-HD Investigators and Coordinators of the Huntington Study Group. (2011). Indexing disease progression at study entry with individuals at-risk for Huntington disease. American Journal of Medical Genetics. Part B, Neuropsychiatric Genetics, 156(7), 751763. https://doi.org/10.1002/ajmg.b.31232 Google Scholar
Supplementary material: File

Misiura supplementary material

Misiura supplementary material 1

Download Misiura supplementary material(File)
File 23.8 KB