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Abstract

Motivated by the study of the asymptotic normality of the least-squares estimator in the
(autoregressive)AR(1) model under possibly infinite variance, in this paper we investigate
a self-normalized central limit theorem for Markov random walks. That is, let {Xn,

n ≥ 0} be a Markov chain on a general state space X with transition probability P and
invariant measure π . Suppose that an additive component Sn takes values on the real line
R, and is adjoined to the chain such that {Sn, n ≥ 1} is a Markov random walk. Assume
that Sn = ∑n

k=1 ξk , and that {ξn, n ≥ 1} is a nondegenerate and stationary sequence
under π that belongs to the domain of attraction of the normal law with zero mean and
possibly infinite variance. By making use of an asymptotic variance formula of Sn/

√
n,

we prove a self-normalized central limit theorem for Sn under some regularity conditions.
An essential idea in our proof is to bound the covariance of the Markov random walk via
a sequence of weight functions, which plays a crucial role in determining the moment
condition and dependence structure of the Markov random walk. As illustrations, we
apply our results to the finite-state Markov chain, the AR(1) model, and the linear state
space model.

Keywords: Self-normalized; central limit theorem; Markov random walk; Poisson
equation; domain of attraction of the normal law
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1. Introduction

Let {Xn, n ≥ 0} be a Markov chain on a general state space X with σ -algebra A. Suppose
that an additive component Sn = ∑n

k=1 ξk takes values on the real line R and is adjoined to the
chain such that {(Xn, Sn), n ≥ 0} is a Markov chain on X × R with

P((Xn, Sn) ∈ A × (B + s) | (Xn−1, Sn−1) = (x, s))

= P((X1, S1) ∈ A × B | (X0, S0) = (x, 0))

= P(x, A × B) (1)

for all x ∈ X, s ∈ R, A ∈ A, and B ∈ B (the Borel σ -algebra on R). We call {Sn, n ≥ 1} a
Markov random walk. For an initial distribution ν on X0, let Pν denote the probability measure
under the initial distribution ν on X0, and let Eν denote the corresponding expectation. In the
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case where ν is degenerate at x, we write Px instead of Pν and Ex instead of Eν . Moreover,
let {Xn, n ≥ 0} be a positive recurrent Markov chain with stationary probability measure π .
A simple example of Markov random walks is given as follows.

Example 1. (The (autoregressive) AR(1) model.) Let

Xn+1 = ρXn + εn+1, n = 0, 1, 2, . . . , (2)

where |ρ| < 1 and εn is a sequence of independent and identically distributed (i.i.d.) random
variables with distribution N(0, σ 2). Moreover, we assume that εn+1 and Xn are independent.
Then {Xn, n ≥ 0} forms a Markov chain with transition probability kernel

p(x, y) = 1√
2πσ

exp

{
− (y − ρx)2

2σ 2

}
,

and stationary probability π which has probability density N(0, σ 2/(1−ρ2)). The least-squares
estimator (maximum likelihood estimator) of ρ is

ρ̂ =
∑n

k=1 XkXk−1∑n
k=1 X2

k−1

.

It is known (cf. Anderson (1959)) that, as n → ∞,

ρ̂ − ρ√
(1 − ρ2)/n

→ N(0, 1) in distribution.

Note that

ρ̂ − ρ =
∑n

k=1 εkXk−1√∑n
k=1 ε2

kX
2
k−1

√∑n
k=1 ε2

kX
2
k−1∑n

k=1 X2
k−1

.

By letting ξn = εnXn−1, then Sn = ∑n
k=1 ξk is a Markov random walk. The other cases can

be defined in a similar way.
The problem of interest here is whether the asymptotic normality of (ρ̂ − ρ)/

√
(1 − ρ̂2)/n

still holds when the εn have heavy tails and only the sample is available.

Example 1 motivates our study of the self-normalized central limit theorem for Markov
random walks. In the literature, central limit theorems for partial sums of Markov chains have
been studied under various assumptions; see Nagaev (1957), Lifshits (1978), and Maxwell and
Woodroofe (2000), among others. Note that these results all hold under the assumption of a
finite stationary second moment.

On the other hand, it is known that the celebrated self-normalized limit theorems put a
totally new countenance on classical limit theorems. Similar results may still hold under a less
strong, or even no, moment condition if the normalizing constants in the classical limit theorems
are replaced by an appropriate sequence of random variables. In the i.i.d. case, we refer the
reader to Griffin and Kuelbs (1989) for the law of the iterated logarithm, Csörgő et al. (1994) for
studentized increments, Bentkus and Götze (1996) for Berry–Esseen inequalities, Lin (1996) for
the Chung-type law of the iterated logarithm, Shao (1997) for large deviations, Giné et al. (1997)
for a necessary and sufficient condition of the asymptotic normality, Csörgő et al. (2003a),
(2003b) for the Darling–Erdös and Donsker theorems, respectively, and Jing et al. (2003) for
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Cramér-type large deviations. For a survey on recent developments in this area, the reader is
referred to Lai and Shao (2007) or de la Peña et al. (2009) for details.

Regarding self-normalized limit theorems for dependent random variables with a finite
second moment assumption, Peligrad and Shao (1994) established the self-normalized central
limit theorem for α-mixing and an associated sequence of random variables, Chen (1999) proved
the self-normalized law of the iterated logarithm for functionals of the Harris recurrent Markov
chain, and Faure (2002) obtained self-normalized large deviations for Markov chains. For the
self-normalized limit theorems on dependent random variables without a finite second moment
assumption, McElroy and Politis (2007) established a self-normalized weak convergence result
for a class of new sequences constructed by taking the product of a long-memory sequence and
a stable sequence such that the variance is infinite and the covariance is finite.

It is worth noting that, for dependent random variables, the dependence structure usually
relies on moment conditions and/or mixing rates. For instance, under the assumption that the
sequence is ρ-mixing with some mixing rate, and in the domain of attraction of the normal law,
Bradley (1988) proved that the covariance part (or the variance part) of truncated partial sums
is proportional to the product of the sample size and the truncated second moment. Moreover,
Diebold and Inoue (2001) gave a definition of long memory which involves the rate of growth for
the variances of partial sums var(Sn) = O(n2d+1), 0 < d < 1. They also made a connection
between the moment condition and the dependence assumption.

There are three aspects to this study. First, when the second moment exists, we provide an
asymptotic variance formula, whose consistent estimator can be used as the self-normalized
term. Second, when the second moment does not exist, we prove a self-normalized central
limit theorem for Markov random walks. Third, the conditions posed in our theorems are weak
enough to cover several practical examples, to which the variance can be calculated explicitly.
Note that a difficulty in studying self-normalized central limit theorems for dependent random
variables is that one needs to investigate the variance–covariance structure under the condition
that the second moment does not exist. By bounding the variance–covariance of the Markov
random walk by a sequence of weight functions defined on the truncated state space (see
Assumption 2 for details), we obtain the result. This idea plays an essential role in determin-
ing the moments and dependence of Markov random walks, and may also be applicable in
other cases.

The remainder of this paper is organized as follows. In Section 2 we state our main results
on self-normalized central limit theorems for the Markov random walk Sn = ∑n

k=1 ξk under
suitable conditions, where {ξn, n ≥ 1} is a stationary sequence under π that belongs to the
domain of attraction of the normal law with zero mean. In Section 3 we apply our results to
the finite-state Markov chain, the AR(1) model, and the linear state space model. The proofs
of the theorems are given in Section 4.

2. Main results

Let {Xn, n ≥ 0} be the Markov chain defined in (1) on a state space X. For simplicity,
we define P(x, ·) = P(x, · × R) for all x ∈ X. We say that {(Xn, Sn), n ≥ 0} satisfies
the minorization condition if there exist a measure � on X × R and a measurable function
h on X such that

∫
π(dx)h(x) > 0, �(X × R) = 1,

∫
�(dx × R)h(x) > 0, and the kernel

T (x, A × B) = P(x, A × B) − h(x)�(A × B) is nonnegative for all A ∈ A and B ∈ B. It is
known (see Ney and Nummelin (1987)) that, under this assumption, we can extend Nummelin’s
splitting technique to Markov random walks. To this end, we introduce the following notation.
A set α ∈ A is called an atom if there exists a measure ν on A such that P(x, ·) = ν(·)
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for x ∈ α. Let 	 be an atom of the Markov chain, define

τ	 = inf{n ≥ 1, Xn ∈ 	}
to be the regeneration time, where

τ	(0) = 0, τ	(1) = τ	, and τ	(k + 1) = inf{n > τ	(k), Xn ∈ 	}, k ≥ 1.

Let {Xn, n ≥ 0} be an irreducible (with respect to a maximal irreducible measure ϕ

on (X, A)), aperiodic Markov chain such that {(Xn, Sn), n ≥ 0} satisfies the minorization
condition. It is known (see Chapter 17 of Meyn and Tweedie (1993)) that, under the assumptions
that

E	

(τ	−1∑
k=1

ξk

)2

< ∞ and E	 τ	 < ∞, (3)

the central limit theorem holds for
∑n

k=1 ξk/
√

n. Moreover, Fuh and Hu (2007) provided a
representation of the asymptotic variance � of

∑n
k=1 ξk/

√
n as

� =
∫

X
[G(x) − 2(x)]π(dx) +

∫
X×X

[(y) − δx + δy]2P(x, dy)π(dx), (4)

where (x) = Ex ξ1, G(x) = Ex ξ2
1 , P(x, dy) stands for the transition probability, and δx is a

measurable function from X to R satisfying the Poisson equation

(I − P)δx = P(x), (5)

where I denotes the identity kernel.
When Sn = ∑n

k=0 f (Xk), where f is a real-valued function defined on X, the variance
formula (4) becomes

� =
∫

X×X
[f (y) − δx + δy]2P(x, dy)π(dx). (6)

To state our main results, we need to introduce truncated random variables. That is, let

l(t) = Eπ (ξ2
1 1{|ξ1| ≤ t}), b = inf{t ≥ 1 : l(t) > 0}, (7)

where 1{·} denotes the indicator function, and

ηj = inf

{
s : s ≥ b + 1,

l(s)

s2 ≤ 1

j

}
for j = 1, 2, . . . . (8)

Let
ξ̃i,n = ξi 1{|ξi | ≤ ηn} − Eπ (ξi 1{|ξi | ≤ ηn}), i = 1, 2, . . . , (9)

and define n(x) = Ex ξ̃1,n. For each given n, let δx,n be a measurable function from X to R

satisfying the corresponding Poisson equation

(I − P)δx,n = Pn(x). (10)

In this paper, let C, C1, C2, . . . stand for positive constants whose values can differ from
line to line, and write an ∼ bn if limn→∞ an/bn = 1. The following assumptions will be used
throughout the rest of this paper.
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Assumption 1. Let {Xn, n ≥ 0} be a positive recurrent, irreducible (with respect to some
measure on A), aperiodic Markov chain on a state space X such that {(Xn, Sn), n ≥ 1} satisfies
the minorization condition. Assume that, under the stationary probability π , {ξn, n ≥ 1} is a
nondegenerate and stationary sequence that belongs to the domain of attraction of the normal
law with zero mean. Furthermore, assume that E	 τ	

2 < ∞.

Assumption 2. Define

Vn(x) = 1 + E(ξ2
1 1{|ξ1| ≤ ηn} | X1 = x).

Assume that, for any given family of measurable functions gn : X → R such that gn ≤ Vn,
there exist Xn, a subset of X, which is asymptotically equal to X, β > 1, and a large enough
M > 0 such that, for all m > 1 and n ≥ M ,

sup
x∈Xn

|Exgn(Xm) − ∫
gn(y)π(dy)|

Vn(x)
≤ Cm−β. (11)

Since δx,n, defined in (10), plays an essential role in the truncated version of (4), but is
unknown, we need to find an estimator of δx,n. A natural estimator is the kernel density
estimator for stationary Markov processes (see Basawa and Prakasa Rao (1980)). To define the
kernel estimator, we let the state space X = R. Let p(x) be the probability density function
of the invariant probability π with respect to the Lebesgue measure, and let q(x, y) be the
two-dimensional joint probability density of the Markov chain {Xn, n ≥ 0} with respect to
the Lebesgue measure. Let K be a probability density function defined on R, and let hn be a
sequence of positive constants. For given observations {X0, X1, ξ1, . . . , Xn, ξn}, define

p̂n(x) = 1

nhn

n∑
j=0

K

(
x − Xj

hn

)
, q̂n(x, y) = 1

nhn

n−1∑
j=0

K

(
x − Xj√

hn

)
K

(
y − Xj+1√

hn

)
,

p̂n(x, y) = q̂n(x, y)

p̂n(x)
, ̂n(x) = 1

nhnp̂n(x)

n∑
j=1

ξjK

(
x − Xj

hn

)
.

Let P̂n be the transition kernel induced by the transition probability density function p̂n(x, y).

Assumption 3. Let the state space X = R. Assume that the probability kernel function K

satisfies K(x) ≤ C < ∞ for all x ∈ R, and that |x|K(x) → 0 as |x| → ∞. Furthermore,
assume that h = hn → 0, and nh → ∞ nondecreasingly as n → ∞.

Assumption 4. Assume that p(x) and E(ξ1 | X1 = x) are continuous with respect to x, and
that q(x, y) is continuous with respect to x and y. Furthermore, assume that the solution δ of

(I − P)δ = P (12)

is a continuous function of p (the density function associated with P ) and , P-almost surely.

Remarks 1. (a) The minorization condition was first introduced in Nummelin (1978). If a
Markov chain is Harris recurrent then the minorization condition holds for the n-step transition
probability. It is known that, under the irreducible assumption, Assumption 1 implies that
{(Xn, ξn), n ≥ 0} is Harris recurrent; see Theorem 4.1(iv) of Ney and Nummelin (1987).
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(b) Assumption 2 is a Vn ergodic condition, where the sup is taken over a truncated state space.
Note that the weight function Vn, generated by the truncated second moment of ξ1, depends
on the sample size n. This condition will be used to study the case in which the stationary
second moment of ξ1 does not exist. It is weak enough to cover several practical examples
in Section 3. Assumption 3 is a standard condition for kernel estimation. Assumption 4 is a
smooth condition of the Poisson equation.

(c) Since Eπ Vn(x) is a slowly varying function at ∞, the condition E	 τ	
2 < ∞ can be

removed if (11) is replaced with

sup
x∈X

|Exgn(Xm) − ∫
gn(y)π(dy)|

Vn(x)
≤ Cm−β,

by first taking gn(x) = x, and then applying Equation (3.1) of Bolthausen (1982) and Remark 1
of Bertail and Clémençon (2006) to the Harris recurrent Markov chains in Assumption 1.
Moreover, noting that the AR(1) model (2) is geometric ergodic with weight function |x| + 1
when the innovations in the model are in the domain of attraction of the normal law, i.e.

sup
x∈X

|ExXm − ∫
yπ(dy)|

|x| + 1
≤ Cm−β0

for some β0 > 1, we have the strong mixing coefficients α(n) ≤ Cn−β0 by Equation (3.1)
of Bolthausen (1982). Hence, the condition E	 τ	

2 < ∞ is fulfilled in the AR(1) model by
Remark 1 of Bertail and Clémençon (2006).

Theorem 1. Let {Sn, n ≥ 1} be a Markov random walk satisfying Assumptions 1 and 2, where
Sn = ∑n

k=1 ξk .

(a) Suppose that Assumptions 3 and 4 hold. If varπ (ξ1) < ∞ then, as M → ∞ and n → ∞,

Sn√|	n,M | → N(0, 1) in distribution, (13)

where, for any M > 0,

	n,M =
n∑

k=1

ξ2
k + n

∫ M

−M

∫ M

−M

[(δ̂x,n − δ̂y,n)
2 − 2(δ̂x,n − δ̂y,n)̂n(y)]q̂n(x, y) dy dx.

(b) If varπ (ξ1) = ∞ then, as n → ∞,

Sn√∑n
k=1 ξ2

k

→ N(0, 1) in distribution. (14)

Remarks 2. (a) Note that Vn(x) reduces to V (x) = 1 + E(ξ2
1 | X1 = x) when varπ (ξ1) < ∞.

This means that the weight function does not depend on n under the finite second moment
assumption. The details can be found in the proof of Theorem 1 in Section 4.

(b) Equation (14) shows that
∑n

k=1 ξ2
k can be used as the self-normalized term when varπ (ξ1)

is infinite, while (13) reveals that the covariance part after truncation plays an essential role
when varπ (ξ1) is finite.

https://doi.org/10.1239/aap/1339878720 Published online by Cambridge University Press

https://doi.org/10.1239/aap/1339878720


458 C.-D. FUH AND T.-X. PANG

(c) Theorem 1 gives the result for the nonparametric case with or without the finite second
moment assumption. In the parametric case, when the second moment is finite, the transition
probability and stationary distribution can be obtained from the corresponding estimator. The
self-normalized factors can then be determined by direct computation via (4), in which the
unknown parameters can be replaced by their consistent estimators (see Example 3 below).
The result is summarized in Proposition 1 below.

Proposition 1. Let {Sn, n ≥ 1} be a Markov random walk satisfying Assumption 1 and (3).
Let the asymptotic variance of Sn/

√
n be � = f (θ1, . . . , θm), where m is a positive integer

and f (·) is a continuous function P-almost surely with unknown parameters θ1, . . . , θm. Let θ̂i

be a consistent estimator of θi for i = 1, . . . , m. Then, as n → ∞,

Sn√
nf (θ̂1, . . . , θ̂m)

→ N(0, 1) in distribution.

The following result gives a central limit theorem for a Markov random walk with or without
the finite second moment assumption. This result will be used in the proof of Theorem 1 and
is of independent interest.

Theorem 2. Let {Sn, n ≥ 1} be a Markov random walk satisfying Assumptions 1 and 2. Then,
as n → ∞,

Sn√
varπ (

∑n
k=1 ξk 1{|ξk| ≤ ηn})

→ N(0, 1) in distribution,

where ηn is defined in (8).

3. Some examples

To illustrate our results, in this section we study three examples: finite-state Markov chains,
AR(1) models, and linear state space models. In these examples, we first consider the self-
normalized central limit theorem for Sn = ∑n

k=1 ξk , and then investigate the asymptotic nor-
mality of the estimator ρ̂ of ρ in (2), with or without the finite second moment assumption.
Note that the solution of the Poisson equation, and, hence, the asymptotic variance formula, can
be described explicitly in each case. Before presenting these examples, we state the following
lemma (see Csörgő et al. (2003b)), which will be used in Sections 3 and 4.

Lemma 1. Let X be a random variable, and define l(x) = E(X2 1 {|X| ≤ x}). The following
statements are equivalent:

(a) X is in the domain of attraction of the normal law,

(b) x2 P(|X| > x) = o(l(x)),

(c) x E(|X| 1 {|X| > x}) = o(l(x)),

(d) E(|X|n 1 {|X| ≤ x}) = o(xn−2l(x)) for n > 2.

Example 2. Let {Xn, n ≥ 0} be an ergodic Markov chain on a finite state space X = {1, 2, 3},
with transition probability P = {p(i, j)} and stationary distribution π . Assume that ξn takes
values on the real line R, with Eπ ξ1 = 0 and Eπ ξ2

1 < ∞. Fuh and Hu (2007) established the
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variance formula

� =
3∑

i=1

[G(i) − 2(i)]πi +
3∑

i,j=1

[(j) − δi + δj ]2p(i, j)πi,

where (i) = E(ξ1 | X0 = i), G(i) = E(ξ2
1 | X0 = i), and δi − δj is the difference of two

solutions to the Poisson equation (5), which is uniquely determined, and can be explicitly
expressed as

δ1 − δ2 = a11(1) + a12(2) + a13(3) =:
3∑

j=1

g1j (p(1, 1), . . . , p(3, 3))(j),

δ2 − δ3 = a21(1) + a22(2) + a23(3) =:
3∑

j=1

g2j (p(1, 1), . . . , p(3, 3))(j),

δ3 − δ1 = a31(1) + a32(2) + a33(3) =:
3∑

j=1

g3j (p(1, 1), . . . , p(3, 3))(j),

where
a11 = −1,

a12 = −p(2, 2)(p(3, 1) + p(3, 2)) + p(2, 3)p(3, 2)

p(2, 1)(p(3, 1) + p(3, 2)) + p(3, 1)p(2, 3)
,

a13 = −p(2, 3)(p(3, 1) + p(3, 2)) + p(2, 3)p(3, 3)

p(2, 1)(p(3, 1) + p(3, 2)) + p(3, 1)p(2, 3)
,

a21 = 0,

a22 = p(2, 2)p(3, 1) − p(2, 1)p(3, 2)

p(2, 1)(p(3, 1) + p(3, 2)) + p(3, 1)p(2, 3)
,

a23 = p(2, 3)p(3, 1) − p(2, 1)p(3, 3)

p(2, 1)(p(3, 1) + p(3, 2)) + p(3, 1)p(2, 3)
,

a31 = 1,

a32 = p(3, 2)(p(2, 1) + p(2, 2)) + p(2, 3)p(3, 2)

p(2, 1)(p(3, 1) + p(3, 2)) + p(3, 1)p(2, 3)
,

a33 = p(3, 3)(p(2, 1) + p(2, 3)) + p(2, 3)p(3, 2)

p(2, 1)(p(3, 1) + p(3, 2)) + p(3, 1)p(2, 3)
.

Let

ni =
n∑

k=1

1{Xk = i}, p̂i = ni

n
= 1

n

n∑
k=1

1{Xk = i},

q̂(i, j) = 1

n

n−1∑
k=1

1{Xk = i, Xk+1 = j}, p̂(i, j) = q̂(i, j)

p̂i

,

̂(j) =
∑n

k=1 ξk 1{Xk = j}∑n
k=1 1{Xk = j} , Ĝ(j) =

∑n
k=1 ξ2

k 1{Xk = j}∑n
k=1 1{Xk = j} .
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It is easy to see that p̂i → pi := Pπ (X1 = i) in probability and q̂(i, j) → q(i, j) in
probability as n → ∞. This yields p̂(i, j) → p(i, j) in probability as n → ∞. In addition,
by (1), {ξn 1{Xn = j}, n ≥ 0} forms a Markov chain for any j ∈ X. Then, in view of the ratio
limit theorem for Markov chains (see Meyn and Tweedie (1993, p. 424)), we have

̂(j) → Eπ (ξ1 1{X1 = j})
pj

in probability (15)

as n → ∞, and the right-hand side of (15) equals

∑3
i=1

∫ ∞
−∞ x dFi(x)p(j, i)pj

pj

=
3∑

i=1

∫ ∞

−∞
x dFi(x)p(j, i) = (j), (16)

where Fi(x) denotes the distribution of ξ1 under X1 = i. By making use of the same argument
used in (15) and (16), we obtain Ĝ(i) → G(i) in probability. Since gik is a smooth function
P-almost surely, for i, j = 1, 2, 3,

δ̂i − δj =
3∑

k=1

gik(p̂(1, 1), . . . , p̂(3, 3))̂(k)

is a consistent estimator of δi − δj . It is easy to see that Assumption 1 and (3) are fulfilled in
the finite-state Markov chain. Therefore, by Proposition 1,

∑n
k=1 ξk obeys the self-normalized

central limit theorem, i.e. as n → ∞, ∑n
k=1 ξk√

n(
∑3

i=1[Ĝ(i) − ̂2(i)]p̂i + ∑3
i,j=1[̂(j) − δ̂i + δ̂j ]2p̂(i, j)p̂i)

→ N(0, 1) in distribution.

If ξn is in the domain of attraction of the normal law with infinite variance, it is easy to
see that both Assumptions 1 and 2 are fulfilled in the finite-state Markov chain. Hence, by
Theorem 1(b) we have, as n → ∞,∑n

k=1 ξk√∑n
k=1 ξ2

k

→ N(0, 1) in distribution.

Example 3. Consider the AR(1) model. Let

Xn+1 = ρXn + εn+1, (17)

where |ρ| < 1 and εn is a sequence of i.i.d. real-valued random variables with E |ε1| < ∞.
(a) We first consider the case in which ξn = Xn and Sn = ∑n

k=1 Xk . Under the assumption
that the εn are i.i.d. random variables with distribution N(0, σ 2), it is easy to see that the
conditions in Theorem 2 of Fuh and Hu (2007) hold; therefore, the Poisson equation (5) becomes

δx −
∫ ∞

−∞
1√

2πσ
exp

{
− (y − ρx)2

2σ 2

}
δy dy = ρx. (18)
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A solution to (18) is obtained by differentiating both sides with respect to x, i.e.

δ′
x − ρ

∫ ∞

−∞
1√

2πσ
exp

{
− (y − ρx)2

2σ 2

}
y − ρx

σ 2 δy dy = ρ, (19)

where a prime denotes the first derivative. Then the solutions of (19) are δx = ρx/(1−ρ)+C.
Note that δx − δy is uniquely determined; therefore, the asymptotic variance (6) of Sn/

√
n

becomes

� =
∫ ∞

−∞

∫ ∞

−∞
(y − δx + δy)

2P(x, dy)π(dx)

= 1

(1 − ρ)2

∫ ∞

−∞

∫ ∞

−∞
(y − ρx)2 1√

2πσ
exp

{
− (y − ρx)2

2σ 2

}

× 1√
2πσ/

√
1 − ρ2

exp

{
− x2

2σ 2/(1 − ρ2)

}
dx dy

= σ 2

(1 − ρ)2 ,

which is the same as that in Theorem 7.1.2 of Brockwell and Davis (1991). Define

ρ̂ =
∑n

k=1 XkXk−1∑n
k=1 X2

k−1

and σ̂ 2 = 1

n

n∑
k=1

(Xk − ρ̂Xk−1)
2. (20)

Note that ρ̂ is a consistent estimator of ρ (see Anderson (1959)). In view of

σ̂ 2 = 1

n

n∑
k=1

(Xk − ρXk−1 + (ρ − ρ̂)Xk−1)
2

= 1

n

n∑
k=1

ε2
k + 2(ρ − ρ̂)

n

n∑
k=1

εkXk−1 + (ρ − ρ̂)2 1

n

n∑
k=1

X2
k−1,

Theorems 4.1 and 4.2 of Anderson (1959), and the Cauchy–Schwarz inequality, we conclude
that σ̂ 2 is a consistent estimator of σ 2. Hence, as n → ∞,

σ̂ 2/(1 − ρ̂)2

�
→ 1 in probability.

It is easy to see that Assumption 1 and (3) are fulfilled in the AR(1) model (17). Then by
Proposition 1 we have, as n → ∞,∑n

k=1 Xk√
nσ̂ 2/(1 − ρ̂2)

→ N(0, 1) in distribution. (21)

Note that (21) is also obtained, via a different method, in Theorem 7.1.2 of Brockwell and Davis
(1991).

Under the assumption that εn is in the domain of attraction of the normal law with infinite
variance, Kulik (2006) proved a self-normalized central limit theorem of

∑n
k=1 Xk for linear

processes.

https://doi.org/10.1239/aap/1339878720 Published online by Cambridge University Press

https://doi.org/10.1239/aap/1339878720


462 C.-D. FUH AND T.-X. PANG

(b) Consider the AR(1) model in (17). Assume that |ρ| < 1 and that the εn are i.i.d. real-
valued random variables with zero mean and finite second moment. Under the condition that
X0 is a constant, Anderson (1959) established the consistency of the estimator ρ̂, defined in
(20), of ρ. Next, we will show that if the εn have continuous probability density functions then
ρ̂ − ρ obeys a self-normalized central limit theorem, i.e. as n → ∞,

ρ̂ − ρ√
(1 − ρ̂2)/n

→ N(0, 1) in distribution. (22)

Note that the induced Markov chain from model (17) has a continuous probability density
function, which implies that the solution of the Poisson equation (12) is a continuous function
of p(x, y) and (x), P-almost surely, that is, Assumption 4 is fulfilled. Define ξn = εn+1Xn.
Then ξn has finite variance. To apply Theorem 1(a) for

∑n
k=1 ξk = ∑n

k=1 εkXk−1, we first note
that Assumptions 1 and 3 are obviously satisfied. For Assumption 2, in view of Remarks 2(a),
it is easy to see that, for x ∈ Xn,

V (x) = 1 + E(ξ2
1 | X1 = x) = 1 + E((ε2X1)

2 | X1 = x) = 1 + x2σ 2 ≥ Cx2,

where σ 2 denotes the variance of εn. This implies that Assumption 2 holds (see Meyn and
Tweedie (1993, p. 380)). Since (x) = Ex ξ1 = Ex ε2X1 = E(ε2(ρx + ε1) | X0 = x) = 0,
the solution δx of the Poisson equation (5) is 0, and, hence, δx − δy = 0. Consequently, it
follows from Theorem 1(a) that, as n → ∞,∑n

k=1 εkXk−1√∑n
k=1 ε2

kX
2
k−1 + no(1)

→ N(0, 1) in distribution.

Moreover, in view of the strong law of large numbers for Markov random walks (see Theo-
rem 17.1.7 of Meyn and Tweedie (1993)),∑n

k=1 ε2
kX

2
k−1

n
→ Eπ ε2

1X2
0 = σ 4

1 − ρ2 P-almost surely, (23)

which implies that, as n → ∞,∑n
k=1 εkXk−1√∑n
k=1 ε2

kX
2
k−1

→ N(0, 1) in distribution. (24)

Combining (23), (24), and the fact that, as n → ∞,∑n
k=1 X2

k−1

n
→ σ 2

1 − ρ2 in probability,

given in Anderson (1959), we have, as n → ∞,

√
n(ρ̂ − ρ) = √

n

∑n
k=1 εkXk−1√∑n
k=1 ε2

kX
2
k−1

√∑n
k=1 ε2

kX
2
k−1∑n

i=1 X2
k−1

→ N(0, 1 − ρ2) in distribution,

which means that ρ̂ is a consistent estimator of ρ, and, hence, (22) holds.
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(c) Consider the AR(1) model (17) with |ρ| < 1. Let εn be a sequence of i.i.d. random
variables that belongs to the domain of attraction of the normal law with infinite variance.
Under the assumptions that X0 is a random variable with finite variance or is in the same domain
of attraction as the normal law of εn, and that the truncated second moment for {εn, n ≥ 1}
satisfies the condition that there exists 1 < α < 2 such that, for i �= j and large x,

E(εiεj )
2 1{|εiεj | ≤ x} ≤ C(E ε2

i 1{|εi | ≤ x})α, (25)

we will show that the self-normalized central limit theorem for ρ̂ still holds. That is,

ρ̂ − ρ√
(1 − ρ̂2)/n

→ N(0, 1) in distribution. (26)

Note that condition (25) covers the following case (cf. Example 2 of Hall and Seneta (1988)):

E ε2
i 1{|εi | ≤ x} ∼ C exp{(log x)α

′ } for some 0 < α′ < 1.

Note that condition (25) is not a necessary condition for (26) to hold.

Proof of (26). Let

An =
n∑

k=1

XkXk−1 − ρ

n∑
k=1

X2
k−1 =

n∑
k=1

εkXk−1 and Bn =
n∑

k=1

X2
k−1.

Then we have
√

n(ρ̂ − ρ) =
√

nAn

Bn

= √
n

∑n
k=1 εkXk−1√∑n
k=1 ε2

kX
2
k−1

√∑n
k=1 ε2

kX
2
k−1

Bn

= √
n

∑n
k=1 εkXk−1√∑n
k=1 ε2

kX
2
k−1

√∑n
k=1 ε2

kX
2
k−1

nl∗(η∗
n)

nl∗(η∗
n)

Bn

,

where η∗
n and l∗(η∗

n) are defined in (7) and (8) with ξ1 replaced by ε1.
To prove (26), we need to show that, as n → ∞,∑n

k=1 εkXk−1√∑n
k=1 ε2

kX
2
k−1

→ N(0, 1) in distribution, (27)

(1 − ρ2)
∑n

k=1 ε2
kX

2
k−1

nl∗2(η∗
n)

→ 1 in probability, (28)

and
Bn

nl∗(η∗
n)

→ 1

1 − ρ2 in probability. (29)

To prove (27), define ξn = εn+1Xn. Then ξn has infinite variance. To apply Theorem 1(b)
for

∑n
k=1 ξk = ∑n

k=1 εkXk−1, we need to check that Assumptions 1 and 2 hold. For Assump-
tion 1, we first note that E	 τ	

2 < ∞ is fulfilled by Remarks 1(c). The remaining parts of
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Assumption 1 are satisfied by Theorem 1.1 of Hall and Seneta (1988). For Assumption 2, we
take Xn = [−na, na], where a ∈ (0, 1

2 ) is a given constant. It is easy to see that, for x ∈ Xn,

Vn(x) = 1 + E(ξ2
1 1{|ξ1| ≤ η∗

n} | X1 = x)

= 1 + E((ε2X1)
2 1{|ε2X1| ≤ η∗

n} | X1 = x)

:= 1 + x2l∗
(

η∗
n

x

)
.

Since η∗
n = √

nl∗(η∗
n) and |x| ≤ na (0 < a < 1

2 ), we have η∗
n/|x| ≥ n1/2−a

√
l∗(η∗

n) ≥
Cn1/2−a . Furthermore, l∗(η∗

n/|x|) ≥ C1 for large n. Therefore, either X0 has finite variance or
X0 and {εi, i ≥ 1} are in the same domain of attraction as the normal law with infinite variance.
We have Vn(x) ≥ 1 + C1x

2 ≥ C2(1 + |x|) whenever |x| ≥ 1 or |x| < 1, which implies that
Assumption 2 holds (see Meyn and Tweedie (1993, p. 380)). Hence, (27) is proved.

To prove (28), we first construct the following new AR(1) model:

X′
1 = ρ[X0 1{|X0| ≤ η∗

n} − Eπ X0 1{|X0| ≤ η∗
n}]

+ [ε1 1{|ε1| ≤ η∗
n} − E ε1 1{|ε1| ≤ η∗

n}] (30)

and, for k = 1, . . . , n − 1,

X′
k+1 = ρX′

k + [εk+1 1{|εk+1| ≤ η∗
n} − E εk+1 1{|εk+1| ≤ η∗

n}]. (31)

Then it is easy to see that

Eπ X′
1 = 0 and Eπ X′2

1 ∼ l∗(η∗
n)

1 − ρ2 . (32)

Note that, for k = 2, . . . , n,

Xk−1 =
k−1∑
i=1

εiρ
k−1−i + ρk−1X0

=
k−1∑
i=1

[εi 1{|εi | ≤ η∗
n} − E εi 1{|εi | ≤ η∗

n}]ρk−1−iv

+ ρk−1[X0 1{|X0| ≤ η∗
n} − Eπ X0 1{|X0| ≤ η∗

n}]

+
k−1∑
i=1

[εi 1{|εi | > η∗
n} − E εi 1{|εi | > η∗

n}]ρk−1−i

+ ρk−1[X0 1{|X0| > η∗
n} − Eπ X0 1{|X0| > η∗

n}]
=: X′

k−1 + Yk−1,

where

Yk−1 =
k−1∑
i=1

[εi 1{|εi | > η∗
n} − E εi 1{|εi | > η∗

n}]ρk−1−i

+ ρk−1[X0 1{|X0| > η∗
n} − Eπ X0 1{|X0| > η∗

n}]. (33)
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Since ∑n
k=1 ε2

k 1{|εk| > η∗
n}X2

k−1

nl∗2(η∗
n)

≤ (
∑n

k=1 |εk| 1{|εk| > η∗
n}|Xk−1|)2

nl∗2(η∗
n)

,

by Lemma 1 and η∗2
n = nl∗(η∗

n), we have

E(
∑n

k=1 |εk| 1{|εk| > η∗
n}|Xk−1|)√

nl∗(η∗
n)

≤ Co(nl∗(η∗
n))

η∗
n

√
nl∗(η∗

n)
= o(1).

It is clear that to prove (28), we need only show that, as n → ∞,

(1 − ρ2)
∑n

k=1 ε2
k 1{|εk| ≤ η∗

n}(X′2
k−1 + 2X′

k−1Yk−1 + Y 2
k−1)

nl∗2(η∗
n)

→ 1 in probability. (34)

First, we will show that, as n → ∞,

(1 − ρ2)
∑n

k=1 ε2
k 1{|εk| ≤ η∗

n}X′2
k−1

nl∗2(η∗
n)

→ 1 in probability. (35)

To this end, define ε′
k = εk 1{|εk| ≤ η∗

n} and ξ ′
k = ε′

kX
′
k−1 for k = 1, 2, . . . , n. Clearly, ξ ′

k is a
random variable in the domain of attraction of the normal law. In view of (32), to prove (35),
we need only show that, as n → ∞,

∑n
k=1(ξ

′2
k − Eπ ξ ′2

k )

nl∗2(η∗
n)

→ 0 in probability. (36)

To prove (36), we write

∑n
k=1(ξ

′2
k − Eπ ξ ′2

k )

nl∗2(η∗
n)

=
∑n

k=1 ξ ′2
k 1{|ξ ′

k| ≤ η∗
n

√
l∗(η∗

n)} − Eπ (
∑n

k=1 ξ ′2
k 1{|ξ ′

k| ≤ η∗
n

√
l∗(η∗

n)})
nl∗2(η∗

n)

+
∑n

k=1 ξ ′2
k 1{|ξ ′

k| > η∗
n

√
l∗(η∗

n)} − Eπ (
∑n

k=1 ξ ′2
k 1{|ξ ′

k| > η∗
n

√
l∗(η∗

n)})
nl∗2(η∗

n)

:= I + II.

To show that II → 0 in probability as n → ∞, let l′(·) denote the truncated second moment
under π for the Markov random walk ξ ′

i . Then it easily follows from assumption (25) that

l′(η∗
n

√
l∗(η∗

n)) ≤ Cl∗α(η∗
n

√
l∗(η∗

n)), 1 < α < 2. (37)

Next, by Potter’s theorem for slowly varying functions (see Bingham et al. (1989, p. 25)), for
any β > 0, there exist constants n0 > 0 and C = C(β, n0) such that, for n > n0,

l∗α(η∗
n

√
l∗(η∗

n)) ≤ Cl∗α(η∗
n)l

∗β(η∗
n). (38)
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Recall that η∗2
n = nl∗(η∗

n). By using Lemma 1, (37), and (38), we have

E(
∑n

k=1 |ξ ′
k| 1{|ξ ′

k| > η∗
n

√
l∗(η∗

n)} + Eπ (
∑n

k=1 |ξ ′
k| 1{|ξ ′

k| > η∗
n

√
l∗(η∗

n)}))√
nl∗(η∗

n)

= no

(
l′(η∗

n

√
l∗(η∗

n))

η∗
n

√
l∗(η∗

n)

)
1√

nl∗(η∗
n)

= o

(
l∗(α+β)(η∗

n)

l∗2(η∗
n)

)
= o(1)

by taking β = 2 − α. This, together with the fact that

|II| ≤ (
∑n

k=1 |ξ ′
k| 1{|ξ ′

k| > η∗
n

√
l∗(η∗

n)} + Eπ

∑n
k=1 |ξ ′

k| 1{|ξ ′
k| > η∗

n

√
l∗(η∗

n)})2

nl∗2(η∗
n)

with probability 1, yields, as n → ∞,

II → 0 in probability.

To prove that I → 0 in probability as n → ∞, we first show that the Markov chain induced
by (30) and (31) is geometric ergodic. Let η′

n be as defined in (8) with ξ1 replaced by ξ ′
1. Then,

for x ∈ Xn and large n,

V ′
n(x) = 1 + E(ε′2

2 X′2
1 1{|ε′

2X
′
1| ≤ η′

n} | X′
1 = x)

= 1 + x2 E ε′2
2 1

{
|ε′

2| ≤ η′
n

x

}

= 1 + x2 E ε2
2 1

{
|ε2| ≤ η∗

n, |ε2| ≤ η′
n

x

}
≥ 1 + Cx2

≥ C(1 + |x|)
(see Meyn and Tweedie (1993, p. 380)). Hence, by applying the same argument as used in (64)
in Section 4, we have the following covariance estimation:

|covπ (ξ ′2
i 1{|ξ ′

i | ≤ η∗
n

√
l∗(η∗

n)}, ξ ′2
i+j 1{|ξ ′

i+j | ≤ η∗
n

√
l∗(η∗

n)})|
= Cj−βo(1 + η∗2

n l∗(η∗
n)l

′(η∗
n

√
l∗(η∗

n))).

By (37) and (38), we have, for any ε > 0,

P

(∣∣∣∣
∑n

k=1 ξ ′2
k 1{|ξ ′

k| ≤ η∗
n

√
l∗(η∗

n)} − Eπ

∑n
k=1 ξ ′2

k 1{|ξ ′
k| ≤ η∗

n

√
l∗(η∗

n)}
nl∗2(η∗

n)

∣∣∣∣ > ε

)

≤ no(η∗2
n l∗(η∗

n)l
′(η∗

n

√
l∗(η∗

n))) + ∑n
i=1(n − i)i−βo(1 + η∗2

n l∗(η∗
n)l

′(η∗
n

√
l∗(η∗

n)))

ε2n2l∗4(η∗
n)

= o

(
l∗(2+α+β)(η∗

n)

l∗4(η∗
n)

)
= o(1)
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by taking β = 2 − α again, which means that, as n → ∞,

I → 0 in probability.

We now prove that (34) holds. Using (35) and the Cauchy–Schwarz inequality, we need
only show that, as n → ∞,∑n

k=1 ε2
k 1{|εk| ≤ η∗

n}Y 2
k−1

nl∗2(η∗
n)

→ 0 in probability. (39)

To prove (39), we first note that, with probability 1,

∣∣∣∣
n∑

k=1

ε2
k 1{|εk| ≤ η∗

n}Y 2
k−1

∣∣∣∣ ≤
( n∑

k=1

|εk| 1{|εk| ≤ η∗
n}|Yk−1|

)2

. (40)

By Lemma 1, we have

E

( n∑
k=1

|εk| 1{|εk| ≤ η∗
n}|Yk−1|

)

≤ C

n∑
k=1

(k−1∑
i=1

E |εi | 1{|εi | > η∗
n}ρk−1−i + ρk−1 E |X0| 1{|X0| > η∗

n}
)

= o

(
l∗(η∗

n)

η∗
n

) n∑
k=1

(k−1∑
i=1

ρk−1−i + ρk−1
)

= o(η∗
n) (41)

whenever X0 has finite variance or X0 and {εn, n ≥ 1} are in the same domain of attraction as
the normal law with infinite variance. Therefore, by (40) and (41), we obtain (39).

To prove (29), we write

Bn

nl∗(η∗
n)

=
∑n

k=1(X
′2
k−1 + 2X′

k−1Yk−1 + Y 2
k−1)

nl∗(η∗
n)

,

where X′
k−1 and Yk−1 are defined in (31) and (33), respectively. Note that {X′

n, n ≥ 0} is a
Markov chain, and, for x ∈ Xn and large n, we have

V ′′
n (x) = 1 + E(X′2

1 1{|X′
1| ≤ η̃n} | X′

1 = x)

= 1 + x2 P(|X′
1| ≤ η̃n)

≥ 1 + Cx2

≥ C(1 + |x|),
where η̃n is as defined in (8) with ξ1 replaced by X′

1 (see Meyn and Tweedie (1993, p. 380)).
This implies that Assumption 2 holds. Therefore, by applying the same argument as used in
(64) below, we obtain the covariance estimation

| covπ (X′2
i 1{|X′

i | ≤ η∗
n}, X′2

i+j 1{|X′
i+j | ≤ η∗

n})| = Cj−βo(1 + η∗2
n l̃(η∗

n)),
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where l̃(·) denotes the truncated second moment under π for X′
1. Then we have, for any ε > 0,

P

(∣∣∣∣
∑n

k=1 X′2
k−1 1{|X′

k−1| ≤ η∗
n} − Eπ

∑n
k=1 X′2

k−1 1{|X′
k−1| ≤ η∗

n}
nl∗(η∗

n)

∣∣∣∣ > ε

)

≤ no(η∗2
n l̃(η∗

n)) + ∑n
i=1(n − i)i−βo(1 + η∗2

n l̃(η∗
n))

ε2n2l∗2(η∗
n)

= o

(
l̃(η∗

n)

l∗(η∗
n)

)
= o(1),

which implies that∑n
k=1 X′2

k−1 1{|X′
k−1| ≤ η∗

n}
nl∗(η∗

n)
→ 1

1 − ρ2 in probability. (42)

On the other hand, we have, with probability 1,

n∑
k=1

Y 2
k−1 ≤

( n∑
k=1

|Yk−1|
)2

,

and
E

∑n
k=1 |Yk−1|√
nl∗(η∗

n)
= o

(
l∗(η∗

n)

η∗
n

) n∑
k=1

k−1∑
i=1

ρk−1−i 1√
nl∗(η∗

n)
= o(1),

which means that ∑n
k=1 Y 2

k−1

nl∗(η∗
n)

→ 0 in probability. (43)

Similarly, we have ∑n
k=1 X′2

k−1 1{|X′
k−1| > η∗

n}
nl∗(η∗

n)
→ 0 in probability. (44)

Combining (42) and (43) with (44), and using the Cauchy–Schwarz inequality, completes the
proof of (29) and, thus, (26).

Example 4. Consider the linear state space model

Xn = ρXn−1 + εn, ξn = θXn + ζn,

where |ρ| < 1 and θ ∈ R. Furthermore, assume that {εn, n ≥ 1} and {ζn, n ≥ 1} are
independent. Note that Sn = ∑n

k=1 ξk is a Markov random walk.
Let {εn, n ≥ 1} be a sequence of i.i.d. random variables with distribution N(0, σ 2

1 ), and
let {ζn, n ≥ 1} be a sequence of i.i.d. random variables with distribution N(0, σ 2

2 ). It is easy
to see that (x) = Ex ξ1 = θρx, G(x) = Ex ξ2

1 = θ2(ρ2x2 + σ 2
1 ) + σ 2

2 , and P(x) = θρ2x.
Then the solutions of the Poisson equation (5) are

δx = θρ2x

1 − ρ
+ C for some constant C.
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Therefore, the asymptotic variance of
∑n

k=1 ξk/
√

n is

� =
∫ +∞

−∞
(G(x) − 2(x))2π(dx)

+
∫ ∞

−∞

∫ ∞

−∞
((y) − δx + δy)

2P(x, dy)π(dx)

= θ2σ 2
1 + σ 2

2 + θ2ρ2

(1 − ρ)2

∫ ∞

−∞

∫ ∞

−∞
(y − ρx)2P(x, dy)π(dx)

=
(

1 + ρ2

(1 − ρ)2

)
θ2σ 2

1 + σ 2
2 . (45)

Hence, we have, as n → ∞,∑n
k=1 ξk√

n((1 + ρ2/(1 − ρ)2)θ2σ 2
1 + σ 2

2 )

→ N(0, 1) in distribution. (46)

For the self-normalized central limit theorem of
∑n

k=1 ξk , we simply replace the unknown
parameters in (46) by their consistent estimators (the maximum likelihood estimator for
instance—see Fuh (2006)) and apply Proposition 1.

If var(εn) < ∞ and ζn is in the domain of attraction of the normal law with var(ζn) = ∞,
then the above argument is not applicable. We would like to apply Theorem 1(b) to this case.
To this end, we need to check that Assumptions 1 and 2 hold.

It is easy to see thatAssumption 1 is satisfied. To check thatAssumption 2 holds, we consider

Vn(x) = 1 + E(ξ2
1 1{|ξ1| ≤ ηn} | X1 = x)

= 1 + E((θX1 + ζ1)
2 1{|θX1 + ζ1| ≤ ηn} | X1 = x)

= 1 + θ2x2 P(|θx + ζ1| ≤ ηn) + 2θx E(ζ1 1{|θx + ζ1| ≤ ηn})
+ E(ζ 2

1 1{|θx + ζ1| ≤ ηn})
≥ 1 + θ2x2 P(|θx + ζ1| ≤ ηn) + 2θx E(ζ1 1{|θx + ζ1| ≤ ηn}).

Since, for large n, x ∈ Xn, and 0 < C < 1, {|ζ1| ≤ Cηn} ⊆ {|ζ1| ≤ ηn −|θx|} ⊆ {|θx + ζ1| ≤
ηn} and P(|ζ1| ≤ Cηn) → 1 as n → ∞, we have

Vn(x) ≥ 1 + Cx2 + o(x) ≥ C1(1 + |x|),
which implies that the polynomial ergodicity in Assumption 2 holds. Therefore, by Theo-
rem 1(b) we have, as n → ∞,∑n

k=1 ξk√∑n
k=1 ξ2

k

→ N(0, 1) in distribution. (47)

Note that in this example, when the variances of Xn and ζn are both finite, and the transition
probability and stationary distribution are given, then we have the asymptotic variance as shown
in (45), and obtain the classical central limit theorem for Markov random walks. Furthermore,
the self-normalized central limit theorem can be obtained by replacing the parameters by their
consistent estimators; while if the transition probability or the stationary distribution are not
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given, we can apply Theorem 1(a) to have the self-normalized central limit theorem. When
varπ (Xn) is finite and var(ζn) is infinite, we can also apply Theorem 1(b) to obtain the self-
normalized central limit theorem as shown in (47).

In this example we only consider the case of partial sums
∑n

k=1 ξk . For the case of the
parameter estimation of θ , the asymptotic normality of the maximum likelihood estimator θ̂

of θ can be found in Fuh (2006) under the finite second moment assumption. To obtain a
self-normalized central limit theorem for θ̂ − θ , when varπ (Xn) < ∞ and var(ζn) = ∞, is an
interesting task.

4. Proofs of Theorems 1 and 2

Since the proof of Theorem 1 involves a result in the proof of Theorem 2, we prove Theorem 2
first.

Proof of Theorem 2. We will use a splitting chain argument to prove this theorem. Under
the minorization condition in Assumption 1, without loss of generality, we may assume that
there exists recurrent state 	 in X such that the Markov chain Xn visits the state 	 infinitely
often P-almost surely, and π(	) > 0. Define the nonnegative integer-valued random sequence
{i	(n)}n≥1 as

i	(n) =
n∑

k=1

I	(Xk) = max{k ≥ 0; τ	(k) ≤ n} for n = 1, 2, . . . ,

and let
l	(n) = τ	(i	(n)) = max{0 ≤ k ≤ n; Xk ∈ 	}.

Recall ξ̃i,n defined in (9), and let

n∑
i=1

ξ̃i,n =
i	(n)−1∑

k=0

µk +
n∑

i=l	(n)+1

ξ̃i,n,

where

µk =
τ	(k+1)∑

i=τ	(k)+1

ξ̃i,n, k = 1, 2, . . . ,

forms an i.i.d. sequence of random variables.
Since E	 ξ̃i,n < ∞ and E	 τ	 < ∞, by Wald’s equation for the second moment (see Chow

and Teicher (1998, p. 137)) we have

E	

(i	(n)−1∑
k=0

µk

)2

= E	 i	(n) E µ2
1. (48)

In addition, taking f (ξi) = ξ̃i,n/
√

l(ηn) in Lemma 2.3 of Chen (1999), we have

E µ2
1 = E	 τ	

(
varπ (ξ̃1,n) + 2

∞∑
i=1

Eπ (ξ̃1,nξ̃i+1,n)

)
, (49)

which implies that
C1 E	 τ	l(ηn) ≤ E µ2

1 ≤ C2 E	 τ	l(ηn)
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by means of (63) below (Assumption 2 is used). Hence, we have

C1l(ηn) E	 i	(n) E	 τ	 ≤ E	

(i	(n)−1∑
k=0

µk

)2

≤ C2l(ηn) E	 i	(n) E	 τ	. (50)

Since

E	τ	(i	(n))

n
≤ 1 ≤ E	τ	(i	(n)) + E	τ	

n
= E	τ	(i	(n))

n
+ 1

nπ(	)
,

we have
E	τ	(i	(n))

n
→ 1 (51)

as n → ∞. By using Wald’s equation again, we obtain

E	τ	(i	(n)) = E	

i	(n)∑
k=1

τ	(k)∑
i=τ	(k−1)+1

1 = E	 i	(n) E	 τ	. (52)

It follows from (50)–(52) that, when n is large enough,

C1nl(ηn) ≤ E	

(i	(n)−1∑
k=0

µk

)2

≤ C2nl(ηn). (53)

Moreover, it is easy to see that

E	

∣∣∣∣
n∑

i=l	(n)+1

ξ̃i,n

∣∣∣∣ ≤ E	

( τ	∑
i=1

|ξ̃i,n|
)

< ∞. (54)

Using the facts that i	(n)/n → π(	) > 0 in probability and i	(n)/E	i	(n) → 1 in
probability, (48), (53), (54), and the central limit theorem for random sums (see Billingsley
(1999, p. 153)), we have ∑n

i=1 ξ̃i,n√
E	(

∑i	(n)−1
k=0 µk)2

→ N(0, 1) in distribution. (55)

Now we rewrite Sn as

Sn =
n∑

i=1

ξ̃i,n +
n∑

i=1

(ξi 1{|ξi | > ηn} − Eπ ξi 1{|ξi | > ηn}) := Sn1 + Sn2.

In view of Lemma 1,
Eπ|Sn2|√
nl(ηn)

≤ 2no(l(ηn)/ηn)√
nl(ηn)

= o(1).

Moreover, it follows, from (48), (49), (51), (52), and (57) below, that

E	(
∑i	(n)−1

k=0 µk)
2

varπ (
∑n

i=1 ξi 1{|ξi | ≤ ηn}) → 1. (56)

Hence, combining (55) and (56) completes the proof.
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Proof of Theorem 1. By Theorem 2, we need only show that, under finite and infinite second
moment conditions of ξ1, the two random normalizing factors in Theorem 1 are consistent
estimators of the normalizing factor in Theorem 2. To this end, we first rewrite the normalizing
factor in Theorem 2 as

varπ

( n∑
i=1

ξ̃i,n

)
= n(�n + o(l(ηn))), (57)

where

�n =
∫ ∞

−∞
(Gn(x) − 2

n(x))π(dx) +
∫ ∞

−∞

∫ ∞

−∞
(n(y) − δx,n + δy,n)

2P(x, dy)π(dx)

=
∫ ∞

−∞
Gn(x)π(dx)

+
∫ ∞

−∞

∫ ∞

−∞
[−2(δx,n − δy,n)n(y) + (δx,n − δy,n)

2]P(x, dy)π(dx), (58)

with Gn(x) = Ex(ξ̃
2
1,n), n(x) = Ex(ξ̃1,n), and δx,n and δy,n solutions to the Poisson equa-

tion (10). Then we prove that |	n,M | and
∑n

i=1 ξ2
i are consistent estimators of n�n.

Now let
gn(x) = E(ξ1 1{|ξ1| ≤ ηn} | X1 = x),

g̃n(x) = E(ξ1 1{|ξ1| ≤ ηn} | X1 = x) − Eπ (ξ1 1{|ξ1| ≤ ηn}).
Recall that ξ̃i,n = ξi 1{|ξi | ≤ ηn} − Eπ (ξi 1{|ξi | ≤ ηn}), i = 1, 2, . . .. Since ξ̃i,n and ξ̃i+j,n are
independent for given Xi, Xi+j , we have

Ex(ξ̃i,nξ̃i+j,n) = E(E(ξ̃i,nξ̃i+j,n | Xi, Xi+j ) | X0 = x)

= E(E(ξ̃i,n | Xi, Xi+j ) E(ξ̃i+j,n | Xi, Xi+j ) | X0 = x)

= E(E(ξ̃i,n | Xi) E(ξ̃i+j,n | Xi+j ) | X0 = x)

= E(g̃n(Xi)g̃n(Xi+j ) | X0 = x). (59)

Note that g2
n(x) ≤ Vn(x) via Jensen’s inequality. By making use of the Markovian property

of {gn(Xi), i ≥ 1}, and following the same argument as that used in Theorem 16.1.5 and
Equation (16.16) of Meyn and Tweedie (1993, p. 388), with |g̃n| ≤ (1 + ∫ √

Vn dπ)
√

Vn

replaced by |g̃n| ≤ √
Vn + Eπ

√
Vn, there exists C1 < ∞ such that

|Eẍ g̃n(Xi)g̃n(Xi+j )| ≤ C1j
−β(1 + i−βVn(ẍ) + i−β

√
Vn(ẍ)), (60)

where β is defined in (11) and ẍ denotes that x is restricted to the set Xn. Define

Ẍi =
{

Xi if Xi ∈ Xn,

0 otherwise.

It follows that

Eπ

√
Vn(Ẍi) ≤

√
Eπ Vn(Ẍi) =

√
1 + Eπ (ξ2

1 1{|ξ1| ≤ ηn} | Ẍ1) ≤ C
√

l(ηn). (61)

Integrating both sides of (60) and applying (61), we obtain

|Eπ g̃n(Xi)g̃n(Xi+j )| ≤ C2j
−βl(ηn) for some C2 < ∞. (62)
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Combining (62) with (59) yields

|Eπ (ξ̃i,nξ̃i+j,n)| ≤ C2j
−βl(ηn). (63)

Let

V ′
n(x) = 1 + E(ξ4

1 1{|ξ1| ≤ ηn} | X1 = x), g′
n(x) = E(ξ2

1 1{|ξ1| ≤ ηn} | X1 = x).

Then we have
[g′

n(x)]2 ≤ V ′
n(x).

Moreover, define

ξ̄i,n = ξ2
i 1{|ξi | ≤ ηn} − Eπ (ξ2

i 1{|ξi | ≤ ηn}), i = 1, 2, . . . .

By applying the same argument as used in (63) we have

|Eπ (ξ̄i,nξ̄i+j,n)| ≤ C3j
−β

(
Eπ V ′

n(Ẍi) + Eπ

√
V ′

n(Ẍi)
)

≤ C4j
−β(1 + Eπ (ξ4

1 1{|ξ1| ≤ ηn}))
= C4j

−β(1 + o(η2
nl(ηn))) (64)

for some C3, C4 < ∞.
It is easy to see that

varπ

( n∑
i=1

ξ̃i,n

)
= n varπ (ξ̃1,n) + 2

n−1∑
i=1

(n − i) Eπ (ξ̃1,nξ̃i+1,n)

= n

(
varπ (ξ̃1,n) + 2

∞∑
i=1

Eπ (ξ̃1,nξ̃i+1,n) − 2
∞∑

i=n

Eπ (ξ̃1,nξ̃i+1,n)

− 2

n

n−1∑
i=1

i Eπ (ξ̃1,nξ̃i+1,n)

)
.

By (63),
∑∞

i=1 i−β < ∞, and the Kronecker lemma, we have

∣∣∣∣
∞∑

i=n

Eπ (ξ̃1,nξ̃i+1,n) + 1

n

n−1∑
i=1

i Eπ (ξ̃1,nξ̃i+1,n)

∣∣∣∣ ≤ C

∞∑
i=n

i−βl(ηn) + C

n

n−1∑
i=1

ii−βl(ηn)

= o(l(ηn)). (65)

By using (65), C1l(ηn) ≤ �n ≤ C2l(ηn) from (53), and following the same argument as
that used to obtain the asymptotic variance in Fuh and Hu (2007), we have

varπ

( n∑
i=1

ξ̃i,n

)
= n(�n + o(l(ηn))),

where �n is defined in (58).
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(a) If varπ (ξ1) < ∞, we show that the second term in (58) is not negligible, and we find a
consistent estimator. To this end, we first show that∫ ∞

−∞

∫ ∞

−∞
[−2(δx,n − δy,n)n(y) + (δx,n − δy,n)

2]P(x, dy)π(dx)

∼
∫ M

−M

∫ M

−M

[−2(δx,n − δy,n)n(y) + (δx,n − δy,n)
2]P(x, dy)π(dx) (66)

for some fixed, large M , and then we only need to show that the random normalizing factor
in Theorem 1(a) is the consistent estimator of the product of n and the term appearing on the
right-hand side of (66).

It is easy to see that
∑n

i=1 ξ2
i /(n

∫ ∞
−∞ Gn(x)π(dx)) converges to 1 in probability. Next, we

will show that ̂n(x), q̂n(x, y), and δ̂x,n − δ̂y,n are consistent estimators of n(x), q(x, y), and
δx,n − δy,n, respectively.

To prove that ̂n(x) → (x) in probability, let Wj = (1/h)ξjK((x − Xj)/h), and, for
given δ > 0, define

Vj = Vj (n) =
{

Wj if |Wj | ≤ nδ,

0 otherwise.

Note that {Xn, n ≥ 0} is a Markov chain, the partial sum of the sequence {Vn, n ≥ 0} is a
Markov random walk, and that the function K(·) is bounded. By applying an argument similar
to that used in (63), we obtain

|covπ (Vi, Vi+j )| ≤ Cj−βl(n). (67)

Under the assumptions in Theorem 1(a), and replacing the covariance inequality in Lemma 4.3
of Roussas (1969b) by (67), the rest of the proof follows the same argument as that in Roussas
(1969b, pp. 1393–1394) and is thus omitted.

It follows from (10) and Assumption 4 that δx,n is a continuous function of p(x, y) and
n(x), P-almost surely. Using the fact that the set of |δx | < ∞ is full (see Meyn and Tweedie
(1993, p. 431)) under Assumptions 1 and 4, we have, for any x, y ∈ X,

(δx,n − δy,n) − (δx − δy) → 0 in probability.

From Roussas (1969a) we know that q̂n(x, y) → q(x, y) in probability, which together with
the smooth condition in Assumption 4 yields, for x, y ∈ X,

(δ̂x,n − δ̂y,n) − (δx − δy) → 0 in probability.

In addition, we have sup[a,b] (x) < ∞, P-almost surely for any compact set [a, b], since
Eπ (x) < ∞. Therefore, we conclude that, for any given small ε > 0 and large M > 0,

sup
x∈IM

|̂n(x) − (x)| ≤ ε in probability, (68a)

sup
(x,y)∈D̈M

∣∣∣∣ q̂n(x, y)

q(x, y)
− 1

∣∣∣∣ ≤ ε in probability, (68b)

sup
(x,y)∈DM

|(δ̂x,n − δ̂y,n) − (δx,n − δy,n)| ≤ ε in probability (68c)

for large enough n, where IM = [−M, M], DM = [−M, M] × [−M, M], and D̈M =
{(x, y) : (x, y) ∈ [−M, M] × [−M, M], q(x, y) �= 0}.
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Under the condition that E	 τ 2
	 < ∞ given in Assumption 1, we have

| ∫ ∞
−∞

∫ ∞
−∞(δx,n − δy,n)

2P(x, dy)π(dx)|
l(ηn)

≤ 2 Eπ δ2
x,n

l(ηn)
≤ Eπ (EX0 τ	)2 + C

l(ηn)
< ∞,

which implies that
|∫|x|>M

∫
|y|>M

(δx,n − δy,n)
2P(x, dy)π(dx)|

l(ηn)
→ 0, (69a)

|∫|x|<M

∫
|y|>M

(δx,n − δy,n)
2P(x, dy)π(dx)|

l(ηn)
→ 0, (69b)

|∫|x|>M

∫
|y|<M

(δx,n − δy,n)
2P(x, dy)π(dx)|

l(ηn)
→ 0, (69c)

as M → ∞. These together with the fact that Eπ 2
n(y)/ l(ηn) < ∞ yield

|∫|x|>M

∫
|y|>M

(δx,n − δy,n)n(y)P (x, dy)π(dx)|
l(ηn)

→ 0, (70a)

|∫|x|<M

∫
|y|>M

(δx,n − δy,n)n(y)P (x, dy)π(dx)|
l(ηn)

→ 0, (70b)

|∫|x|>M

∫
|y|<M

(δx,n − δy,n)n(y)P (x, dy)π(dx)|
l(ηn)

→ 0, (70c)

as M → ∞. Hence, in order to complete the proof, we need to show that

|∫∫
D̈M

[(δx,n − δy,n)
2q(x, y) − (δ̂x,n − δ̂y,n)

2q̂n(x, y)] dy dx|
l(ηn)

→ 0 in probability (71)

as n → ∞ and

|∫∫
D̈M

[n(y)(δx,n − δy,n)q(x, y) − ̂n(y)(δ̂x,n − δ̂y,n)q̂n(x, y)] dy dx|
l(ηn)

→ 0 in probability (72)

as n → ∞ for given large M > 0.
For the proof of (71), write, for (x, y) ∈ D̈M and large n,

|(δx,n − δy,n)
2q(x, y) − (δ̂x,n − δ̂y,n)

2q̂n(x, y)|
= |(δx,n − δy,n)

2[q(x, y) − q̂n(x, y)] + [(δx,n − δy,n)
2 − (δ̂x,n − δ̂y,n)

2]q̂n(x, y)|
≤ q(x, y)(δx,n − δy,n)

2
∣∣∣∣1 − q̂n(x, y)

q(x, y)

∣∣∣∣
+ |(δx,n − δy,n) − (δ̂x,n − δ̂y,n)||(δx,n − δy,n) + (δ̂x,n − δ̂y,n)|q̂n(x, y).
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Then, by (68), for large enough n, we have

|∫∫
D̈M

[(δx,n − δy,n)
2q(x, y) − (δ̂x,n − δ̂y,n)

2q̂n(x, y)] dy dx|
l(ηn)

≤ ε

∫∫
D̈M

(δx,n − δy,n)
2q(x, y) dy dx

/
l(ηn)

+ ε(1 + ε)

l(ηn)

∫∫
D̈M

|(δx,n − δy,n) + (δ̂x,n − δ̂y,n)|q(x, y) dy dx. (73)

Note that (73) is o(1) in probability, because of the boundness of |(δx,n − δy,n)+ (δ̂x,n − δ̂y,n)|,
and ε can be arbitrary small.

Using the same argument, we have, for (x, y) ∈ D̈M and large n,

|n(y)(δx,n − δy,n)q(x, y) − ̂n(y)(δ̂x,n − δ̂y,n)q̂n(x, y)|
= |n(y)(δx,n − δy,n)[q(x, y) − q̂n(x, y)]

+ [n(y)(δx,n − δy,n) − ̂n(y)(δ̂x,n − δ̂y,n)]q̂n(x, y)|
= |n(y)(δx,n − δy,n)[q(x, y) − q̂n(x, y)] + [n(y) − ̂n(y)](δx,n − δy,n)q̂n(x, y)

+ [(δx,n − δy,n) − (δ̂x,n − δ̂y,n)]̂n(y)q̂n(x, y)|
≤ |n(y)||δx,n − δy,n|

∣∣∣∣1 − q̂n(x, y)

q(x, y)

∣∣∣∣q(x, y) + |[n(y) − ̂n(y)](δx,n − δy,n)q̂n(x, y)|
+ |(δx,n − δy,n) − (δ̂x,n − δ̂y,n)||̂n(y)q̂n(x, y)|. (74)

Using (68) in (74) yields (72). Combining (69), (70), (71), and (72), completes the proof of
Theorem 1(a).

(b) If varπ (ξ1) = ∞, we first show that the second term in (58) can be ignored, and then we
show that

∑n
i=1 ξ2

i is the consistent estimator of n
∫ ∞
−∞ Gn(x)π(dx).

We analyze the second term of (58) first. By Wald’s equation in Fuh and Zhang (2000) we
have

|∫ ∞
−∞

∫ ∞
−∞(δx,n − δy,n)

2P(x, dy)π(dx)|
l(ηn)

≤ 2 Eπ δ2
x,n

l(ηn)
≤ Eπ (EX0 τ	)2 + C

l(ηn)
= o(1). (75)

Note that the last term in (75) follows from the conditions that E	 τ 2
	 < ∞ given in Assump-

tion 1 and l(ηn) → ∞ as n → ∞. Along with

Eπ 2
n(y)

l(ηn)
≤ Eπ Ey ξ̃2

1,n

l(ηn)
≤ 1

we obtain, as n → ∞,

|∫ ∞
−∞

∫ ∞
−∞(δx,n − δy,n)n(y)P (x, dy)π(dx)|

l(ηn)

≤
√∫ ∞

−∞

∫ ∞

−∞
(δx,n − δy,n)2

l(ηn)
P (x, dy)π(dx)

Eπ 2
n(y)

l(ηn)

= o(1). (76)
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By (75) and (76), we need to prove that

n
∫ ∞
−∞ Gn(x)π(dx) − ∑n

i=1 ξ2
i

nl(ηn)
→ 0 in probability. (77)

We now prove that (77) holds. Since n Pπ (|ξ1| > ηn) = o(1) by Lemma 1(b), we need only
show that

n
∫ ∞
−∞ Gn(x)π(dx) − ∑n

i=1 ξ2
i 1{|ξi | ≤ ηn}

nl(ηn)

=
∑n

i=1(Eπ (ξ2
i 1{|ξi | ≤ ηn}) − ξ2

i 1{|ξi | ≤ ηn})
nl(ηn)

−
∑n

i=1(Eπ ξi 1{|ξi | ≤ ηn})2

nl(ηn)

→ 0 in probability. (78)

Obviously, the second term in (78) converges to 0 as n → ∞. Next, we will show that the first
term in (78) also converges to 0 in probability as n → ∞. In view of Chebyshev’s inequality,

Pπ

( | ∑n
i=1[Eπ (ξ2

i 1{|ξi | ≤ ηn}) − ξ2
i 1{|ξi | ≤ ηn}]|

nl(ηn)
> ε

)

≤ varπ [∑n
i=1(ξ

2
i 1{|ξi | ≤ ηn} − Eπ (ξ2

i 1{|ξi | ≤ ηn}))]
ε2n2l2(ηn)

= n Eπ [ξ2
i 1{|ξi | ≤ ηn} − Eπ (ξ2

i 1{|ξi | ≤ ηn})]2

ε2n2l2(ηn)

+
∑n

i=1(n − i) covπ (ξ̄1,n, ξ̄i+1,n)

ε2n2l2(ηn)

=: III + IV .

By Lemma 1 we have

III ≤ n Eπ (ξ4
i 1{|ξi | ≤ ηn})

ε2n2l2(ηn)
= no(η2

nl(ηn))

ε2n2l2(ηn)
= o(1).

By inequality (64) we have

IV ≤ C4
∑n

i=1(n − i)i−β(1 + o(η2
nl(ηn)))

ε2n2l2(ηn)
= o(1).

This completes the proof of Theorem 1(b).
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