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Abstract

The notion of pointwise cleavability is introduced. We clarify those results concerning cleavability which
can be or can not be generalized to the case of pointwise cleavability.

The importance of compactness in this theory is shown. Among other things we prove that t, ts,
nx, the property to be Frechet-Urysohn, radiality, biradiality, bisequentiality and so on are preserved by
pointwise cleavability on the class of compact Hausdorff spaces.
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0. Introduction

In 1985 Arhangel'skii [4,5,6], introduced the notion of cleavability (originally called
splittability) of a topological space as follows. Let £? be a class of topological
spaces and let JZ be a class of mappings. We say that a topological space X is
(JC, £P)-cleavable or Jt-cleavable over & if for every A C X there exists / e Jt,
f :X -+Y, such that Y e & and A = f~lf(A).

If JM is the class of all continuous mappings (open, closed, perfect and so on) we
shall use the term cleavable {open-cleavable, closed cleavable, perfect-cleavable,...)
over £?.

If &> = {Y} with Y a fixed topological space we shall use the term cleavable
(open-cleavable, closed-cleavable, perfect-cleavable,...) over Y.
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184 A. V. Arhangel'skii and F. Cammaroto [2]

The cases Y = W with n e N and Y = W* are of particular interest.
The cleavability over IR" is equivalent to the cleavability over the class of all

separable and metrizable spaces; hence in what follows cleavability over Rw will be
the same as cleavability over separable and metrizable spaces.

Recently many papers concerning the notion of cleavability were published ([2, 1,
7,9,10,11,19,18]).

Of basic importance is the paper [8] in which a characterization of cleavability in
terms of the countable functional approximation property is given.

In the present paper the notion of pointwise cleavability is introduced, in different
versions, corresponding to different classes of mappings. It is clarified which results
concerning cleavability can be or can not be generalized to the case of pointwise
cleavability.

The role of compactness in this theory is emphasized. Among other things we
prove that the cardinal functions t, ts, nx, the property of being Frechet-Urysohn,
radiality, biradiality, bisequentiality and so on are preserved by pointwise cleavability
on the class of Hausdorff compact spaces.

Our topological notations are standard, they are the same as in [13,14]. In particular,
N is the set of all natural numbers and D& is the space of real numbers with the usual
topology.

1. Pointwise cleavability

Let JK be a class of mappings and ^P a class of spaces.

DEFINITION 1.1. A topological space X is said to be ^-pointwise cleavable on &
if for every point x e X there exists / 6 JZ, f : X -> Y, where K e ^ , such that
{x) = f-1f(x).

REMARK 1. Now we can speak about pointwise cleavability (open, closed, per-
fect,. . . ) , and more specifically of pointwise cleavability over D& or over W".

From now on when we speak of cleavability or pointwise cleavability without
mentioning the class & of spaces we mean that & = [W\ or equivalently that &
consists of all separable metrizable spaces. Where we do not mention explicitly the
class J( of all mappings, we mean that J( consists of all continuous mappings. The
next proposition is obvious.

PROPOSITION 1.1. The following assertions hold:

(1) every subspace of a space is cleavable over this space;
(2) ifX is cleavable over Y then X is cleavable over any Z D Y;
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[3] Cleavability of topological spaces 185

(3) if X is cleavable over Y then any Z C X is cleavable over Y ;
(4) ifX is cleavable over Y then X is cleavable over any class 2? containing Y.

For example the unit segment / = [0, 1] C K is a subspace of R. and R is
homeomorphic to (0, 1) c / ; therefore cleavability over RL is equivalent to cleavability
over / . If X is (pointwise) cleavable over Rp then X is (pointwise) cleavable over K"
for any n > p.

PROPOSITION 1.2. IfX is cleavable (pointwise-cleavable) over Y and Y is cleavable
(pointwise-cleavable) over Z then X is cleavable (pointwise-cleavable) over Z.

PROOF. By the hypothesis for every A c X there exists a continuous mapping
f : X -*• Y such that A = / " ' f(A). Also for B = f(A) there exists a continuous
mapping g : Y ->• Z such that B = g~lg(B). The mapping h = gof: X-^-Z
obviously cleaves X along A.

By a similar argument the following assertion is proved.

PROPOSITION 1.3. IfX is cleavable (pointwise-cleavable) over a class 3? of spaces
such that every Y e & is cleavable (pointwise-cleavable) over a class £} of spaces
then X is cleavable (pointwise-cleavable) over £}.

EXAMPLE 1. Every space is cleavable over the space {0, 1} with the anti-discrete
topology.

PROOF. Let X be a space; for any A c X we define a mapping fA : X ->• {0, 1}
as follows: / ( A ) = {0} and f(X\A) = {1}. Clearly fA cleaves X along A and is
continuous.

THEOREM 1.1. Let X be a topological space. Then the following conditions are
equivalent.

(i) X is discrete;
(ii) X is cleavable over the double point space D({0,1} with discrete topology);

(iii) X is closed-cleavable over D;
(iv) X is open-cleavable over D;
(v) X is pointwise-cleavable over D.

PROOF, (i) implies all other conditions. It is clear that the condition (v) is the
weakest one. We show then that (v) implies (i). Take any x € X. There exists
a continuous mapping f : X -*• D such that f(x) = 0 and f(y) = 1 for any
y e X\{x}. Since {0} is open in D it follows that {x} = f~l(0) is open in X, hence
X is discrete.
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If Y is a Tx-space with \Y\ > 1 then every discrete space is closed-cleavable over
Y. For example this is true when Y = I = [0, 1] C K with the usual topology. It
is clear that / is cleavable over itself but it is not cleavable over D because it is not
discrete.

EXAMPLE 2. It is not true that all separable metrizable spaces are cleavable over
R. In fact K2 is separable and metrizable but it is not cleavable over R (see [1]). On
the other hand, every separable metrizable space is cleavable over Rm but this is not
true for all metrizable spaces. Indeed, let / = [0, 1] and let Y be a discrete space with
|7 | > 2*°; the product space X = I x Y is metrizable but it is not cleavable over W°
(see [8]).

It is important to know the behaviour of separation axioms with respect to the
pointwise cleavability and cleavability. Now we prove only two elementary assertions
which will be helpful later.

PROPOSITION 1.4. If X is pointwise-cleavable over the class of Hausdorff (T,)
spaces then X is Hausdorff (T{).

PROOF. We consider only the case of Hausdorff spaces. Let x e X; then there
exists a Hausdorff space Y and a continuous mapping / : X -> Y such that {x} =
/ " ' / ( * ) • This implies that for every y e Y with x / y w e have f(x) ^ / (y) .
Since Y is Hausdorff, there exist two open neighbourhoods UfM and Vfw in Y
such that UfM n Vf(y) = 0. Then f~l(UfM) and f~l(Vfw) are two disjoint open
neighbourhoods of x and y respectively.

THEOREM 1.2. A Tychonojf space X is pointwise-cleavable over I = [0, 1] (over
R) if and only if every point in X is Gs (in other words if and only if\Jr(X) < No)-

PROOF. Let* e X. There exists a continuous mapping / : X ->• Y such that [x] =
f~lf(x)- Choose a countable base of neighbourhoods srf = {An}ne^j of f(x) e I.
Then {/"1(^n)}n6N *s a countable family of open sets and since {x} = / " ' f(x), we
have {x} = DneN / '(^«)' s o that* is Gs in X. Conversely, let* e X. Since X is
a Tychonoff space and x is Gs in X there exists a continuous mapping / : X -> R
such that f(x) = 0 and f(y) ^ 0 for every y e X\{x}. Thus {x} = f~lf(x).

PROPOSITION 1.5. IfX is pointwise-cleavable over the class of spaces with count-
able pseudocharacter then X has countable pseudocharacter.

PROOF. The proof is similar to the preceding argument.
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DEFINITION 1.2. A mapping / : X —*• Y is said to be closed in x e X if for every
A C X with x ^ A w e have f(x) £ / (A).

DEFINITION 1.3. A topological space X is said to be c-cleavable in x G X over a
topological space Y if there exists a continuous mapping / : X —> Y such that:
(1) / is closed in x, and
(2) {x} = f

DEFINITION 1.4. Let & be a class of topological spaces. We say that a topological
space X is pointwise c-cleavable over & if for every x e X there exist Y e £? and
a continuous mapping f : X -*• Y such that X is c-cleavable in x over Y by / in the
sense of Definition 1.3.

Obviously a mapping / : X —*• Y is closed if and only if it is closed in every
xeX.

LEMMA 1.1. Let f : X -*• Y be a continuous mapping closed in x e X and such
that {x} = f~xf{x). Then if&fM = {f/,},e7 is a base (n-base) of f(x) in Y then
the family {/~'(f/,)},€y is a base (n-base) of x in X.

PROOF. We only consider the case when W f(X) is a base of x in X. Let Ox be
an open neighbourhood of A: in X. The set X\OX is closed in X and x £ X\OX.
Hence f(x) ^ f(X\Ox). Obviously the set Y\f(X\Ox) is an open neighbourhood
of f(x) and there exists Uk € Wm such that f(x) € Uk C Y\f(X\Ox). Since
/ is continuous, f~\Uk) is an open set in X such that x e f~x(Uk). So we have:
x e f~l(Uk) C f~l[Y\f(X\Ox)] C Ox. The proof is complete.

THEOREM 1.3. IfX is pointwise c-cleavable over the class of first countable spaces
then X is first countable.

PROOF. Let x e X. There exists a first countable space Y and a continuous
mapping / : X —>• Y closed in x such that {x} — f~x f(x). By hypothesis there
exists a countable open base {Vn}ne^| of f(x) in Y. By Lemma 1.1, {/~'(^«)}neN is
a countable open base of x in X.

REMARK 2. It is true that every continuous mapping from a countably compact
space in / or R is closed. It is also known that in a Tychonoff countable compact
space every Gs point is a point of first countability. Then by Theorem 1.2 we have
the following

COROLLARY 1.3. Let X be a Tychonoff countably compact space. Then the follow-
ing conditions are equivalent:
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(i) X is first countable;
(ii) X is pointwise cleavable over I;

(iii) X is pointwise c-cleavable over I.

COROLLARY 1.4. Every metrizable space is pointwise cleavable over R: it is even
cleavable over R along all closed subsets.

Now we are able to exhibit some examples of pointwise cleavable spaces which
are not cleavable.

EXAMPLE 3. Let X = J2a€A I<* m e ^ r e e topological sum where Ia, for every a e A,
is a copy of the segment / = [0, 1] with the usual topology. In [8] it is shown
that if |A| > 2*° then X is not cleavable over W°. Since X is metrizable, X is
pointwise-cleavable over K and hence over W.

EXAMPLE 4. Let X be a compact first countable non-metrizable space. Then X is
pointwise-cleavable over R but is not cleavable over W0 since otherwise it would have
been metrizable (by a theorem in [8]: if X is a compact space cleavable over Kw then
X is metrizable). For such a space we can take the Alexandroff duplicate of / .

2. Pointwise-cleavability and cleavability

Since the principal aim of the first part of our paper is to clarify the differences
between cleavability and pointwise-cleavability, we wish to check which results on
cleavability can be extended to pointwise cleavability.

Observe that not every closed-cleavable space over the class of Hausdorff compact
spaces is compact, since every discrete space is closed-cleavable over the class of
Hausdorff compact spaces. On the other hand, Arhangel'skii [1] has proved the
following assertion:

THEOREM 2.1. If X is a countably compact space cleavable over the class of
Hausdorff compact sequential spaces, then X is compact.

Theorem 2.1 cannot be extended to pointwise cleavability over the class of Haus-
dorff compact spaces since every Tychonoff countably compact first countable space is
pointwise-cleavable over the segment / . Such a space need not be compact. (Consider
the space r(&>]) of all ordinals smaller then the first uncountable ordinal u)\.)

The following result was established in [4]:

THEOREM 2.2. If X is compact and cleavable over the class of Hausdorff zero-
dimensional spaces then X is a Hausdorff zero-dimensional space.
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We can generalize this result to pointwise cleavability.

THEOREM 2.3. If X is pointwise c-cleavable over the class of Hausdorff zero-
dimensional spaces then X is a Hausdorff zero-dimensional space.

PROOF. Let x e X. There exists a Hausdorff zero-dimensional space Y and a
continuous mapping / : X -> Y such that / is closed in x and {x} = f~lf(x).
By hypothesis there exists a clopen neighbourhood base {A,},e7 of f(x) in Y. Put
£?' = {/"'(AOJiey- Since / is continuous, &?' is a family of clopen sets in X, and
by Lemma 1.1 srf' is a clopen base of x, so that the space X is zero-dimensional. The
space X is also Hausdorff by Proposition 1.4.

COROLLARY 2.3. IfX is compact and pointwise-cleavable over the class of Haus-
dorff zero-dimensional spaces then X is Hausdorff and zero-dimensional.

PROOF. This follows from Theorem 2.3 since every continuous mapping from
compact spaces into Hausdorff spaces is closed.

REMARK 3. For the case dim Y = n ^ 0 we have the following example. By
Corollary 1.3 every compact Hausdorff first countable space is pointwise-cleavable
over / = [0, 1]. Thus X — I*0 satisfies all the assumptions of Corollary 1.3; X
has infinite dimension, while dim Y = 1. This shows that the only case for the
preservation of dimension under pointwise cleavability is the one of dimension zero.

3. Pointwise cleavability and cardinal invariants

We have already proved a couple of results in this direction: if X is pointwise
c-cleavable over the class of first countable spaces then X is first countable, and if X
is pointwise-cleavable over the class of spaces of countable pseudocharacter, then the
pseudocharacter of X is also countable.

Now we consider more systematically the behaviour of various cardinal invariants
with respect to pointwise c-cleavability.

We recall the following

DEFINITION 3.1. The tightness of X, denoted by t(X), is the smallest infinite car-
dinal T such that for each non-closed set A C X and for every point x e A\A there
exists a set B c A satisfying the conditions: |B| < r and x e B.

DEFINITION 3.2. The it-character of a point x e X, denoted by nx(x, X), is the
smallest (infinite) cardinality of a local 7r-base of X in x.
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By a local n-base of X in x we mean a collection V of non-empty open sets in X
such that for each open neighbourhood R of x, one has V C R for some V € 'f.

PROPOSITION 3.1. If X is pointwise c-deavable over the class of spaces Y with
< x, then nx(X) < r.

PROOF. Let x e X; by the hypothesis, there exists a topological space Y with
< r» and a continuous mapping f : X -*• Y closed in * such that {x} =

f~lf(x). Let ?j be a 7r-base of f(x) in F such that \r)\ < r. Then r( = r)/fiX> —
{M(lf(X) : M € rj}isa7r-baseof/(jc)in/(X)and|rj'| < r. It follows that /"'C?')
is a 7r-base in x, by Lemma 1.1, satisfying the condition: | /~ ' (JJ')| < r.

COROLLARY 3.1. If X is a compact space pointwise-cleavable over the class of
Hausdorff spaces Y such that nx(Y) < r, then X is Hausdorff and nx(X) < r.

PROOF. This follows by Proposition 3.1 and Proposition 1.4, taking into account
that every continuous mapping of a compact space into a Hausdorff space is closed.

THEOREM 3.1. If X is pointwise c-cleavable over the class of spaces Y such that
t(Y) <rthent(X) <x.

PROOF. Let A c X be a non-closed subset of X and let * € A\A; then there exists
a topological space Y such that t (Y) < r and a continuous mapping / : X -> Y
closed in x and such that {x} = / " ' f{x). Put y = f(x); by continuity of / we
have: y e f(A) C f(A) so that y € f(A)\f(A). Hence there exists B C f(A)
such that |B| < r and y e B. For every z 6 B fix a point xz e f~l(z) n A.
Put C = {xz e /" ' (z) n A, Vz € 5}. Then C C A and \C\ = \B\ < x. Since
{x} = f~{f(x) and / is closed in x, we have x e C. The proof is complete.

Theorem 3.1 improves a similar result from [9], dealing with cleavability.

COROLLARY 3.2. If X is a compact space, pointwise cleavable over the class of
Hausdorff spaces Y such that t(Y) < x, then t(X) < x and X is Hausdorff.

PROOF. We apply Theorem 3.1 and Proposition 1.4 taking into account that every
continuous mapping of a compact space into a Hausdorff space is closed.

Recall now that a space X is said to be Frechet-Urysohn if for every A C X and
any x e A there exists a sequence {xn}ne|^ in A converging to x.

THEOREM 3.2. If X is pointwise c-cleavable over the class of Frechet-Urysohn
spaces then X is Frechet-Urysohn.
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PROOF. Let A c X and x e A. Then there exists a Frechet-Urysohn space Y
and a continuous mapping / : X -> Y such that {x} = f~lf(x) and / is closed
in x. Put y = f(x). Then j 6 /(A) C f(A). Since F is Frechet-Urysohn, there
exists a sequence {jn}ne|^ in f(A) converging to y. We consider the sequence of
fibers {/"'(>'n)}ngN- Since yn € /(A) for each n € N, we have: /" 'CyJ n A ^ 0.
Choosing in every / " ' (yn) fl A a point xn, we obtain a sequence {jcn}ne^| in A. Since
{*} = f~lf(x) and / is closed in x, the sequence {xn}ne^ converges to x.

Theorem 3.2 improves a similar result of Kocinac [18], involving cleavability. The
next result is proved in the same way as Corollaries 3.1 and 3.2.

COROLLARY 3.3. IfX is compact and pointwise cleavable over the class of Haus-
dorjf Frechet-Urysohn spaces then X is a Hausdorjf Frechet-Urysohn space.

DEFINITION 3.3. A mapping / : X -*• Y is said to be pseudo-open if for every
y e Y and for every neighbourhood U of f~l(y), f(U) is a neighbourhood (not
necessarily open) of v in Y, that is, y e lntf(U).

All open mappings and all closed mappings are pseudo-open.
It is known that / : X ->• Y is pseudo-open if and only if for every B C Y and

for every y e B\B there exists x e X such that /(JC) = y and x <= f~x(B), that is

LEMMA 3.1. Let f : X —>• Y be a pseudo-open (in particular, open or closed)
surjection, such that {x} = / " ' f(x) for some x e X. Then t(f(x), Y) < t{x, X).

PROOF. Let x e X and t (x, X) < x. We assume that A c Y is a non-closed subset
of Y such that f(x) e~A\A. Then f~lf(x)n f~l(A) ^ 0. Since {*} = / " ' / ( x ) , we
have ;c € f~l(A), which implies that there exists B c f~l(,A) such that x & B and
|B| < T. Obviously / ( £ ) C A and | / (B) | < r. By continuity of / , /(jr) e / (B)
and, hence, t{f{x), Y) < x.

PROPOSITION 3.2. Suppose that X is pointwise c-cleavable by continuous surjec-
tions over the class of spaces Y such that nyiy, Y) < t(y, Y),for any y e Y. Then
nx(x,X) < t(x,X)foranyx e X.

PROOF. Let x e X; then there exists a topological space Y and a continuous
surjection / : X —>• Y such that nx(f(x), Y) < t(f(x), Y), f is closed in x and
{x} = f~lf(x). Put t(x, X) = x. To complete the argument, it remains to prove
that nx(x, X) < x. By Lemma 3.1 we have t(f(x), Y) < x. Hence nxif{x), Y) <
t(f(x), Y) < x, so that by Proposition 3.1 we get: nx(f~xf(.x), X) < x, that is
nx(x,X)<x.
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COROLLARY 3.4. If a space X is pointwise c-cleavable by continuous surjections
over the class of Hausdorff compact spaces, then n x(x, X) < t(x, X)foranyx e X.

PROOF. This follows from Proposition 3.2, since in compact spaces Y it is true that
, Y) < t(y, Y) for any y € Y (see Juhasz and Shelah [15]).

It is clear that the class of spaces which are pointwise c-cleavable by continuous
surjections over the class of compact Hausdorff spaces is much larger than the class
of compact Hausdorff spaces. For instance, it contains all discrete spaces. At the
moment, it is not clear how to describe in intrinsic terms the spaces in this class and
for this reason we introduce the following:

DEFINITION 3.4. A topological space X is said to be Sicilian provided that it is
pointwise c-cleavable by continuous surjections over the class of Hausdorff compact
spaces.

DEFINITION 3.5. A topological space X is said to be Messinese provided that it is
closed-cleavable over the class of Hausdorff compact spaces.

It is obvious that every Messinese space is Sicilian. In this language Corollary 3.4
can be written in the following way: For every Sicilian space X the inequality
nx(x, X) < t(x, X) holds for each x e X.

COROLLARY 3.5. If a topological group G is pointwise c-cleavable by continuous
surjections over the class of compact Hausdorff spaces Y such that t{Y) < Ko , then
G is metrizable.

PROOF. By Theorem 3.1 we have t(G) < Ko • Since G is a Sicilian space,
xx(G) < *V Thus (see [3]) the topological group G is first countable, and hence, by
Kakutani's [17] result, G is metrizable.

We present now some results on closed cleavability. It is appropriate to recall that
a mapping / : X -> Y is closed if and only if [13] for every y e Y and for any
neighbourhood U of f~l (v) in X there exists a neighbourhood V of y in Y such that
f-l(V)cu.

THEOREM 3.3. Let X be a first countable normal space without isolated points and
let X be closed-cleavable over the class ofcountably compact Hausdorff spaces. Then
X itself is Hausdorff and countably compact.
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PROOF. Let A c X, then there exists a countably compact Hausdorff space Y
and a closed continuous mapping / : X —> Y such that A = f~lf(A). Since
/ is closed and Y is countably compact and Hausdorff, for every y e Y we have:
Fr(/~1(j)) = /"1(y)\Int(/"'(v)) is countably compact. We know also [13] that if
/ : X —>• Y is a closed continuous mapping such that f~liy) is countably compact
for each y e Y and Y is countably compact, then X is countably compact. Hence it
is sufficient to prove we can choose / in a such way that Int(/~'(y)) = 0 for every
y € Y. It is possible to decompose the space X into the union of two disjoint dense
subspaces [1]. Clearly if X = X, U X2 , where XT = X~2 = X and Xx n X2 = 0
then the interiors of Xi and X2 are empty. We can choose / to be a closed continuous
mapping of X into a countably compact Hausdorff space Y such that Xx = f~l f(X{).
Then for every y e / (X,) , lnt{f~l{y)) = 0, since f~\y) C Xi andlnt(Xi) = 0.

COROLLARY 3.6. If X is a first countable weakly paracompact {that is, metacorn-
pact) space without isolated points and X is closed-cleavable over the class of count-
ably compact Hausdorff spaces then X is compact and Hausdorff.

PROOF. By Theorem 3.3 the space X is Hausdorff and countably compact; since X
is metacompact, it follows that X is compact.

4. Pointwise cleavability, double cleavability and set-tightness

We recall that set tightness of X, denoted by ts(X), is the smallest infinite cardinal
number r such that for any subset B of X and any point x e B\B there exists a family
r c P(B) such that |T| < x, x € Of and x i uf.

THEOREM 4.1. Let a space X be open-cleavable over the class of spaces Y such
thatts{Y) < x. Thents(X) < x.

PROOF. Let A c X be a non-closed subset of X and x e A\A. There exist a
topological space Y such that ts(Y) < x and an open continuous mapping / : X ->• Y
satisfying the condition: A = f~l f(A). By continuity of / , we have y = f(x) e
f(A)\f(A). There exists a family {£, : i € A} of subsets of f{A) such that |A.| < x
and f(x) e U{£, : / e k} while fix) $ % for every / e X. Put C, = /" ' (B,) , for
each / G X. Then C, Q A = / " ' / ( A ) . Let us show that x € U{C; : / € k] and
* ^ C, for every i e i Take an open neighbourhood" Ux of x in X. Then f{Ux) is
open in Y and y € / ( t / , ) . Since y e UB ,̂ we have: /(£/,) n (UB,) ^ 0, so that
there exists i0 € A. such that /(£/,) fl B,o ^ 0. Hence there exist z e f{Ux) (1 B,o and
x0 e f~l{z) such that J:0 e f/x. Then JC0 e C,o and f/̂  n C,o ^ 0 which implies that
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Ux n (U,6XC,) ^ 0 and x e U,eXC,. Now x £ f~x(B,), and it follows that x £ C, for
every i € k. Hence ts(X) < r. The proof is complete.

REMARK 4. One can prove a result similar to Theorem 4.1 for closed-cleavability,
as was shown in [9].

DEFINITION 4.1. A topological space X is said to be double-cleavable over a class
& of topological spaces provided that for every pair A, B of subsets of X there
exist Y 6 & and a continuous mapping f : X -* Y such that A = f"1 f(A) and
B = / •

REMARK 5. In a similar way to pointwise cleavability we can define double point-
wise cleavability by the following condition: for every x, y e X such that x ^ v
there exist F e J 8 and a continuous mapping f : X -*• Y such that {*} = / " ' f{x)
and {y} = /

THEOREM 4.2. / / a space X is pseudo-open double-cleavable over the class of
spaces Y such that ts(Y) < x then ts{X) < T.

PROOF. Let A c X b e a non-closed set and x e A\A. There exist a space Y and a
pseudo-open continuous mapping / : X —> Y such that {x} = / " ' f(x), ts(Y) < x
and A = f~lf{A). Clearly f(x) e f(A)\f(A). Since ts(Y) < x, there exists
a family ^ of subsets of f(A) such that \<%\ < x, f(x) <£ ~B for every B € SB
and / (x) e U@. For every B e J w e have /~'(B) c A etnd x ^ / " ' (B) which
implies that x $ f~l(B). Put ^ = {/"'(B) : B e &}. Obviously \&\ < x. Since
x $. / " ' (B) for B G ^ , to complete the proof it is sufficient to show that x 6 U381.
Since / is pseudo-open, for every neighbourhood Ux of f~lf(x) = {x} in X we
have f{x) e Int(/(£/,)) = f/}(x). Since f(x) € U ^ we have C/;u) D (U^) # 0
which implies that / (v) G f/̂ (x) n B for some y e Ux and some B & SB. Then

y € f/x n /"'(B) and hence I/, n (U^') / 0, that is, x e U&. The proof is
complete.

COROLLARY 4.2. //"X is open (closed)-double-cleavable over the class of spaces Y
such that ts(Y) < x, then ts(X) < x.

PROOF. This follows from Theorem 4.2 and Corollary 3.4.

If jj(x denote the class of open continuous mappings with density of every fibre
< r. We have the following
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THEOREM 4.3. IfX is Jt\-cleavable over the class of spaces Y such that t(Y) < x,
thent(X) < x.

PROOF. Let A c X and x e A\A. There exist a space Y and a mapping / e Jtz,
f : X -+ Y, such that t(Y) < r and A = f~]f(A). Obviously f(x) = y e
f(A)\f(A). Since t(Y) < x, there exists a subset B c f(A) such that |B| < r
and y = /(.*) € B. Then /~'(B) C A, and for every z e B there exists a subset
Cz C /" ' (z) such that \CZ\ < T and 7TZ = f~l(z). We have C = UzeBCz c
U2efi/"'(z) = f~x{B) and |C| < r. Clearly f~\B) C C, which implies that
f~l(B) C C. It remains to prove that x € C, and for that it is enough to show
that x € f~l(B). Assume the contrary. Then the set U = X\/~'(B) is open in
X and x e U. Since / is open, the set f(U) is open. Clearly, f(x) e f(U) and
f(U) n B = 0. But this is in contradiction with f{x) e B. The proof is complete.

For the class M^ of open continuous mappings with every fibre separable we have
the following.

COROLLARY 4.3. If X is M^-cleavable over the class of spaces with countable
tightness then X has countable tightness.

5. Closed pointwise cleavability over some special classes of spaces

In this section we consider the spaces which are pointwise cleavable over the class
of all Lots, that is, over the class of all linearly ordered topological spaces.

We exhibit some necessary conditions for this kind of cleavability which are un-
fortunately not sufficient.

Let us recall the following

DEFINITION 5.1. A topological space X is said to be

(i) pseudo-radial or chain-net, provided that for any non-closed set A c X there
exists a transfinite sequence {xa}a€k in A which converges to some point
x € A\A; (if in the above definition the sequence can be chosen in such a
way that X is regular and x & {xa : a e (}} for any fi e A. then the space is
said to be almost radial);

(ii) radial, provided that for any set A C X and any point x e A there exists a
transfinite sequence in A converging to x;

(iii) weakly radial, provided that for any closed set F c X and for any non-isolated
point x € F there exists a transfinite sequence in F\{^} converging to x;

(iv) sequential, provided that a set A C X is closed if and only if for every
sequence {xn : n € N+}] C A converging to a point x e X the point x
belongs to A;
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(v) weakly sequential, provided that for any closed set F C X and for any
non-isolated point x e F there exists a sequence in F\{*}, converging to x.

THEOREM 5.1. If a space X is closed-pointwise cleavable over the class of radial
spaces, then X is radial.

PROOF. This is demonstrated by the same argument as Theorem 3.2.

COROLLARY 5.1. If X is a compact space pointwise-cleavable over the class of
Hausdorff radial spaces then X is a Hausdorff radial space.

We do not know the answer to the following question:

QUESTION 1. Let X be a compact space pointwise-cleavable over the class of
pseudo-radial Hausdorff spaces. Is then X pseudo-radial?

THEOREM 5.2. If a space X is closed-pointwise cleavable over the class of weakly
radial spaces then X is weakly radial.

PROOF. Let F be a closed subset of X and let x be an accumulation point of F.
There exist a weakly radial space Y and a closed continuous mapping / : X -> Y
such that {x} — f~lf(x). Since / is closed, / ( F ) is a closed subset of Y such that
/(x) € f(F). Obviously, f{x) is not isolated in f{F). There exists a transfinite
sequence {ya : a € X} in f(F)\{f(x)} converging to f(x). For every a e X pick a
point xa 6 F fl f~l(ya). In this way we obtain a transfinite sequence {xa : a 6 k} in
F\f~lf(x) = F\{x} converging to x, since the mapping / is closed. The proof is
complete.

THEOREM 5.3. IfX is closed pointwise-cleavable over the class of weakly sequen-
tial spaces then X is weakly sequential.

PROOF. This is demonstrated by the same argument as Theorem 5.2.

COROLLARY 5.2. If X is a compact space pointwise cleavable over the class of
Hausdorff weakly sequential spaces then X is a Hausdorff weakly sequential space.

PROOF. This follows from Theorem 5.3 and Proposition 1.4.

Making use of the the result [12] 'Every Hausdorff compact weakly sequential
space is sequential', and applying Theorem 5.3 we conclude that it is compatible with
ZFC that every Hausdorff compact space which is pointwise-cleavable over the class
of Hausdorff sequential spaces is sequential. Now it is natural to ask the following
question.
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QUESTION 2. Is every Hausdorff compact space X, which is pointwise-cleavable
over the class of Hausdorff sequential spaces, sequential (in ZFC)?

DEFINITION 5.2. Let X be a topological space and let £ be a filter base on X, We
say that

(1) § is converging to a point x € X provided that for any neighbourhood Ox of x
in X there exists P e £ such that P Q Ox;

(2) x € X is an adherence point of t-, that is, x e f, provided that x e C\{P : P e £};
(3) £ is a chain, provided that for every A, B e £ either A c S o r B c A .

Two filter bases £ and r\ are said to be synchronous (we write ^ © J j ) i f i 4 n f i ^ 0
for every A e § and every B e rj.

DEFINITION 5.3. A topological space X is said to be bisequential provided that for
any filter base £ in X and any point x e X such that x e § there exists a filter base rj
in X such that

(i) r\ is converging to JC,
(ii) x] is countable,

(iii) r)©% - that is, TJ and £ are synchronous.

REMARK 6. All first countable spaces are bisequential and all bisequential spaces
are Frechet-Urysohn. An interesting property of bisequential spaces is that they form
a countably productive class of spaces.

DEFINITION 5.4. A topological space X is said to be biradial provided that for any
filter base £ in X and for any x e £, there exists a chain r\ such that

(i) T) is converging to x,

(ii) n©$-

REMARK 7. Every Lots and every subspace of a Lots is a biradial space.

THEOREM 5.4. If a space X is pointwise c-cleavable over the class of bisequential
spaces, then X is bisequential.

PROOF. Let x e X. There exist a bisequential space Y and a continuous mapping
/ : X ->• Y closed in x such that [x] — f~l f(x). Let | be a filter base on X such
that x e f. Put /(£) = {f(A) : A e §}; / (£) is a filter base on K and / (*) e / (? ) .
There exists a countable filter base r? on X converging to f{x) and synchronous with
/ ( | ) . Put i = f~l(n) = {/"'(B) : B e r)}. Then /?' is a countable filter base
converging to x since {*} = / " ' f(x) and / is closed in x. It is obvious that
The proof is complete.
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COROLLARY 5.3. If a space X is compact and pointwise-cleavable over the class
of Hausdorff bisequential spaces then X is a Hausdorjf bisequential space.

PROOF. This follows from Theorem 5.4 and Proposition 1.4.

THEOREM 5.5. IfX is closed pointwise-cleavable over the class ofbiradial spaces,
then X is biradial.

PROOF. Let x e X. There exists a biradial space Y and a closed continuous
mapping / : X -> Y such that {x} = f~x f(x). Let £ be a filter base on X
such that x e §. Then / ( £ ) is a filter base on Y and f(x) e / ( £ ) . There exists
a chain r\ on Y which is converging to f(x) and is synchronous with / ( £ ) . Put
t]' = f~x(j\) = {f~1(B) : B € T}}. As in the proof of Theorem 5.4, r}' is converging
to x and r)'©%. Clearly t}' is a chain.

COROLLARY 5.4. If X is a compact space pointwise-cleavable over the class of
Hausdorjf biradial spaces, then X is a Hausdorff biradial space.

PROOF. This follows from Theorem 5.5 and Proposition 1.4.

REMARK 8. Since every Lots is a biradial space, we have the following result.

COROLLARY 5.5. If a space X is closed pointwise-cleavable over the class of all
Lots then X is biradial.

Corollary 5.5 gives a necessary condition for cleavability over the class of all Lots
which is not sufficient.

We now present a much stronger necessary condition for the closed pointwise-
cleavability over Lots.

THEOREM 5.6. If a space X is closed pointwise-cleavable over the class of all Lots,

then for every x € X there exist two chains t)i and t)2 on X such that

(1) rj\ and r)2 are converging to x,
(2) for every filter base f on X such that x e §, either r]i © | or r)2©% (equivalently,

for any A e r)x and for any B e r)2, AUB is a neighbourhood ofx (not necessarily
open)).

PROOF. Let x e X. There exist a Lots Y and a closed continuous mapping
/ : X -> Y such that {x} = f~l f(x). Since Y is a Lots, there are two chains Hi
and ix2 of subsets of Y, converging to / ( x ) such that for every filter base y on Y,
satisfying the condition / ( x ) e y either /Xi or /x2 is synchronous with y. It is easy to
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see that the chains r\x = {f~l(P) : P e ^x} and r\2 = {f~l(P) : P e fi2] satisfy the
conditions (1) and (2).

QUESTION 3. Is the converse to Theorem 5.6 true in the class of Hausdorff (or

regular) spaces?
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