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Summary

Prediction of genetic values is a central problem in quantitative genetics. Over many decades, such
predictions have been successfully accomplished using information on phenotypic records and
family structure usually represented with a pedigree. Dense molecular markers are now available in
the genome of humans, plants and animals, and this information can be used to enhance the
prediction of genetic values. However, the incorporation of dense molecular marker data into
models poses many statistical and computational challenges, such as how models can cope with the
genetic complexity of multi-factorial traits and with the curse of dimensionality that arises when the
number of markers exceeds the number of data points. Reproducing kernel Hilbert spaces
regressions can be used to address some of these challenges. The methodology allows regressions on
almost any type of prediction sets (covariates, graphs, strings, images, etc.) and has important
computational advantages relative to many parametric approaches. Moreover, some parametric
models appear as special cases. This article provides an overview of the methodology, a discussion
of the problem of kernel choice with a focus on genetic applications, algorithms for kernel selection
and an assessment of the proposed methods using a collection of 599 wheat lines evaluated for grain
yield in four mega environments.

1. Introduction

Prediction of genetic values is relevant in plant and
animal breeding, as well as for assessing the prob-
ability of disease in medicine. Standard genetic models
view phenotypic outcomes (yi ; i=1, …, n) as the sum
of a genetic signal (gi) and of a residual (ei), that is :
yi=gi+ei. The statistical learning problem consists of
uncovering genetic signal from noisy data, and pre-
dictions (ĝi) are constructed using phenotypic records
and some type of knowledge about the genetic back-
ground of individuals.

Family structure, usually represented as a pedigree,
and phenotypic records have been used for the pre-
diction of genetic values in plants and animals over

several decades (e.g. Fisher, 1918; Wright, 1921;
Henderson, 1975). In pedigree-based models (P), a
genealogy is used to derive the expected degree of re-
semblance between relatives, measured as Cov(gi, gik),
and this provides a means for smoothing phenotypic
records.

Dense molecular marker panels are now available
in humans and in many plant and animal species.
Unlike pedigree data, genetic markers allow follow-up
of Mendelian segregation; a term that in additive
models and in the absence of inbreeding accounts for
50% of the genetic variability. However, incorporat-
ing molecular markers into models poses several
statistical and computational challenges such as how
models can cope with the genetic complexity of multi-
factorial traits (e.g. Gianola & de los Campos, 2008),
and with the curse of dimensionality that arises when
a large number of markers is considered. Parametric
and semi-parametric methods address these two issues
in different ways.
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In parametric regression models for dense molecu-
lar markers (e.g. Meuwissen et al., 2001), gi is a
parametric regression on marker covariates, xik with
k=1, …, p indexing markers. The linear model takes
the form: yi=gp

k=1xikbk+ei, where bk is the regression
of yi on xik. Often, p>>n and some shrinkage esti-
mation method such as ridge regression (Hoerl &
Kennard, 1970a, 1970b) or LASSO (Least Absolute
Shrinkage and Selection Operator, Tibshirani, 1996),
or their Bayesian counterparts, are used to estimate
marker effects. Among the latter, those using marker-
specific shrinkage such as the Bayesian LASSO of
Park & Casella (2008) or methods BayesA or BayesB
of Meuwissen et al. (2001) are the most commonly
used. In linear regressions, dominance and epistasis
may be accommodated by adding appropriate inter-
actions between marker covariates to the model ;
however, the number of predictor variables is ex-
tremely large and modelling interactions is only fea-
sible to a limited degree.

Reproducing kernel Hilbert spaces (RKHS) re-
gressions have been proposed for semi-parametric
regression on marker genotypes, e.g. Gianola et al.
(2006) and Gianola & van Kaam (2008). In RKHS,
markers are used to build a covariance structure
among genetic values ; for example, Cov(gi, gik)/
K(xi, xik), where xi, xik are vectors of marker genotypes
and K(., .), the reproducing kernel (RK), is some posi-
tive definite (PD) function (de los Campos et al.,
2009a). This semi-parametric approach has several at-
tractive features: (a) themethodology can be used with
almost any type of information set (e.g. covariates,
strings, images and graphs). This is particularly impor-
tant because techniques for characterizing genomes
change rapidly ; (b) some parametric methods for
genomic selection (GS) appear as special cases and
(c) computations are performed in an n-dimensional
space. This provides RKHS methods with a great
computational advantage relative to some parametric
methods, especially when p>>n.

This article discusses and evaluates the use of
RKHS regressions for genomic-enabled prediction
of genetic values of complex traits. Section 2 gives a
brief review of RKHS regressions. A special focus is
placed on the problem of kernel choice. We discuss
cases where a geneticmodel (e.g. additive infinitesimal)
is used to choose the kernel and others where the RK
is chosen based on its properties (e.g. predictive
ability). Section 3 presents an application to an ex-
tensive plant breeding data set where some of the
methods discussed in Section 2 are evaluated.
Concluding remarks are provided in Section 4.

2. RKHS regression

RKHS methods have been used in many areas of
application such as spatial statistics (e.g. ‘Kriging’ ;

Cressie, 1993), scatter-plot smoothing (e.g. smoothing
splines; Wahba, 1990) and classification problems
(e.g. support vector machines ; Vapnik, 1998), just to
mention a few. Estimates in RKHS regressions can be
motivated as solutions to a penalized optimization
problem in an RKHS or as posterior modes in a cer-
tain class of Bayesian models. A brief description of
RKHS estimates in the context of penalized esti-
mation is given first in section 2(i), with its Bayesian
interpretation introduced later in section 2(ii). A rep-
resentation of RKHS regressions that uses orthog-
onal basis functions is given in section 2(iii). This
section ends in 2(iv) with a discussion of the problem
of kernel choice.

(i) Penalized estimation in RKHS

A standard problem in statistical learning consists of
extracting signal from noisy data. The learning task
can be described as follows (Vapnik, 1998) : given data
{(yi, ti)}i=1

n , originating from some functional depen-
dency, infer this dependency. The pattern relating
input, tisT, and output, yisY, variables can be de-
scribed with an unknown function, g, whose evalua-
tions are gi=g(ti). For example, ti may be a vector of
marker genotypes, ti=xi and g may be a function as-
signing a genetic value to each genotype. Inferring g
requires defining a collection (or space) of functions
from which an element, ĝ, will be chosen via a cri-
terion (e.g. a penalized residual sum of squares or a
posterior density) for comparing candidate functions.
Specifically, in RKHS, estimates are obtained by
solving the following optimization problem:

ĝ= argmin
g2H

{l(g, y)+ljjgjj2H}, (1)

where gsH denotes that the optimization problem
is performed within the space of functions H, a
RKHS; l(g, y) is a loss function (e.g. some measure of
goodness of fit) ; l is a parameter controlling trade-
offs between goodness of fit and model complexity;
and ||g||H2 is the square of the norm of g on H, a
measure of model complexity. A technical discussion
of RKHS of real-valued functions can be found in
Wahba (1990) ; here, we introduce some elements that
are needed to understand how ĝ is obtained.

Hilbert spaces are complete linear spaces endowed
with a norm that is the square root of the inner pro-
duct in the space. The Hilbert spaces that are relevant
for our discussion are RKHS of real-valued functions,
here denoted as H. An important result, known as
the Moore–Aronszajn theorem (Aronszajn, 1950),
states that each RKHS is uniquely associated with a
PD function that is a function, K(ti, tik), satisfying
g

i
g

ikaiaikK(ti, tik)>0 for all sequences, {ai}, with
ail0 for some i. This function, K(ti, tik), also known
as the RK, provides basis functions and an inner
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product (therefore a norm) to H. Therefore, choosing
K(ti, tik) amounts to selectingH ; the space of functions
where (1) is solved.

Using that duality, Kimeldorf & Wahba (1971)
showed that the finite-dimensional solution of (1) ad-
mits a linear representation g(ti)=g

ikK(ti, tik)aik, or
in matrix notation, g=Ka=[g(t1), . . . , g(tn)]k, where
K={K(ti, tik)} is an nrn matrix whose entries are
the evaluations of the RK at pairs of pint in T.
Further, in this finite-dimensional setting, gk k2

H=
g

i
g

ikaiaikK(ti, tik)=akKa. Using this in (1) and setting
l(g, y) to be a residual sum of squares, one obtains:
ĝ=Kâ, where â=(â1, . . . , ân)k is the solution of

â= argmin
a

{(yxKa)k(yxKa)+lakKa} (2)

and y={yi} is a data vector. The first-order conditions
of (2) lead to (KkK+lK)â=Kky. Further, since K=Kk
and Kx1 exists, pre-multiplication by Kx1 yields,
K+lI½ �â=y. Therefore, the estimated conditional
expectation function is ĝ=Kâ=K(K+lI)x1

y=
P(l,K)y, where P(l,K)=K(K+lI)x1 is a smoother or
influence matrix.

The input information, tisT, enters into the
objective function and on the solution only through
K. This allows using RKHS for regression with any
class of information sets (vectors, graphs, images,
etc.) where a PD function can be evaluated; the choice
of kernel becomes the key element of model specifi-
cation.

(ii) Bayesian interpretation

From a Bayesian perspective, â can be viewed as a
posterior mode in the following model : y=Ka+e ;
P(e, a|se2, sg2)=N(e|0, Ise2)N(a|0,Kx1sg

2). The relation-
ship between RKHS regressions and Gaussian pro-
cesses was first noted by Kimeldorf & Wahba (1970)
and has been revisited by many authors (e.g. Harville,
1983; Speed, 1991). Following de los Campos et al.
(2009a), one can change variables in the above model,
with g=Ka, yielding

y=g+e,

p(e, gjs2
e, s

2
g)=N(ej0, Is2

e)N(gj0,Ks2
g):

(
(3)

Thus, from a Bayesian perspective, the evaluations
of functions can be viewed as Gaussian processes
satisfying Cov(gi, gik)/K(ti, tik). The fully Bayesian
RKHS regression assumes unknown variance para-
meters, and the model becomes

y=g+e,

p(e, g, s2
e, s

2
g)=N(ej0, Is2

e)N(gj0,Ks2
g)p(s

2
e, s

2
g),

�
(4)

where p(se
2, sg

2) is a (proper) prior density assigned to
variance parameters.

(iii) Representation using orthogonal random variables

Representing model (4) with orthogonal random
variables simplifies computations greatly and pro-
vides additional insights into the nature of the RKHS
regressions. To this end, we make use of the eigenvalue
(EV) decomposition (e.g. Golub & Van Loan, 1996)
of the kernel matrix K=LYLk , where L is a matrix
of eigenvectors satisfying LkL=I ; Y=Diag{Yj},
Y1oY2o …oYn>0, is a diagonal matrix whose
non-zero entries are the EVs of K ; and j=1, …, n,
indexes eigenvectors (i.e. columns of L) and the as-
sociated EV. Using these, (4) becomes

y=Ld+e,

p(e, d, s2
e, s

2
g) / N(ej0, Is2

e)N(dj0,Ys2
g)p(s

2
e,s

2
g):

(
(5)

To see the equivalence of (4) and (5), note that Ld is
multivariate normal because so is d. Further, E(Ld)=
LE(d)=0 and Cov(Ld)=LYLksg2=Ksg

2. Therefore,
equations (4) and (5) are two parameterizations of the
same probability model. However, equation (5) is
much more computationally convenient, as discussed
next.

The joint posterior distribution of (5) does not
have a closed form; however, draws can be obtained
using a Gibbs sampler. Sampling regression coeffi-
cients from the corresponding fully conditional
distribution, p(d|y, se2, sg2), is usually the most com-
putationally demanding step. From standard results
of Bayesian linear models, one can show that
p(djELSE)=N(d̂, s2

eC
x1), where ELSE denotes every-

thing else other than d, C=[LkL+se
2sg

x2Yx1]=
Diag{1+se

2sg
x2Yj

x1} and d̂=Cx1Lky. This simplifi-
cation occurs because LkL=I andY=Diag{Yj}. The
fully conditional distribution of d is multivariate nor-
mal, and the (co)variance matrix, se

2Cx1, is diagonal ;
therefore p(djELSE)=

Qn
j=1p(djjELSE). Moreover,

p(dj|ELSE) is normal, centred at [1+se
2sg

x2Yj
x1]x1y. j

and with variance se
2[1+se

2sg
x2Yj

x1]x1. Here, y. j=
lkjy, where lj is the jth eigenvector (i.e. the jth column
ofL). Note that model unknowns are not required for
computing y. j, implying that these quantities remain
constant across iterations of a sampler. The only
quantities that need to be updated are [1+se

2sg
x2Yj

x1]
and se

2[1+se
2sg

x2Yj
x1]. If model (5) is extended to

include other effects (e.g. an intercept or some fixed
effects), the right-hand side of the mixed model
equations associated to p(d|ELSE) will need to be
updated at each iteration of the sampler; however, the
matrix of coefficients remains diagonal and this sim-
plifies computations greatly (see Appendix).

In equation (5), the conditional expectation func-
tion is a linear combination of eigenvectors : g=
Ld=g

j
ljdj. The EV are usually sorted such that

Y1oY2o …oYn>0. The prior precision variance of
regression coefficients is proportional to the EV, that
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is, Var(dj)/Yj. Therefore, the extent of shrinkage in-
creases as j does. For most RKs, the decay of the EV
will be such that for the first EV [1+se

2sg
x2Yj

x1] is
close to one, yielding negligible shrinkage of the cor-
responding regression coefficients. Therefore, linear
combinations of the first eigenvectors can then be seen
as components of g that are (essentially) not penal-
ized.

(iv) Choosing the RK

The RK is a central element of model specification in
RKHS. Kernels can be chosen so as to represent a
parametric model, or based on their ability of pre-
dicting future observations. Examples of these two
approaches are discussed next.

The standard additive infinitesimal model of quan-
titative genetics (e.g. Fisher, 1918; Henderson, 1975),
is an example of a model-driven kernel (e.g. de los
Campos et al., 2009a). Here, the information set
(a pedigree) consists of a directed acyclic graph and
K(ti, tik) gives the expected degree of resemblance be-
tween relatives under an additive infinitesimal model.
Another example of an RKHS regression with a
model-derived kernel is the case where K is chosen
to be a marker-based estimate of a kinship matrix
(usually denoted as G, cf, Ritland, 1996; Lynch &
Ritland, 1999; Eding & Meuwissen, 2001; Van
Raden, 2007; Hayes & Goddard, 2008). An example
of a (co)variance structure derived from a quantitative
trait locus (QTL)-model is given in Fernando &
Grossman (1989).

Ridge regression and its Bayesian counterpart
(Bayesian ridge regression (BRR)) can also be rep-
resented using (4) or (5). A BRR is defined by y=
Xb+e and p(e, b, se

2, sb
2)=N(e|0, Ise

2)N(b|0, Isb
2)r

p(se
2, sb

2). To see how a BRR constitutes a special case
of (5), one can make use of the singular value de-
composition (e.g. Golub & Van Loan, 1996) of X=
UDVk. Here,U (nrn) andV (prn) are matrices whose
columns are orthogonal, and D=Diag{jj} is a diag-
onal matrix whose non-null entries are the singular
values of X. Using this in the data equation, we obtain
y=UDVkb+e=Ud+e, where d=DVkb. The distri-
bution of d is multivariate normal because so is
that of b. Further, E(d)=DVkE(b)=0 and Cov(d)=
DVkVDksb2=DDksb2 ; thus, dyN[0,Diag{jj

2}sb
2 ]. There-

fore, a BRR can be equivalently represented using
(5) with L=U and Y=Diag{jj

2}. Note that using
L=U and Y=Diag{jj

2} in (5) implies K=UDDkUk=
UDVkVDkUk=XXk in (4). Habier Fernando&Dekkers
(2009) argue that as the number of markers increases,
XXk approaches the numerator relationship matrix,
A. From this perspective, XXk can also be viewed
just as another choice for an estimate of a kinship
matrix. However, the derivation of the argument
follows the standard treatment of quantitative

genetic models where genotypes are random and
marker effects are fixed, whereas in BRR, the op-
posite is true (see Gianola et al., 2009 for further
discussion).

In the examples given above, the RK was defined in
such a manner that it represents a parametric model.
An appeal of using parametric models is that esti-
mates can be interpreted in terms of the theory used
for deriving K. For example, if K=A then sg

2 is
interpretable as an additive genetic variance and
sg

2(sg
2+se

2)x1 can be interpreted as the heritability of
the trait. However, these models may not be optimal
from a predictive perspective. Another approach (e.g.
Shawe-Taylor & Cristianini, 2004) views RKs as
smoothers, with the choice of kernel based on their
predictive ability or some other criterion. Moreover,
the choice of the kernel may become a task of the
algorithm.

For example, one can index a Gaussian kernel
with a bandwidth parameter, h, so that K(ti,tik|h)=
exp{xhd(ti,tik)}. Here, d(ti,tik) is some distance func-
tion and h controls how fast the covariance function
drops as points get further apart as measured by
d(ti, tik). The bandwidth parameter may be chosen by
cross-validation (CV) or with Bayesian methods
(e.g. Mallick et al., 2005). However, when h is treated
as uncertain in a Bayesian model with Markov chain
Monte Carlo (MCMC) methods, the computational
burden increases markedly because the RK must be
computed every time that a new sample of h becomes
available. It is computationally easier to evaluate
model performance over a grid of values of h ; this is
illustrated in section 3.

The (co)variance structure implied by a Gaussian
kernel is not derived from any mechanistic consider-
ation; therefore, no specific interpretation can be
attached to the bandwidth parameter. However, using
results for infinitesimal models under epistasis one
could argue that a high degree of epistatic interaction
between additive infinitesimal effects may induce a
highly local (co)variance pattern in the same way that
large values of h do. This argument is revisited later in
this section.

The decay of the EV controls, to a certain extent,
the shrinkage of estimates of d and, with this, the trade-
offs between goodness of fit and model complexity.
Transformations of EV (indexed with unknown
parameters) can also be used to generate a family of
kernels. One such example is the diffusion kernel
Ka=LDiag{exp(aYj)}Lk (e.g. Kondor & Lafferty,
2002). Here, a>0 is used to control the decay of EV.
In this case, the bandwidth parameter can be inter-
preted as a quantity characterizing the diffusion of
signal (e.g. heat) along edges of a graph, with smaller
values being associated with more diffusion.

A thirdway of generating families of kernels is to use
closure properties of PD functions (Shawe-Taylor &
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Cristianini, 2004). For example, linear combinations
of PD functions, ~KK(ti, tik)=s2

g1
K1(ti, tik)+s2

g2
K2(ti, tik),

with sg.
2o0, are PD as well. From a Bayesian per-

spective, s2
g1

and s2
g2

are interpretable as variance
parameters. To see this, consider extending (4) to two
random effects so that : g=g1+g2 and, p(g1, g2|s2

g1
,

s2
g2
)=N(g1|0, K1s

2
g1
)N(g2|0, K2s

2
g2
). It follows that

gyN(0, K1s
2
g1
+K2s

2
g2
), or equivalently g � N(0, ~KK~ss2

g),
where ~ss2

g=(s2
g1
+s2

g2
) and ~KK=K1s

2
g1
~ssx2
g +K2s

2
g2
~ssx2
g .

Therefore, fitting an RKHS with two random effects
is equivalent to using ~KK in (4). Extending this argu-
ment to r kernels one obtains : ~KK=g

r
Krs

2
gr
~ssx2
gr

, where
~ss2
g=g

r
~ss2
gr
. For example, one can obtain a sequence

of kernels, {Kr}, by evaluating a Gaussian kernel over
a grid of values of a bandwidth parameter {hr}.
The variance parameters, fs2

gr
g, associated with each

kernel in the sequence can be viewed as weights.
Inferring these variances amounts to inferring a
kernel, ~KK, which can be seen as an approximation to
an optimal kernel. We refer to this approach as kernel
selection via kernel averaging (KA); an example of
this is given in section 3.

The Haddamard (or Schur) product of PD func-
tions is also PD, that is, if K1(ti, tik) and K2(ti, tik) are
PD, so is K(ti, tik)=K1(ti, tik)K2(ti, tik) ; in matrix no-
tation, this is usually denoted as K=K1#K2. From a
genetic perspective, this formulation can be used to
accommodate non-additive infinitesimal effects (e.g.
Cockerham, 1954; Kempthorne, 1954). For example,
under random mating, linkage equilibrium and in the
absence of selection, K=A#A={a(i, ik)2} gives the ex-
pected degree of resemblance between relatives under
an infinitesimal model for additiveradditive inter-
actions. For epistatic interaction between infinitesimal
additive effects of qth order, the expected (co)variance
structure is, K={a(i, ik)q+1}. Therefore, for qo1 and
ilik, the prior correlation,

0<
a(i, ik)qx1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a(i, i)qx1a(ik, ik)qx1
p =

a(i, ik)ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a(i, i)a(ik, ik)

p
" #qx1

<
a(i, ik)ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a(i, i)a(ik, ik)
p <1,

decreases, i.e. the kernel becomes increasingly local,
as the degree of epistatic interaction increases,
producing an effect similar to that of a bandwidth
parameter of a Gaussian kernel.

3. Application to plant breeding data

Some of the methods discussed in the previous section
were evaluated using a data set consisting of a collec-
tion of historical wheat lines from the Global Wheat
Breeding Programme of CIMMYT (International
Maize and Wheat Improvement Center). In plant
breeding programmes, lines are selected based on

their expected performance and collecting phenotypic
records is expensive. An important question is whe-
ther phenotypes collected on ancestor lines, together
with pedigrees and markers, can be used to predict
performance of lines for which phenotypic records are
not available yet. If so, breeding programmes could
perform several rounds of selection based on marker
data only; with phenotypes measured every few gen-
erations. The reduction in generation interval attain-
able by selection based on markers may increase the
rate of genetic progress and, at the same time, the cost
of phenotyping would be reduced (e.g. Bernardo &
Yu, 2007; Heffner et al., 2009). Thus, assessing the
ability of a model to predict future outcomes is central
in breeding programmes.

The study presented in this section attempted to
evaluate: (a) how much could be gained in predictive
ability by incorporating marker information into a
pedigree-based model, (b) how sensitive these results
are with respect to the choice of kernel, (c) whether or
not Bayesian KA is effective for selecting kernels and
(d) how RKHS performs relative to a parametric
regression model, the Bayesian LASSO (BL; Park
& Casella, 2008).

(i) Materials and methods

The data comprise family, marker and phenotypic
information of 599 wheat lines that were evaluated for
grain yield (GY) in four environments. Single-trait
models were fitted to data from each environment.
Marker information consisted of genotypes for 1447
Diversity Array Technology (DArT) markers, gener-
ated by Triticarte Pty. Ltd (Canberra, Australia;
http://www.triticarte.com.au). Pedigree information
was used to compute additive relationships between
lines (i.e. twice the kinship coefficient; Wright, 1921)
using the Browse application of the International
Crop Information System, as described in McLaren
et al. (2005).

A sequence of models was fitted to the entire data
set and in a CV setting. Figure 1 gives a summary of
the models considered. In all environments, pheno-
types were represented using equation yi=m+gi+ei,
where yi (i=1, …, 599) is the phenotype of the ith
line; m is an effect common to all lines ; gi is the genetic
value of the ith line; and ei is a line-specific residual.
Phenotypes were standardized to a unit variance in
each of the environments. Residuals were assumed to
follow a normal distribution ei �

IID
N(0, s2

e), where se
2

is the residual variance. The conditional distribution
of the data was p(yjm, g, s2

e)=
Qn

i=1 N(yijm+gi, s
2
e),

where g=(g1, …, gn)k. Models differed on how gi was
modelled.

In a standard infinitesimal additive model
(P, standing for pedigree-model), genetic values are
g=a with p(a|sa2)=N(0, Asa

2), where sa
2 is the additive
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genetic variance and A={a(i,ik)}, as before, is the nu-
merator relationship matrix among lines computed
from the pedigree. This is a RKHS with K=A.

For marker-based models (M), two alternatives
were considered: BL and RKHS regression. In the
BL, genetic values were a linear function of marker
covariates, g=Xb, where X is an incidence matrix
with marker genotypes codes and b=(b1, …, bp)k, the
vector of regression coefficients, was inferred using
the BL of Park & Casella (2008). Following de los
Campos et al. (2009b), the prior density of the regula-
rization parameter of the BL, here denoted as ~ll, was
p(~ll) / Betað~ll=150j~aa1=1�2, ~aa2=1�2Þ, which is flat over
a fairly wide range. This model is denoted as MBL.

In marker-based RKHS regressions (MK) g=fh,
where fh=( fh,1, …, fh,n)kwas assigned aGaussian prior
with nullmean and (co)variancematrixCov(fh)/Kh=
{exp(xhkx1diik)}. Here, h is a bandwidth parameter,
diik=||xixxik||2 is the square Euclidean distance be-
tween marker codes xi=(xi1, …, xip)k and xik=(xik1, …,
xikp)k, and k=max

i, ikð Þ
{jjxixxikjj2}. Models were fitted

over a grid of values of h and are denoted as Mk,h. The
optimal value of the bandwidth parameter is expected
to change with many factors such as: (a) distance
function; (b) number of markers, allelic frequency
and coding of markers, all factors affecting the distri-
bution of observed distances and (c) genetic architec-
ture of the trait, a factor affecting the expected prior

correlation of genetic values (see section 2(iv)). We
generated a grid of values, hs{0.1, 0.25, 0.5, 0.75, 1,
2, 3, 5, 7, 10}, that for this data set allowed exploring a
wide variety of kernels. Figure 2 gives a histogram of
the evaluations of the kernel for two extreme values of
the bandwidth parameter ; h=0.25 gives very high
prior correlations, while h=7 gives a kernel matrix
with very low correlations in the off-diagonal.

A model where g was the sum of two compo-
nents : g=f0.25+f7, with p(f0.25, f7|s2

g0�25
, s2

g7
)=N(f0.25|0,

K0.25s
2
g0�25

)N(f7|0, K7s
2
g7
) was fitted as well. This model

is referred to as MKA, standing for marker-based
model with ‘kernel-averaging’. Note that K0.25 and K7

provide very different kernels (see Fig. 2). With more
extreme values of the bandwidth parameter, marker
information is virtually lost. Indeed, choosing h=0
gives a kernel matrix full of ones and hp‘ givesKhpI,
and averaging these two kernels gives a resulting
(co)variance structure that does not use marker in-
formation at all.

Finally, a sequence of models including pedigree
and marker data (PM) was obtained by setting g=
a+Xb, denoted as PMBL; g=a+fh, h={0.1, 0.25,
0.5, 0.75, 1, 2, 3, 5, 7, 10}, denoted as PMk,h ; and,
g=a+f0.25+f7, denoted as PMKA.

In all models, variance parameters were treated as
unknown and assigned identical independent scaled
inverse chi-square prior distributions with three
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Fig. 1. Alternative models for prediction of genetic values. Phenotypic records (y) were always the sum of a genetic
signal (g) and a vector of Gaussian residuals (e). Models differed on how g was represented, as described in the figure.
BL, Bayesian LASSO; RKHS, reproducing kernel Hilbert spaces regression; l, LASSO regularization parameter ;
h, RKHS bandwidth parameter; s.2, variance parameter; KA, kernel averaging; N(., .), normal density; DE(.),
double-exponential density.
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degrees of freedom and scale parameters equal to 1,
p(s.2)=xx2(s.2|df=3, S=1). Samples from posterior
distributions for each of the models were obtained
with a Gibbs sampler (see de los Campos et al., 2009b,
for the case of MBL and PMBL, and the Appendix
for RKHS models). Inferences were based on all
35 000 samples obtained after discarding 2000
samples as burn-in. The distribution of prediction
errors was estimated using a 10-fold CV (e.g. Hastie
et al., 2009).

(ii) Results

Figure 3 shows the posterior means of the residual
variance in Mk,h and PMk,h versus values of the
bandwidth parameter h obtained when models were
fitted to the entire data. Each panel in Fig. 3 corre-
sponds to one environment and the horizontal lines
give the posterior means of the residual variance from
P and PMKA. Table A1 of the Appendix gives esti-
mates of the posterior means and of the posterior
standard deviations of the residual variance from each
of the 25 models, by environment. The posterior
means of the residual variances indicate that models
M and PM fitted the data better than P, and PMKA

gave almost always better fit than Mk,h and PMk,h. In
all environments, the posterior mean of the residual
variance decreased monotonically with h ; this was
expected because Kh becomes increasingly local as the
bandwidth parameter increases. In environments 2, 3
and 4, the slopes of the curves relating the posterior
mean of residual variance to h were gentler for PMk,h

than for Mk,h. This occurs, because in PMk,h, the re-
gression function has two components, one of which,
the regression on the pedigree, is not a function of the
bandwidth parameter. Models MBL and PMBL did

not fit the training data as well as most of the RKHS
counterparts, with a posterior mean of the residual
variance that was close to that of Mk,0.1 and PMk,0.5,
respectively (see Table A1 of the Appendix).

The contribution of a, that is, the regression on the
pedigree, to the conditional expectation function,
g, can be assessed via the posterior mean of sa

2 (see
Fig. A1 in the Appendix). The posterior mean of sa

2

was larger in P models than in their PM counterparts ;
this was expected, because in P the regression on the
pedigree is the only component of the conditional
expectation function that contributes to phenotypic
variance. Within PMk,h, the posterior mean of sa

2 was
minimum at intermediate values of the bandwidth
parameters. At extreme values of h, the RK may not
represent the types of patterns present in the data and,
thus, the estimated conditional expectation function
would depend more strongly on the regression on the
pedigree (large values of sa

2).
Plots in Fig. 4 give the estimated mean-squared er-

ror (MSE) between CV predictions and observations
versus values of the bandwidth parameter (x-axis), by
environment and model. The predictive MSE of the
P and PMKA models are displayed as horizontal
dashed lines, and values of those for the BL (both in
MBL and PMBL) are shown at the bottom of the
panels. Table A2 in the Appendix gives the estimated
MSE by model and environment, respectively.

Overall, models including marker information had
better predictive ability than pedigree-based models.
For example, relative to P, using PMKA yielded de-
creases in MSE between CV predictions of observa-
tions of 20.4, 8.8, 7.0 and 11.0% for E1 through E4,
respectively (Table A2 in the Appendix). Thus, it
appears that sizable gains in predictive ability can be
attained by considering markers and pedigrees jointly,
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Fig. 2. Histogram of the evaluations of Gaussian kernel K(i,ik)=exp{xhkx1diik} by value of the bandwidth parameter
(h=0.25 left and h=7, right). Here, diik=||xixxik||2 is the squared Euclidean distance between marker codes
xi=(xi1, …, xip)k and xik=(xik1, …, xikp)k , and k=max

i, ikð Þ
{jjxixxikjj2}.
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as in PMKA. These results are in agreement with some
empirical studies (e.g. Corrada Bravo et al., 2009;
de los Campos et al., 2009b) that provided evidence of
a gain in predictive ability by jointly considering
markers and pedigree information. However, marker
density in this study was relatively low; as marker
density increases it is expected that the relative im-
portance of considering pedigree information will
decrease (e.g. Calus & Veerkamp, 2007).

As shown in Fig. 4, the value of the bandwidth
parameter that gave the best predictive ability was in
the range (2,4), except for environment E2 in which
values of h near one performed slightly better. The
value of the bandwidth parameter that was optimal
from the perspective of predictive ability was similar
in M and PM models (Fig. 4 and Table A2 in the
Appendix). However, the difference between the
predictive ability of PMk,h andMk,hmodels was larger
for extreme values of h, indicating that PM models

are more robust than M models with respect to the
choice of h. Again, this occurs because PMk,h involves
some form of KA (between the RK evaluated in the
pedigree, A, and the one evaluated in marker geno-
types, Kh).

In all environments, KA had an estimated PMSE
that was either close or lower than the one obtained
with any specific value of the bandwidth parameter
(Fig. 4 and Table A2 in the appendix). This was ob-
served both in models with and without pedigree.
These results suggest that KA can be an effective way
of choosing the RK. Finally, PMKA had higher pre-
dictive ability than PMBL; this suggests a superiority of
semi-parametric methods. However, PMBL outper-
formed PMk,h for extreme values of the bandwidth
parameter, illustrating, again, the importance of
kernel selection. Moreover, the superiority of RKHS
methods may not generalize to other traits or popu-
lations.
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Using data from US Jersey sires (n=1446) geno-
typedwith the BovineSNP50 BeadChip (42 552 Single-
nucleotide polymorphisms (SNPs)) de los Campos
et al. (2010) compared the predictive ability of several
RKHS models for predicted transmitting abilities of
milk production, protein content and daughter preg-
nancy rate. Models evaluated in that study were: (a)
BRR, i.e. K=XXk ; (b) a Gaussian kernel evaluated
over a grid of values of the bandwidth parameter,
i.e. Kh ; (c) KA using the two most extreme kernels in
the sequence {Kh}; and (d) a model where K was a
marker-based estimate of a kinship matrix, i.e. K=G.
Results in that study are in agreement with findings
reported here in that using KA gave predictive ability
similar to that achieved with best performing kernel in
the sequence {Kh}. The comparison between KA,
BRR and using K=G yielded mixed results : for milk
yield all models performed similarly; however, for

protein content BRR and G outperformed KA and
the opposite was observed for daughter fertility,
illustrating that the optimal choice of kernel may be
trait dependent.

4. Concluding remarks

Incorporating molecular markers into models for
prediction of genetic values poses important statistical
and computational challenges. Ideally, models for
dense molecular markers should be: (a) able to cope
with the curse of dimensionality; (b) flexible enough
to capture the complexity of quantitative traits and
(c) amenable for computations. RKHS regressions
can be used to address some of these challenges.

Coping with the curse of dimensionality and with
complexity. In RKHS, the curse of dimensionality is
controlled by defining a notion of smoothness of the
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unknown function with respect to pairs of points in
input space, Cov[g(ti), g(tik)]/K(ti, tik). The choice of
RK becomes a central element of model specification
in RKHS regressions.

As a framework, RKHS is flexible enough to ac-
commodate many non-parametric and some para-
metric methods, including some classical choices such
as the infinitesimal model. The frontier between para-
metric and non-parametric methods becomes fuzzy;
models are better thought as decision rules (i.e. maps
from data to estimates) and best evaluated based on
performance. Predictive ability appears as a natural
choice for evaluating model performance from a
breeding perspective.

From a non-parametric perspective, kernels are
chosen based on their properties (e.g. predictive abil-
ity). To a certain extent, this choice can be made a
task of the algorithm. KA offers a computationally
convenient method for kernel selection, and results on
this study, as well as those of de los Campos et al.
(2010), suggests that KA is an effective strategy for
kernel selection.

Computational considerations. RK Hilbert spaces
methods offer enormous computational advantages
relative to most of the parametric methods for re-
gression on molecular markers. This occurs for two
reasons: (a) the model can be represented in terms of
n unknowns and (b) factorizations such as EV or
Singular value decompositions can be used to arrive
at highly efficient algorithms. Unfortunately, these
benefits cannot be exploited in linear models, y=
Xb+e, with marker-specific prior precision variances
of effects such as BayesA or Bayesian LASSO. This
providesRKHSwith a great computational advantage
relative to those methods, especially when p>>n.

Contribution of marker genotypes to prediction of
genetic values. Unlike pedigrees, molecular markers
allow tracing Mendelian segregation; potentially, this
should allow better predictions of genetic values.
Results from this study confirm this expectation.
Overall, PM models outperformed P models. Further,
most RKHS regression yielded better predictions
than those attained with the Bayesian LASSO.
However, this did not occur for every RK, indicating
that the choice of the kernel is one of the main chal-
lenges when applying kernel-based methods. As
stated, our results as well as those of de los Campos
et al. (2010) suggest that KA provides an effective
way of choosing a kernel.

Future challenges. In the kernels used in this study
all SNPs contributed equally to the RK. As the
number of available markers increases, a high number
is expected to be located in regions of the genome that
are not associated with genetic variability of a quan-
titative trait. Ideally, the RK should weight each
marker based on some measure of its contribution
to genetic variance. In linear models such as the

Bayesian LASSO, or methods Bayes A or Bayes B,
the prior variances of marker effects, which are
marker specific, act as weights assigned to each of the
markers (e.g. de los Campos et al., 2009b).

In RKHS models, one could think of kernels
where the contribution of each marker to the kernel
is weighted according to some measure of its con-
tribution to genetic variance. For example, one
could derive weighted estimates of kinship in
which each marker obtains a differential contri-
bution. Alternatively, with a Gaussian kernel, one
could think of attaching a bandwidth parameter to
each marker. For example, one could use K(i, ik)=
exp {xgp

k=1hkd(xik, xikk)}, where hk and d(xik, xikk) are
a bandwidth parameter and a distance function as-
sociated with the kth marker.

An approach similar to that above-described was
evaluated by Long et al. (2010) who used radial-basis
functions evaluated on principal components (as op-
posed to individual markers) derived from marker
genotypes. Results of that study indicate that the use
of input-specific bandwidth parameters may improve
predictive ability relative to a model based on a
single bandwidth parameter. However, inferring these
weights (or bandwidth parameters) poses several
statistical challenges when p>>n. This occurs because
the kernel must be re-computed every time the band-
width parameters are updated. A natural alternative is
to use two-step procedures, with a first step in which
an approximation to the weights (or bandwidth
parameters) is employed (e.g. with some form of sin-
gle-marker regression) and a second step where gen-
etic values are inferred. Irrespective of whether single
or two-step approaches are used, the development
and evaluation of algorithms for computing weighted
kernels seem to constitute a central area of research
for the application of RKHS to genomic models.

APPENDIX

1. Gibbs sampler

The Appendix describes a Gibbs sampler for a
Bayesian RKHS regression. The parameterization is
as in equation (5), extended to two random effects and
with the inclusion of an intercept. Extension of the
model to more than two random effects is straight-
forward. The derivation of the fully conditional dis-
tributions presented here uses standard results for
Bayesian linear models (e.g. Gelman et al., 2004;
Sorensen & Gianola, 2002).

Let K1=L1Y1Lk1 and K2=L2Y2Lk2 be the EV de-
compositions of the two kernel matrices. Extending
(5) to two random effects and by including an inter-
cept, the data equation and likelihood function be-
come y=1m+L1d1+L2d2+e and p(y|m,d1,d2,se

2)=
N(y|1m+L1d1+L2d2, Ise

2), respectively. The joint
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prior is (upon assuming a flat prior for m)

p(m, d1, d2,s
2
e, s

2
g1
, s2

g2
) / N(d1j0,Y1s

2
g1
)N(d2j0,Y2s

2
g2
)

rxx2(s2
ejdfe,Se)x

x2(s2
g1
jdfg1 ,Sg1 )x

x2(s2
g2
jdfg2 ,Sg2 ):

Above, xx2(.|df., S.) is a scaled inverse chi-square den-
sity with degree of freedom df. and scale-parameter S.,
with the parameterization presented in Gelman et al.
(2004).

The joint posterior density is proportional to the
product of the likelihood and the prior ; thus

p(m, d1, d2,s
2
e, s

2
g1
, s2

g2
jy)

/N(yj1m+L1d1+L2d2, Is
2
e)

rN(d1j0,Y1s
2
g1
)N(d2j0,Y2s

2
g2
)

rxx2(s2
ejdfe,Se)x

x2(s2
g1
jdfg1 ,Sg1 )x

x2(s2
g2
jdfg2 ,Sg2 ):

The Gibbs sampler draws samples of the unknowns
from their fully conditional distributions, with the
conjugate priors chosen, all fully conditionals are
known, as described next.

Intercept. Parameter m enters only in the likelihood;
therefore,

p mjELSEð Þ / N yj1m+L1d1+L2d2, Is
2
e

� �
/ N ymj1m, Is2

e

� �
,

where ym=yxL1d1xL2d2, and ELSE denotes all
other unknowns except for m. The fully conditional
distribution is then normal with mean nx1g

i
y

m
i and

variance nx1se
2.

Regression coefficients. The fully conditional distri-
bution of d1 is

p(d1jELSE)/ N(yj1m+L1d1+L2d2, Is
2
e)

rN(d1j0,Y1s
2
g1
)

/ N(yd1 jL1d1, Is
2
e)N(d1j0,Y1s

2
g1
),

where yd1=yx1mxL2d2. This is known to be a mul-
tivariate normal distribution with mean (covariance
matrix) equal to the solution (inverse of the matrix of
coefficients) of the following system of equations:
[Lk1L1s

x2
e +Yx1

1 sx2
g1

]d̂1=Lk1yd1sx2
e . Using Lk1L1=I,

the system becomes [Isx2
e +Yx1

1 sx2
g1

]d̂1=Lk1yd1sx2
e .

Since Y is diagonal, so is the matrix of coefficients of
the above system, implying that the elements of d1 are
conditionally independent. Moreover, p(d1j|ELSE)
is normal, centred at [1+s2

es
x2
g1

Yx1
1j ]x1yd1

: j and
with variance s2

e[1+s2
es

x2
g1

Yx1
1j ]x1, where yd1

: j =lk1jyd1 .
Here, l1j is the jth column (eigenvector) of L1.

By symmetry, the fully conditional distribution of
d2 is also multivariate normal and the associated sys-
tem of equations is [Isx2

e +Yx1
2 sx2

g2
]d̂2=Lk2yd2sx2

e ,
where yd2=yx1mxL1d1.

Variance parameters. The fully conditional distri-
bution of the residual variance is

p s2
e

��y� �
/ N yj 1m+L1d1+L2d2 , Is

2
e

� �
xx2 s2

e

��dfe,Se

� �
/ N ej0, Is2

e

� �
xx2 s2

e

��dfe,Se

� �
,

where e=yx1mxL1d1xL2d2. The above is a scaled
inverse chi-square distribution with df=n+dfe and
scale parameter S=(g

i
e2i+dfeSe)=(n+dfe).

The fully conditional distribution of s2
g1

is
p(s2

g1
jELSE)/N(d1j0,Y1s

2
g1
)xx2(s2

g1
jdfg1 ,Sg1), which

is a scaled inverse chi-square distribution with df=
n+dfg1 and scale parameter S=(g

i
Yx1

1j d2
1j+dfg1Sg1 )=

(n+dfg). Here, Y1j is the jth EV of K1. Similarly, the
fully conditional distribution of s2

g2
is scaled inverse

chi-square with df=n+dfg2 and scale parameter
S=(g

j
Yx1

2j d2
2j+dfg2Sg2)=(n+dfg2 ).
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2. Tables and Figures

Table A1. Posterior mean (SD) of residual variance by model and environment

Models using Pedigree or Markers Models using Pedigree and Markers

E1 E2 E3 E4 E1 E2 E3 E4

Pedigree
model

0.562
(0.057)

0.580
(0.056)

0.493
(0.058)

0.519
(0.055)

NA

K0.10 0.520
(0.049)

0.561
(0.049)

0.646
(0.056)

0.579
(0.052)

0.410
(0.049)

0.485
(0.052)

0.459
(0.056)

0.451
(0.051)

K0.25 0.484
(0.048)

0.545
(0.051)

0.618
(0.057)

0.548
(0.053)

0.386
(0.049)

0.469
(0.051)

0.446
(0.055)

0.437
(0.051)

K0.50 0.432
(0.048)

0.524
(0.051)

0.565
(0.061)

0.502
(0.053)

0.347
(0.048)

0.458
(0.051)

0.428
(0.055)

0.414
(0.051)

K0.75 0.401
(0.048)

0.507
(0.051)

0.520
(0.062)

0.467
(0.052)

0.318
(0.047)

0.442
(0.052)

0.408
(0.055)

0.397
(0.050)

K1.00 0.373
(0.047)

0.490
(0.052)

0.486
(0.062)

0.440
(0.052)

0.294
(0.048)

0.431
(0.053)

0.392
(0.056)

0.379
(0.050)

K2.00 0.313
(0.044)

0.436
(0.053)

0.379
(0.060)

0.373
(0.050)

0.232
(0.043)

0.392
(0.053)

0.327
(0.056)

0.330
(0.048)

K3.00 0.277
(0.043)

0.399
(0.054)

0.320
(0.056)

0.333
(0.047)

0.199
(0.042)

0.364
(0.056)

0.284
(0.053)

0.300
(0.047)

K5.00 0.238
(0.041)

0.347
(0.056)

0.262
(0.051)

0.286
(0.048)

0.155
(0.039)

0.335
(0.060)

0.246
(0.054)

0.269
(0.050)

K7.00 0.214
(0.042)

0.323
(0.060)

0.232
(0.052)

0.255
(0.050)

0.136
(0.037)

0.332
(0.067)

0.238
(0.059)

0.255
(0.053)

K10.00 0.203
(0.044)

0.309
(0.070)

0.218
(0.057)

0.226
(0.055)

0.121
(0.037)

0.333
(0.075)

0.240
(0.064)

0.261
(0.059)

K0.25+K7.00 0.244
(0.044)

0.402
(0.059)

0.276
(0.060)

0.314
(0.055)

0.152
(0.040)

0.337
(0.058)

0.243
(0.056)

0.276
(0.052)

Bayesian
LASSO

0.532
(0.045)

0.555
(0.047)

0.644
(0.050)

0.582
(0.048)

0.370
(0.044)

0.446
(0.047)

0.427
(0.049)

0.419
(0.045)

E1–E4 are the four environments where wheat lines were evaluated; Kh are (Bayesian) RKHSmodels using a Gaussian kernel
evaluated at marker-genotypes with bandwidth parameter h ; K0.25+K7 is a model that includes two Gaussian kernels dif-
fering only in the value of h.

Table A2. MSE between realized phenotypes and CV predictions, by model and environment

Models using Pedigree or Markers Models using Pedigree and Markers

E1 E2 E3 E4 E1 E2 E3 E4

Pedigree model 0.826 0.835 0.834 0.812 NA
K0.10 0.736 0.779 0.853 0.780 0.721 0.773 0.808 0.755
K0.25 0.722 0.778 0.847 0.768 0.708 0.772 0.806 0.750
K0.50 0.703 0.776 0.838 0.754 0.694 0.769 0.801 0.742
K0.75 0.691 0.775 0.830 0.744 0.682 0.769 0.797 0.734
K1.00 0.681 0.775 0.823 0.735 0.674 0.768 0.793 0.730
K2.00 0.664 0.778 0.804 0.721 0.655 0.771 0.781 0.719
K3.00 0.665 0.785 0.796 0.719 0.651 0.775 0.776 0.720
K5.00 0.683 0.809 0.803 0.736 0.660 0.792 0.781 0.733
K7.00 0.713 0.842 0.827 0.763 0.679 0.806 0.792 0.750
K10.00 0.759 0.892 0.870 0.811 0.704 0.818 0.809 0.770
K0.25+K7.00 0.679 0.768 0.801 0.729 0.658 0.762 0.775 0.723
Bayesian LASSO 0.748 0.783 0.861 0.787 0.732 0.781 0.814 0.759

E1–E4 are the four environments where wheat lines were evaluated; Kh are (Bayesian) RKHSmodels using a Gaussian kernel
evaluated at marker genotypes with bandwidth parameter h ; K0.25+K7.00 is a model that includes two Gaussian kernels
differing only in the value of h.

G. de los Campos et al. 306

https://doi.org/10.1017/S0016672310000285 Published online by Cambridge University Press

https://doi.org/10.1017/S0016672310000285


0·
0

0·
1

0·
2

0·
3

0·
4

0 2 4 6 8 10

θ

E1

0·
0

0·
1

0·
2

0·
3

0·
4

0 2 4 6 8 10

θ

E2

0·
0

0·
1

0·
2

0·
3

0·
4

0 2 4 6 8 10

θ

E4

0·
0

0·
1

0·
2

0·
3

0·
4

0 2 4 6 8 10

θ

σ
2 a

σ
2 a

σ
2 a

σ
2 a

E3

Pedigree model

Pedigree & Markers K2+K8
Pedigree & Markers K2+K8

Pedigree & Markers Kθ
Pedigree & Markers Kθ

Pedigree model

Pedigree & Markers K2+K8

Pedigree & Markers K2+K8

Pedigree & Markers Kθ
Pedigree & Markers Kθ

Pedigree model

Pedigree model

Fig. A1. Posterior mean of the variance of the regression on the pedigree, sa
2, versus values of the bandwidth parameter,

h, by environment and model. Pedigree & Markers Kh uses pedigree and markers, here, h is the value of the bandwidth
parameter for markers. Pedigree & Markers K0.25+K7 uses pedigree and markers with KA. E1–E4: environments where
the lines were evaluated.
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