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Abstract

Lagrangian necessary conditions for optimality, of both Fritz John and Kuhn Tucker types, are
obtained for a constrained minimization problem, where the functions are locally Lipschitz and have
directional derivatives, but need not have linear Gateaux derivatives; the variable may be constrained
to lie in a nonconvex set. The directional derivatives are assumed to have some convexity properties as
functions of direction; this generalizes the concept of quasidifferentiable function. The convexity is
not required when directional derivatives are replaced by Clarke generalized derivatives. Sufficient
Kuhn Tucker conditions, and a criterion for the locally solvable constraint qualification, are obtained
for directionally differentiable functions.

1980 Mathematics subject classification (Amer. Math. Soc.): 90 C 30.

1. Introduction and preliminaries

Consider the constrained minimization problem
(1) Minimize f(x) subject to -g(x) e S, h(x) e T,

in which X, Y, Z are normed vector spaces, S c Y is a closed convex cone with
interior, T c Z is a closed convex cone, and / : X -* R, g: X -> Y, h: X -> Z
are locally Lipschitz functions having (one-sided) directional derivatives. It is
assumed that the functions are quasidifferentiable (in a more general sense than
that of Pshenichnyl [16], applicable to vector-valued functions), then necessary
conditions for a minimum are obtained in terms of Lagrange multipliers and
directional derivatives. These conditions are of Fritz John type; conditions of
Kuhn Tucker type are also obtained, using a constraint qualification generalizing
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(21 On quasidifferentiable optimization 65

that of Robinson [17] to functions possessing only directional derivatives. A
further extension holds with Clarke generalized derivatives [2] when the functions
are no longer assumed to have directional derivatives.

Denote by X', Y' and Z ' the (topological) dual spaces of X, Y, and Z,
respectively, each equipped with its weak * topology. Denote by 5 * = {y' e Y':
(Vs G S)(y',s) > 0} the dual cone of S. The directional derivative of g at x in
direction v is

(2) g'(x; v) = lima-x[g(x + av) - g(x)},

where the limit is taken in the norm topology of Y. If V <z X, let g'(x; V) =
{g'(x;v): v&V). The function g is called strongly arcwise differentiable at
x(s.a.d. at x) if

(3) g'(x; v) = \ima-i[g(x + «(a)) - g(x)]

holds for each continuous arc a >-» «(a) in X such that w(0) = 0 and «'(0 + ) =
v. (In [7], arcwise directionally differentiable was similarly defined, but in the weak
topology of Y.) The function g is locally Lipschitz at x if there is some ball Nx

with centre x and some finite constant c such that \\g(y) — g(z)\\ < c\\y — z\\
whenever y, z e Nx [9]. The function g will now be called S-quasidifferentiable at
x if g has a directional derivative at x in each direction v such that g'(x; •) is
S-convex. The latter means that, whenever 0 < /} < 1 and u,v e X, then

(4) J3g'(*; ") +(1 - P)g'(x; v) - g'(x;Pu -(1 - fi)o) e S.

(When 7 = R and S = R + = [0, oo), this definition reduces to that of Pshenichnyi
[16], for then g'(x; v) = sup^ eK(w,v) for a compact set K; for general Y and S
it generalizes that of S "-nearly convex in Craven and Mond [5]; consequently, the
sum of an S-convex function and a linearly Gateaux differentiable function is
5-quasidifferentiable [7]. The tangent cone of a set A c X at a e A is the set

{rfeX-rKJ-x/.KJlO.a+ «„</„£ A}.

LEMMA 1. Let g: X -* Y be locally Lipschitz and possess a directional derivative
in each direction at x. Then g is s.a.d. at x.

PROOF. Consider the arc a -* «(a) = av + rj(a), with r/(a) = o(a) as a | 0 .

Then

(5) a-l[g(x + av + if (a)) - g(x)] = a"1[g(x + av + r,(a)) - g(x + av)]

+ a-l[g(x + av)-g(x)}.

The second term on the right of (5) tends to g'(x; v) as a 10, and the first term on
the right is O( i j ( a ) ) / a = o{a)/a by the local Lipschitz hypotheses, and so -» 0.
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This result is a one-sided analog to the result in [14], [4], that a locally Lipschitz
function which is linearly Gateaux differentiable is then also Hadamard differen-
tiable.

LEMMA 2 (The basic alternative theorem of [4], page 31). Let X and Y be normed
(or locally convex) spaces; let S c Y be a convex cone with nonempty interior; let
F c X be convex; let g: T -» Y be S-convex. Then exactly one of the two following
systems has a solution:
(6) (3xeX)-g(x)<BmtS;

(7) (3p G Y')(p» g)(T) c R+, 0 # p G S*.

LEMMA 3. Let X and Y be normed spaces, S c Y a closed convex cone with
interior, F c l , and g: T -* Y a function. Let F(x, b) = (b, g(x)), for x G T
and b G Y'. Then S* has a convex weak * compact base B (thus S* = {Bb:
)3eR+, l»Gi} with 0 £ B), and

(8) (6) ~ (3x G T)(VbeB)F(x,b) <0 » inf supF(x,b) < 0;

(9) (7) « (3b G B)(Vx G T)F(x, b) > 0 « NOT{ sup inf F(x, ft) < o).

PROOF. Since int S =t 0, S* has a convex weak * compact base [12], [3]. Since
nonzero p exists in 5* if and only if p = fib for some i e f i and some B > 0,
and -g(x) e int S if and only if F(x, b) = (b, g(x)) < 0 for each i e B , the left
equivalences in (8) and (9) are immediate. Since B is compact and F(x, •)
continuous, we have

(3x e r)(Vfc e V)F(x, b) < 0 « (3x e T) sup F(x, Z>) < 0

<=> inf sup F(x,b) < 0,
r

and so (8) holds. To prove (9), let <t>(b) = infxeTF(x, b). Then <#> is upper
semicontinuous (use) on B since each F(x, •) is continuous and hence use;
moreover, supb^Bty(b) is attained since <j> is use and B compact. (See [13], [1].)
Then

(10) NOT(7) =» (Vb G B)(3x e T)F(x, b) < 0 « (V* e 5 )^ (6 ) < 0

<=> sup^(ft) < 0,
b<=B

which proves (8).
The proofs given in [13] are finite-dimensional, but, given compactness, they

also hold for infinite dimensions. The continuity of F(x, •) for each x is not fully
used, only the upper semicontinuity. Convexity of F is not required.
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If, in particular, F(x, b) = (b, x), if B is compact, and if F is convex, then
Lemmas 2 and 3 show that exactly one of the two following systems hold:

(11) (3x e F)(VZ> e B)(b, x) < 0; (36 e fl)(Vx <= r ) ( 6 , x) > 0.

This was proved otherwise in [7], Lemma 2, with the additional assumption that F
is a convex cone.

Under the hypotheses of Lemma 3, it follows from Lemmas 2 and 3 that
exactly one of (6) and (7) holds, under any further hypothesis which makes

(12) inf supF(x,b) < 0 <=> sup inf F(x,b) < 0.
IEFbeB beBIEF

In particular, various hypotheses are known which ensure that

(13) inf supF(x,b) = sup inf F(x,b)
IEFbeB b&BJEF

when B is compact. In particular, a theorem of Ky Fan [8] (see Pomerol [15])
shows that (13) holds when B is compact, F(x,b) = (b,g(x)), and g has the
property

(14)

(Vp e (0, l))(Vx, x' e F)(3x" e F) - g(x") + pg(x) + (1 - p)g(x') e S.
(It follows that F(x, b) satisfies the "convex-like" property, required for Ky Fan's
theorem, namely property (14) with F(-,b) replacing g and with R+ replacing S.
A related property for F(x, •) holds automatically, since here F(x, •) is linear.
Note that convexity of F is not assumed here.)

In Lemma 2, g is assumed to be S-convex. An equivalent hypothesis is that
F(x, b) = (b, g(x)) is convex in x for each b e B. The convexity requirement
can now be weakened as follows. The function g: T -* Y will be called S-meta-
convex if, for some positive weighting function 8: F -» R+ which is bounded
away from zero and oo, property (14) holds for the function 0 ( ) g ( ) . Assuming
the hypotheses of Lemma 3, (13) then holds with F(x,b) replaced by
8(x)(b, g(x)), and this implies (12), since 8 is bounded away from 0 and oo. The
following result has then been proved.

LEMMA 4. Let X and Y be normed spaces: let S c Y be a closed convex cone with
nonempty interior; let F c X; let g: T -» Y be S-metaconvex. Then exactly one of
the systems (6) and (7) has a solution.

2. Lagrangian necessary conditions

Consider now the constrained minimization problem
(15) Minimize/(x) subject to -g(x) e S, x e A,

with / , g, and 5 as for problem (1), and with A c l .
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THEOREM 1. Let x and Y be normed vector spaces, S c Y a closed convex cone
with interior, A c X, and f: X -» R and g: X -> Y locally Lipschitz functions
possessing {one-sided) directional derivatives at each point in each direction. If we
assume that A has a convex tangent cone V at a and that f'(a; •) is convex and
g'(a; •) is S-convex, then necessary conditions for (15) to attain a local minimum at
x = a G A are that Lagrange multipliers T G R+ and X e S* exist, not both zero,
satisfying

(16) ( r / + X g ) ' ( a ; F ) c R + , < X , g ( a ) > = 0 .

There also exists a G F * 5«c/i f/ia/

(17) ( T / + X g ) ' ( a ; • ) > < * , • > . < X , g ( a ) > = 0 .

77ie rest//; .sf/// /io/d!s // the convexity hypotheses on the directional derivatives are
weakened to (R+X S)-metaconvexity of the function ^ ( - ) = ( / ' ( f l ; ')>?(fl) +

g '( f l ; ' )) 0M ^> w/iere V need not be convex.

PROOF. Suppose that the system

(18) f'(a;d)<0, -g(a)-g'(a;d)einlS

has a solution d G K. Since K is the tangent cone to A at a, the constraint j e i
is satisfied by x = a + ad + ij(a) for some sequence of values of a | 0 , where
rj(a) = o(a ) . Since G is locally Lipschitz and directionally differentiable, we have

(19) g(a + ad + !,(<*)) - g(a)

= g(a + ad) - g(a) + g(a + ad + TJ(O)) - g(a + ad)

= ag'(a;d) + o(a) + o(a).

So, for sufficiently small positive a, it follows that

(20)

-g(a + ad + i](a)) = -g(a) - ag'(a; d) + o(a)

= (1 - o)(-g(fl)) + a(-g'(a; d) - g(a)) + o(a) e 5

since -g(a) G 5 and -g\a) - g(a; d) e intS. Similarly, since / is locally
Lipschitz and directionally differentiable, we have

(21) «-1[ / (a + ac/ + i j ( a ) ) - / ( a ) ] = f'{a; d) + o{a)/a < 0

for sufficiently small positive a. Thus (20) and (21) contradicts the local minimum
of (15) at a. It follows that the system (18) has no solution J G K . Since, by
hypothesis, \p is convex and V is convex, Lemma 2 shows that there exists
nonzero p = (T, X) e R+X S* such that (p ° ̂ )(F) c R+. Thus T G R+ and
X e S* are not both zero, and (16) is satisfied.
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Since O ( •) = (rf + Xg)'(a; - ) i s posi t ively h o m o g e n e o u s , its d i rec t iona l deriva-
tive $'(0; v) = ®(v) for each v. The local Lipschitz hypothesis on / and g
ensures that $(•) is bounded. Hence, since <& is convex, we have
(22) * ' (0 ;o )= sup(w,t;>,

where the subdifferential C = 3$(0) is convex and weak * compact. From (16),
$ (F) c R+. Hence
(23) (VcGF)(3)»eC)(w, ! )>>0.
Hence there is no solution to the system
(24) (3v G V)(\/w <= C)(w, u> < 0.
Since C is compact and V convex, the special case (11) of Lemma 2 and 3 shows
that the system
(25) ( 3 W G C)(Vo G V){w,v) > 0
has a solution, say w = a. Then a e F* n C, so that $(t>) = O(D) - $(0) >
(a, v) for each v e X. Therefore $(•) > (a, • >, which proves (17).

In case the convexity of directional derivatives is weakened to metaconvexity,
Lemma 4 instead of Lemma 2 may be applied to the system -\p(q) G int(R+X 5),
resulting in (17). Lemma 4 does not require convexity of V.

Convex hypotheses are required, however, for result (17), since (22) uses
convexity. The deduction of (17) from (16) is not trivial, because (rf + \g)'(a; •)
is not in general linear.

The constraint x e A may take the form -h(x) G T, where T is a closed
convex cone, and where h is T-quasidifferentiable. If this constraint is also locally
solvable [4] at a, then its tangent cone V = {v e X: -h(a) - h'(a; p) G 7} is
convex, as required by Theorem 1. If A is linearly Gateaux differentiable at a,
then Farkas's theorem shows that V* is the weak * closure of the convex cone
[h(a),h'(a)]T(T*\ or equivalently, of h'(a)T(T_h(a))*, where h'(a) is the linear
derivative, and where Tc = {a(t - c): a e R+, l e T ) , with here c = -h(a). If
H is r-quasidifferentiable, but not necessarily differentiable, then results of
Zalinescu [19] and Glover [10] show that V* is the weak * closure of the cone
U= - U , e r . 3(rf )(0), where f(a, x) = ah(a) + h'(a; x). Assume a Robinson
constraint qualification, namely that h{a) + h'(a; X) + T contains a neighbour-
hood of 0 in Y (see [17], and [4], page 150), and that X is complete. Then f is
(R+x T)-convex and positively homogeneous, and then the constraint qualifica-
tion implies that f(R, X) + T = V. From [10], Lemma 3, the cone U is already
weak * closed. Assuming this, the following "directional derivative" version of
the Fritz John necessary conditions follows from (17), with some multiplier
JUG T*:

(26) (rf+Xg + fLh)'(a;X)<zR + , (X,g(a))=0, (^,h
where T G R+ and X G 5* are not both zero, and where ju G T
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These Fritz John conditions, (17) or (26), will lead to corresponding Kuhn
Tucker conditions under any constraint qualification which gives T ¥= 0. Slater's
constraint qualification is not applicable since g (and h) may lack convex, or
pseudoconvex, properties. Consider the problem

(27) Minimize f(x) subject to —g(x) e S, x e A,

with / and g having directional derivatives, but with the convex cone 5 not
necessarily having interior. If / and g were continuously Frechet differentiable,
the Robinson constraint qualification would require that g(a) + g'(a)(& - a) +
S contains a ball with centre 0 in Y, which implies a similar inclusion with A - a
replaced by the cone it generates. This requirement may be generalized to
directionally differentiable functions, with the tangent (contingent) cone V (not
necessarily convex) to A at a, so as to assume that

(28) g(a)+g'(a;V) + SDN,

where N is the ball in Y with centre 0.

THEOREM 2. For problem (27), with functions f and g having directional deriva-
tives, assume that Fritz John conditions

(29) (Tf+\g)'(a; •)>(<,,•), T e R+, X e S*,

( T , X ) # ( 0 , 0 ) , O<EV*, (X,g(a)) = 0

hold at the feasible point a, and that the constraint qualification (28) holds there.
Then r * 0 so that (29) holds with T = 1.

PROOF. Suppose, if possible that T = 0. Then X * 0, and (29) gives (X, g(a))
= 0 and (Xg)'(a; v) > (a, v) > 0, for all v e V, since a e V*. From (28), we
obtain

0 +{Xg)'(a; V) + (X,S) 2 (X, N) 2 (-8,8)

for some 8 > 0. Since 0 # X e S*, we have (X,S) = R+. Hence R++ R + 2
(-8,8), which is a contradiction. So T =£ 0.

Theorem 1 and Theorem 2 extend to the weak minimization of a vector-valued
function / : X -» W with respect to a convex cone P in the space W; thus
f(x)—f(a)£ — int P for all feasible x in a neighbourhood of a. Then T e R+ is
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replaced by T e P*, and (in the proof of Theorem 1) f'(a; d) < 0 by -f'(a; d)
G int P. In Theorem 2, the conclusion is that 0 + T G P*.

3. Necessary conditions with generalized derivatives

Consider now the problem

(30) Minimize f(x) subject to -g(x) e S, x G A,

in which A' and Y are normed spaces, Y is a Banach space, S c y is a closed
convex cone with interior, and / : X -* R and g: X -* Y are locally Lipschitz
functions, now not necessarily possessing directional derivatives. The set A c X
will still be assumed to have a convex tangent cone at a local minimum point, a,
of (30). Since it has the local Lipschitz property, / possesses a generalized
derivative in Clarke's sense (e.g. [2]):

(31) f°(a;d)= limsup a"1

moreover, f°(a; •) is convex, positively homogeneous and continuous [15]. Since
definition (31) does not apply to the vector-valued function g, the constraint
-g(x) G S is replaced equivalently by (V£> G B)bg(x) = (b, g(x)) < 0, where
B is a convex weak * compact base for S*. Note, however, that the mapping
b -> (bg)°(a; d) can no longer be assumed linear. Denote by C(B) the space of
continuous real functions on B, and by M(5) its dual space, the space of
(nonnegative Radon) measures on B. Since B is weak * compact and Y is
complete, we have ko = supb^B\\b\\< oo as a consequence of the uniform
boundedness theorem.

LEMMA 5. If g: X -» Y is locally Lipschitz, then the mapping m, given by
•n(b) = (bg)°(a; d) for b G B, is continuous, for each fixed a and d.

PROOF. From (31), applied to the real function bg, we obtain

(bg)°(a;d) = lira sup a-l[bg{y + ad) - bg{y)].
\\y-s\\<,p,0<a<fi

Hence, for b, b' G B we have

{(b + b')g)°(a;d)

< lim {supa-^bgiy + ad) - bg(y)] + supa^lb'giy + ad) - b'g(y)]}
P 1 0

= {bg)\a;d)+{b'g)\a;d).
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Also, for B > 0, (f}bg)°(a; d) = B(bg)°(a; d). Hence the mapping IT is convex.
Its values are also bounded, since \ir(b)\ «s Â Â Ĥ H, where k0 is the bound on
supfceB||6||, and where k1 is a Lipschitz constant for g in a neighbourhood of a.
Hence, by [18, Theorem 8], IT is continuous.

THEOREM. 3. Let X be a normed vector space, Y a Banach space, S c Y a closed
convex cone with interior, A c j f , and f:X—>R and g: X -» Y locally Lipschitz
functions. If we assume that A has a convex tangent cone V at a, then necessary
conditions for (30) to attain a local minimum at x = a e A are that there exist
T > 0 and p e M(5) , not both zero, such that

$(v) = Tf°(a; v) + f (bg)°(a; v)p(db) and X = f bp(db)
JB JB

satisfy

(32) * ( C ) c R t , (A,g(a)> = 0.

There also exists a e V* such that

(33) $(•)><<>,•>, (\,g(a)) = 0.

PROOF. Suppose that the system

(34) f°(a;d)<0, (Vq e B)P(qg)(a) +(qg)°(a; d) < 0

has a solution (d, /J) e V X R. Since V is the tangent cone to A at a, the
constraint x e A is satisfied by x — a + ad + i)(a) for some sequence of values
of a 10, where ij(a) = o(a). Then /°(a; d) < — 2y for some y > 0. From the
definition [2] of the Clarke generalized directional derivative f°{a; d), it follows
that f(y + ad) — f(y) < af°(a; d) + y whenever a and \\y — a\\ are sufficiently
small. Hence

(35) f(a + ad+V(a))-f(a)

= f(a + ad+ 7j(a)) -f(y + ad) +f(y + ad) - f{y) +f(y) -f(a)

*k\\y-a- T,(«) || + a[f°(a; d) + y] + k\\y - a\\

where k is the Lipschitz constant for / , when a and \\y - a\\ are sufficiently small

< 2k\\y — a\\ + o(a) — lay + ay

< -ay/3 + o(a) (whenever ||_y - a\\ < ay/(3k))

< 0 (whenever a is sufficiently small positive).

Since B is compact and, by Lemma 4, since b >-* (bg)°(a; •) is use, there exists
y' > 0 for which (VZ> e B\bg\a) + (bg)°(a; d) < - 2 y ' < 0. An argument sim-
ilar to that of (35), applied to bg, then shows that

(36) (bg)(a + ad + r,(a)) < (bg)(a) + a(bg)°(a; d) + 5ay/3 + o(a)
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for all sufficiently small positive a. (Here K is replaced by k' supb(£B\\b\\, where
k' is the Lipschitz constant for g, and y is replaced by y'.) Consequently, for
each b e B, we have

(37) {bg){a + ad + i,{a))

< (1 - a/B)(fcg)(fl) + a[(fcg)°(fl; rf) + P(bg)(a)] + 5ay'/3 + o(a)

< 0 +(-2ay') + 5ay'/3 + o(a) < 0

for all sufficiently small positive a. Hence -g(a + ad + 17(a)) G S for such a.
Thus the local minimum of (30) is contradicted. Hence (34) has no solution
(</,£) e K x R .

Now define a function $ = ("J'l.'h): ^ - > R x C(B) by (W G F) 'Z ' I (^ ) =
f°(a; d) and (V6 e K)«//2(rfX*>) = (6g)(o) + (fcg)°(a; rf). By Lemma 5, b ->
(*g)°(a; c?) is continuous, so >//2(J) G C(B). Since f°(a; •) and each (bg)°(a; •)
is a convex function, \p is /(T-convex, where K denotes the convex cone of
nonnegative functions on {0} X B. Then the system — \p(q) G int K has no
solution i / e K Lemma 2, or 4, then shows that there exists T > 0 and p e M(fi),
not both zero, such that (32) holds.

The proof of (33) from (32) is the same as the proof of (18) from (16) in
Theorem 1.

In Theorems 1, 3, and 4, (X, g(a)) = 0, X G 5*, and -g(a) G S, SO that
X e (Slg(a))*, where Sc denotes the convex cone { a(s — c): s e S, a G R+} here
c = -g(a)). However, since (bg)°(s; v) is not generally a linear function of b, it
does not follow from (32) that rf°(a; v) + (\g)°(a,v) G R+ for each v G F.
(This holds if, in particular, S = R+.) Note that X is represented (perhaps not
uniquely) by the measure p, and p is supported by the closure in the weak *
topology of the set {b G B: bg(a) * 0}.

4. Conditions for local solvability

A Lagrangian necessary condition (26) for a minimum was obtained under the
assumption that a constraint -ft(jt) G T was locally solvable at the point a. The
known (Robinson) sufficient condition for local solvability [7], [4, page 150]
assumes that h is continuously Frechet differentiable. This suggests the conjecture
that a generalized Robinson condition such as (28) may suffice for local solvabil-
ity when the function is only directionally differentiable, but when some bound
exists on the remainder terms arising in the definition of directional derivative.
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Consider then a function h: X -> Z of the form

(38) h{x) = h(a) + +{x-a) + i,{x-a),

where <f> is positively homogeneous, but not necessarily linear (so that 4>(x - a)
could be a directional derivative h'(a; x — a)), and where

(39) | | * ( * ) - ' K . > ' ) l l < e | l * - . H I whenever ||* - a\\,\\y - x\\< 8(e).

The construction of the implicit function, which local solvability requires, requires
the solvability of an approximation to -h(x) e T. In particular, when T = {0},
the Newton's method construction of the implicit function used in [4] assumes
that h'{a) has a bounded right inverse (which is implied by the Robinson
condition when T = {0}). This assumption may be generalized to require <j> to
have a bounded right inverse.

A partial answer to this question is given by the following theorem. The
hypothesis required is that the system

(40) p + h'(a;u) + s = y

can be solved for u e X and s e T satisfying the bounds ||u|| < p\\y\\ and
\\s + p\\ < p\\y\\ for some p independent of the given p and y, whenever ||_y|| and
\\p — b\\ are sufficiently small, where b = —h(a). The system -h(x) e T will be
called tractable at the point a if h is directionally differentiable if h satisfies (38)
and (39) with <j>(x - a) = h\a; x - a), and if h satisfies the stated bounded
solvability property. In case h is continuously Frechet differentiable, this solvabil-
ity of (40) follows from the Robinson criterion, namely that b + h'(a)(X) + T
contains a ball with centre 0. In fact, the less restrictive hypothesis that b +
h'(s; X) + T contains a ball with centre 0 is stable to small perturbations of b
away from —h(a), and so implies the solvability of (40), though not necessarily
the boundedness of solutions u and s + p.

THEOREM 4. Let T be a closed convex cone; let X be complete; let h: X -> Y be
directionally differentiable; let the system -h(x) e T be tractable at the point a,
where b = -h(a) e T. Then -h(x) e T is locally solvable at a; thus, -h(x) e T
has a solution x = a = ac + o(a) as a0 whenever c satisfies -h(a) - h\a; c) e T.

PROOF. A Newton-type iterative sequence { xn } constructed as follows. Assume
||c|| < 1. Let xQ = a + ac, b0 = h{a) + ah'(a; c) for sufficiently small a e (0,1).
For n = 0,1,2 , . . . , the points xn+l e X and sn e T are required to satisfy

(41) bn + h'(a;xn+l - xn) + sn+1 =yn= -[h(xn) + an],
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where bn = —sn. The tractable hypothesis ensures that, for some constant p
independent of n, we have ||JCB+1 - xn|| < p||>g| and \\sn+1 + bn\\ < p||.yB||, pro-
vided that H ĴI and \\bn — b\\ are sufficiently small. It then follows that

(42) h(xn+l) = h(xn) + h'(a; xn+l - xn) + £(*„; xn+1 - xn)

( w h e r e || £ ( • * „ ; x B + 1 ~ * J I I < e \ \ x n + 1 - x n \ \ )

= -yn + K + h'(a; x
n+i - xn) + £(*„; xn+1 - xn)

= sn+1 + t(xn;xn+1 - xn)

by (41). Here 0 < e < l/(2p) and 0 < a < \8{e) from (39). If ||j;B| | is small, then
IK + i ~ xn\\is srnaU» a n d s o (42) s h o w s t h a t ll^+ill = -Hxn + i) + sn + 1\\ is then
small. An inductive proof shows that \\xn — xn_1\\ < a(pe)" for n — 1,2,...; the
details are omitted, since they are the same as in [4], pages 148-149, for the
Frechet differentiable case. Note, however, that the cited proof does not use the
linearity of the derivative, but only its positive homogeneity in direction. Conse-
quently, {xn} is a Cauchy sequence in the Banach space X, so it converges to a
limit x(a) e X; then {sn} is a Cauchy sequence in Y, so it converges to some
s(a) G T, since T is closed. Then —g(Jc(a)) = s(a) e T, and x(a) = a + ac +
o(a) as in [4].

5. Sufficient Kuhn Tucker conditions

Assume that problem (30) satisfies the Kuhn Tucker conditions, in the form
given by Theorem 1, at the feasible point a, namely that

( 4 3 ) (3X e S*,a e V)(f+ \g)'(a; •) > (a, •>,
<X,g(a)> = 0, a e A , - g ( a ) e S .

Under suitable convex, or generalized convex, hypotheses, it follows from (43)
that the point a minimizes problem (30) (see [4], [6]). For (Frechet) differentiable
functions, the generalized convex hypotheses have been weakened to invex [11],
[5]. An analogous result can be given for directionally differentiable functions. For
problem (30), let

(44) * ( i )

THEOREM 5. Assume that a function TJ: X X X -* V exists, satisfying

(45) (Vx e V)*(x) - <S>(a) - <b'(a; i,(x, a)) e K,
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where a is a feasible point for problem (30) satisfying the Kuhn Tucker conditions
(43), where f and g are s. a. d. functions. Then a minimizes (30).

PROOF. Let x be any feasible point for (30), so that x e A , -g(x) e S.
Denote by > K the partial ordering induced by the convex cone K, so that
p > KO ̂  p — q & K. Then p > Kq and A e ^ * imply that (A, p) > (A,q).
It follows that

(46) f(x)-f(a)>K(A,*(x)-9(<>))

> K{A,V{a\i\(x,a))) (by (45) and A e^*)

> {a,T]{x,a)) (since a e V*, r\{x,a) e V)

So the point a is a minimum for (30).

REMARKS. Property (45) generalizes the cone-index property defined in [5] to
functions which are s.a.d. rather than Frechet differentiable. However, no neces-
sary or sufficient conditions for (45), similar to those in [5], are yet available.

6. Quasimin

The point a will be called an arcwise quasimin of problem (30) if, for each
nonzero £ ̂  X, there exist 6{d,£)& X such that, for each continuous arc
a -» co(a) e A - a satisfying w(0) = 0, w'(0 + ) = £, and -g(a + u(a)) e 5,
we have

(47) f(a +u(a))-f(a)-0(a)>0 asa|0.

This definition generalizes the definition of quasimin [3], [4], which requires that
f(a + z)—f(a) — o(\\z\\)>0 as z -* a through feasible pionts, to continuous
arcs considered separately.

THEOREM 6. The necessary conditions of Theorem 1 remain valid when the local
minimum of (30) at a is weakened to arcwise quasimin at a. Conversely, if the
feasible point a satisfies the Kuhn Tucker conditions (17) with T = 1, then a is an
arcwise quasimin of (30).

PROOF. The necessary conditions are proved similarly to those of Theorem 1, if
we note that when f\a\ d) < 0 from (18), then an extra o(a) term may be added
to (19), so that (19) also contradicts an arcwise quasimin.
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For the converse, let a be a feasible point satisfying (17) with T = 1. Suppose
that a is not an arcwise quasimin. Then there exists an arc a >-> w(a) G A - a
with «(0) = 0 and «'(0 + ) = £ such that, whenever 6(a) = o(a), we have

(48) f(a + U(a))-f(a)-6(a)<0.

It follows that

\g'{a;£)a = \[g(a + «(<*)) - g(a) + p(a)], where p{a) = o(a)

<0 + \p(a), since <X, g(a)> = 0.

Then, from (17), we obtain

f(a + w(a)) - / ( a ) = / '(a;£)« + a(a), where a = o(a).

Choose 0(a) = -a(a) + Xp(a). Then 0(a)' = o(a), and, from (17) with T = 1,
we obtain

f{a + «(a)) -f(a) > -\g'(a;S)a + c(a) > -6(a),

thereby contradicting (48).
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