FINDING COMMON FIXED POINTS OF NONEXPANSIVE MAPPINGS BY ITERATION

B.E. Rhoades

In this paper it is shown that a particular iteration scheme converges weakly to a common fixed point of a finite set of nonexpansive mappings. This result is an improvement of two related theorems in the literature.

Let X be a Banach space, C a convex subset of X. Let T_1, T_2, \ldots, T_k be a family of nonexpansive selfmaps of C. Kuhfittig [4] defined the following iteration scheme. Let $U_0 = I$, I the identity map, $0 < \alpha < 1$,

(1)

$$U_{1} = (1 - \alpha)I + \alpha T_{1}U_{0},$$

$$U_{2} = (1 - \alpha)I + \alpha T_{2}U_{1},$$

$$\dots$$

$$U_{k} = (1 - \alpha)I + \alpha T_{k}U_{k-1},$$

$$x_{0} \in C, \ x_{n+1} = (1 - \alpha)x_{n} + \alpha T_{k}U_{k-1}x_{n}, \ n \ge 0.$$

Define $F = \bigcap_{i=1}^{k} F(T_i)$, where $F(T_i)$ denotes the fixed point set of T_i . Then, if each T_i is a nonexpansive selfmap of C, with $F \neq \emptyset$, C compact, X strictly convex, Kuhfittig [4] showed that (1) converges strongly to a common fixed point of the family. His second result is that, if X is uniformly convex and satisfies Opial's condition and C is closed and convex, then (1) converges weakly to a fixed point in F.

A Banach space is said to satisfy Opial's condition if, whenever $\{x_n\}$ is a convergent sequence in X with limit x_0 , then, for any $x \neq x_0$

$$\liminf_{n\to\infty} ||x_n - x_0|| < \liminf_{n\to\infty} ||x_n - x||.$$

The purpose of this note is to improve [4, Theorem 2] by removing the hypothesis of Opial's condition.

The result to be proved is the following.

Received 17th February, 2000

Copyright Clearance Centre, Inc. Serial-fee code: 0004-9727/00 \$A2.00+0.00.

B.E. Rhoades

THEOREM. Let X be a uniformly convex Banach space, C a closed convex subset of X, T_1, T_2, \ldots, T_k a family of nonexpansive selfmaps of C with $F \neq \emptyset$. Then $\{x_n\}$, defined by (1), converges weakly to a common fixed point of the family.

The proof of the Theorem will require the following lemmas.

Let C be a subset of a Banach space X, $T: C \to X$, $x_0 \in C$. Then the Mann iterative scheme $M(x_0, t_n, T)$ is the sequence $\{x_n\}$ defined by $x_{n+1} = (1 - t_n)x_n + t_n T x_n$. If the sequence $\{t_n\}$ satisfies $0 \leq t_n \leq b < 1$, $\sum t_n = \infty$, and $x_n \in C$ for each positive integer n, then $M(x_0, t_n, T)$ is said to satisfy condition A.

LEMMA 1. [3, Lemma 2] Let C be a subset of a Banach space X, T a nonexpansive map from C into X. If $M(x_0, t_n, T)$ satisfies condition A and is bounded, then $\lim ||x_n - Tx_n|| = 0.$

Let C be a closed bounded convex subset of a uniformly convex space X. A map T is said to be semicontractive if there exists a map $V: C \times C \to X$ such that T(u) = V(u, u) for each $u \in C$ while, (a) for each fixed v in C, $V(\cdot, v)$ is nonexpansive from C to X, and (b) for each fixed $u \in C$, $V(u, \cdot)$ is completely continuous from C to X uniformly for u in bounded subsets of C.

LEMMA 2. [2, Theorem 3] Let X be uniformly convex, C a closed bounded convex subset of X, T a semicontractive mapping of C into X. Then:

- (a) (I T) is demiclosed, and
- (b) (I-T)(C) is closed in X.

PROOF OF THE THEOREM: From [4], the U_i and T_iU_{i-1} are nonexpansive and $\{T_1, T_2, \ldots, T_k\}$ and $\{U_1, U_2, \ldots, U_k\}$ have the same fixed point set. Let $p \in F$, set $S = T_k U_{k-1}$.

For any $x \in C$, $p \in F$, define $E = \{u \in X : ||u-p|| \leq r\} \cap C$, where r := ||x-p||. Then E is a nonempty bounded convex subset of C which is invariant under the U_i and T_i and contains $x_0 = x$. Thus, without loss of generality we may assume that C is bounded.

Since S is nonexpansive, using (1),

$$||x_{n+1} - p|| = ||(1 - \alpha)x_n + \alpha Sx_n|| \le (1 - \alpha)||x_n - p|| + \alpha ||Sx_n - p||$$

$$\le (1 - \alpha)||x_n - p|| + \alpha ||x_n - p|| = ||x_n - p||.$$

Therefore $\lim ||x_n - p||$ exists, which implies that $\{x_n\}$ is bounded.

From Lemma 1, $\lim_{n \to \infty} ||x_n - Sx_n|| = 0$.

The assumption that X is uniformly convex implies that it is reflexive. The boundedness of $\{x_n\}$ implies that there is a subsequence $\{x_{n_i}\}$ of $\{x_n\}$ which converges weakly to a point $q \in C$. Since S is nonexpansive, if one defines V by V(u, v) = Su+v,

309

then V is semicontractive, and, from Lemma 2, S is demiclosed. This means that, if $\{x_{n_i}\}$ converges weakly to a point q, then, since $\lim_i ||(I-S)x_{n_i}|| = 0$, (I-S)q = q; that is, q is a fixed point of $S = T_k U_{k-1}$.

A uniformly convex space is strictly convex, so one can use the argument of [4], which we now do, to show that $q \in F$.

Suppose that q is not a common fixed point of T_{k-1} and U_{k-2} . Then the closed line segment $[q, T_{k-1}U_{k-2}q]$ has positive length. Define

$$z = U_{k-1}q = (1 - \alpha)q + \alpha T_{k-1}U_{k-2}q.$$

By hypothesis there exists a point w such that $T_1w = T_2w = \cdots = T_kw = w$. Since $\{T_i\}$ and $\{U_i\}$ have the same fixed point set, it follows that $T_{k-1}U_{k-2}w = w$. Since T_{k-1} and U_{k-2} are nonexpansive,

(2)
$$||T_{k-1}U_{k-2}q - w|| \leq ||q - w||$$

 and

$$||T_k z - w|| \le ||z - w||.$$

Therefore w is at least as close to $T_k z$ as to z. But $T_k z = T_k U_{k-1}q = q$, so that w is at least as close to q as to $z = (1 - \alpha)q + \alpha T_{k-1}U_{k-2}q$. Since X is strictly convex, it follows that

$$||q - w|| < ||T_{k-1}U_{k-2}q - w||,$$

contradicting (2), so that $T_{k-1}U_{k-2}q = q$. It then follows from $U_{k-1} = (1-\alpha)I + \alpha T_{k-1}U_{k-2}$ that $U_{k-1}q = (1-\alpha)q + \alpha q = q$ and $q = T_kU_{k-1}q = T_kq$. Therefore q is a common fixed point of T_k and U_{k-1} .

Since $T_{k-1}U_{k-2}q = q$, we may repeat the above argument to obtain the result that $T_{k-2}U_{k-2}q = q$ and that q is therefore a common fixed point of T_{k-1} and U_{k-2} . Continuing in the same manner, it then follows that $T_1U_0q = q$ and q is a common fixed point of T_2 and T_1 . Thus q is a common fixed point of $\{T_i: i = 1, 2, \ldots, k\}$.

COROLLARY. [4, Theorem 2] If X is a uniformly convex Banach space satisfying Opial's condition and C is a closed convex subset of X, and if the family of mappings $\{T_i : i = 1, 2, ..., k\}$ satisfies (1), then, for any $x \in C$, the sequence $\{x_n\}$ converges weakly to a common fixed point.

In a recent paper, Atsushiba and Takahashi [1] proved the following.

THEOREM AT. Let X be a uniformly convex Banach space which satisfies Opial's condition or whose norm if Fréchet differentiable. Let C be a nonempty closed convex

subset of X, S and T a pair of commuting nonexpansive selfmaps of C, with $F(S) \cap F(T) \neq \emptyset$. Let $x_1 \in C$ and define $\{x_n\}$ by

(3)
$$x_{n+1} = \alpha_n x_n + (1 - \alpha_n) \frac{1}{n^2} \sum_{i,j=0}^n S^i T^j x_n \text{ for } n \in \mathbb{N},$$

where $\{\alpha_n\}$ satisfies $0 \leq \alpha_n \leq a < 1$. Then $\{x_n\}$ converges weakly to a common fixed point of T and S.

Iteration scheme (1) is much simpler than (3). In addition, the theorem of this paper shows that (1) is a much more general iteration scheme than (3), since the hypotheses of Opial's condition and commutativity of the maps are not required.

Finally we note that, in (1) one can replace α , in the formula for x_{n+1} , with a sequence $\{t_n\}$, satisfying Condition A.

References

- S. Atsushiba and W. Takahashi, 'Approximating common fixed points of two nonexpansive mappings in Banach spaces', Bull. Austral. Math. Soc. 57 (1999), 117-127.
- F.E. Browder, 'Some contractive and semiaccretive nonlinear mappings in Banach spaces', Bull. Amer. Math. Soc. 74 (1968), 660-665.
- [3] S. Ishikawa, 'Fixed points and iteration of a nonexpansive mapping in a Banach space', *Proc. Amer. Math. Soc.* 59 (1976), 65-71.
- P.K.F. Kuhfittig, 'Common fixed points of nonexpansive mappings by iteration', Pacific J. Math. 97 (1981), 137-139.

Department of Mathematics Indiana University Bloomington IN 47405-7106 United States of America