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A New Sufficient Condition for a Graph To
Be (g, f , n)-Critical

Sizhong Zhou

Abstract. Let G be a graph of order p, let a, b, and n be nonnegative integers with 1 ≤ a < b, and

let g and f be two integer-valued functions defined on V (G) such that a ≤ g(x) < f (x) ≤ b for all

x ∈ V (G). A (g, f )-factor of graph G is a spanning subgraph F of G such that g(x) ≤ dF(x) ≤ f (x)

for each x ∈ V (F). Then a graph G is called (g, f , n)-critical if after deleting any n vertices of G the

remaining graph of G has a (g, f )-factor. The binding number bind(G) of G is the minimum value of

|NG(X)|/|X| taken over all non-empty subsets X of V (G) such that NG(X) 6= V (G). In this paper, it is

proved that G is a (g, f , n)-critical graph if

bind(G) >
(a + b − 1)(p − 1)

(a + 1)p − (a + b) − bn + 2
and p ≥

(a + b − 1)(a + b − 2)

a + 1
+

bn

a
.

Furthermore, it is shown that this result is best possible in some sense.

The graphs considered in this paper are finite undirected simple graphs. Let G be

a graph with vertex set V (G) and edge set E(G). For any vertex x of G, we denote by

dG(x) the degree of x in G, by δ(G) the minimum vertex degree of G and by NG(x) the

set of vertices adjacent to x in G. For any S ⊆ V (G), we define NG(S) =

⋃

x∈S NG(x),

we denote by G[S] the subgraph of G induced by S, and by G − S the subgraph

obtained from G by deleting vertices in S together with the edges incident to vertices

in S. A subset S of V (G) is independent if no two vertices of S are adjacent. The

binding number bind(G) of G is the minimum value of |NG(X)|/|X| taken over all

non-empty subsets X of V (G) such that NG(X) 6= V (G) (see [13]).

Let g and f be two nonnegative integer-valued functions defined on V (G) such

that g(x) ≤ f (x) for each x ∈ V (G). A (g, f )-factor of graph G is defined as a

spanning subgraph F of G such that g(x) ≤ dF(x) ≤ f (x) for each x ∈ V (G) (where,

of course, dF denotes the degree in F). If g(x) = a and f (x) = b for all x ∈ V (G),

then a (g, f )-factor is called an [a, b]-factor. If g(x) = f (x) = k for all x ∈ V (G),

then a (g, f )-factor is called a k-factor. A graph G is called (g, f , n)-critical if after

deleting any n vertices of G the remaining graph of G has a (g, f )-factor. If G is

(g, f , n)-critical, then we also say that G is a (g, f , n)-critical graph. If g(x) = a and

f (x) = b for all x ∈ V (G), then a (g, f , n)-critical graph is an (a, b, n)-critical graph.

If a = b = k, then an (a, b, n)-critical graph is simply called a (k, n)-critical graph.

In particular, a (1, n)-critical graph is simply called an n-critical graph. The other

notations and definitions not given in this paper can be found in [1].
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Many authors have investigated (g, f )-factors [3,9,16] and [a, b]-factors [6,12]. O.

Favaron [4] studied the properties of n-critical graphs. G. Liu and Q. Yu [11] studied

the characterization of (k, n)-critical graphs. G. Liu and J. Wang [10] gave the char-

acterization of (a, b, n)-critical graphs with a < b. S. Zhou [14] gave two sufficient

conditions for graphs to be (a, b, n)-critical. J. Li [7] gave two sufficient conditions for

graphs to be (a, b, n)-critical. S. Zhou [15] obtained a sufficient condition for graphs

to be (g, f , n)-critical. The characterization of (g, f , n)-critical graphs was given by J.

Li and H. Matsuda [8]. In this paper, some binding number conditions for graphs to

be (g, f , n)-critical are given. The main results will be given in the following section.

The following results on binding number conditions for graphs to have [a, b]-fac-

tors and k-factors are known. Katerinis and Woodall proved the following result for

the existence of k-factors [5].

Theorem 1 Let k ≥ 2 be an integer and let G be a graph having p ≥ 4k − 6 vertices

and binding number bind(G) such that kp is even and

bind(G) >
(2k − 1)(p − 1)

k(p − 2) + 3
.

Then G has a k-factor.

C. Chen gave the following result for the existence of [a, b]-factors [2].

Theorem 2 Let G be a graph of order n, 1 ≤ a < b. If

bind(G) >
(a + b − 1)(n − 1)

bn − 2b + 3
and n ≥

(a + b − 1)(a + b − 2)

b
,

then G has an [a, b]-factor.

Now we state our main results.

Theorem 3 Let G be a graph of order p, and let a, b, and n be nonnegative integers

such that 1 ≤ a < b, and let g and f be two integer-valued functions defined on V (G)

such that a ≤ g(x) < f (x) ≤ b for each x ∈ V (G). If

bind(G) >
(a + b − 1)(p − 1)

(a + 1)p − (a + b) − bn + 2
and p ≥

(a + b − 1)(a + b − 2)

a + 1
+

bn

a
,

then G is a (g, f , n)-critical graph.

In Theorem 3 if n = 0, then we get the following corollary.

Corollary 4 Let G be a graph of order p, and let a, b be nonnegative integers such that

1 ≤ a < b, and let g and f be two integer-valued functions defined on V (G) such that

a ≤ g(x) < f (x) ≤ b for each x ∈ V (G). If

bind(G) >
(a + b − 1)(p − 1)

(a + 1)p − (a + b) + 2
and p ≥

(a + b − 1)(a + b − 2)

a + 1
,

then G has a (g, f )-factor.
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In Theorem 3, if g(x) = a and f (x) = b, then we obtain the following corollary.

Corollary 5 Let G be a graph of order p, and let a, b, and n be nonnegative integers

such that 1 ≤ a < b. If

bind(G) >
(a + b − 1)(p − 1)

(a + 1)p − (a + b) − bn + 2
and p ≥

(a + b − 1)(a + b − 2)

a + 1
+

bn

a
,

then G is an (a, b, n)-critical graph.

The proof of Theorem 3 relies heavily on the following theorem.

Theorem 6 [8] Let G be a graph, n ≥ 0 an integer, and let g and f be two integer-

valued functions defined on V (G) such that g(x) < f (x) for each x ∈ V (G). Then G is

a (g, f , n)-critical graph if and only if

δG(S, T) = f (S) + dG−S(T) − g(T) ≥ max{ f (N) : N ⊆ S, |N| = n}

for all disjoint subsets S and T of V (G) with |S| ≥ n.

Proof of Theorem 3 Suppose a graph G satisfies the condition of the theorem, but it

is not a (g, f , n)-critical graph. Then by Theorem 6, there exist disjoint subsets S and

T of V (G) with |S| ≥ n such that

(1) δG(S, T) = f (S) + dG−S(T) − g(T) ≤ max{ f (N) : N ⊆ S, |N| = n} − 1.

We choose subsets S and T such that |T| is minimum and S and T satisfy (1).

Claim 1 dG−S(x) ≤ g(x) − 1 ≤ b − 2 for each x ∈ T.

Proof Suppose that there exists a vertex x ∈ T such that dG−S(x) ≥ g(x). Then the

subsets S and T − {x} satisfy (1), which contradicts the choice of T.

If T = ∅, then by (1)

f (S) − 1 ≥ max{ f (N) : N ⊆ S, |N| = n} − 1 ≥ δG(S, T) = f (S),

a contradiction. Hence, T 6= ∅. Let h = min{dG−S(x) : x ∈ T}.

According to Claim 1, we have 0 ≤ h ≤ b − 2. We shall consider various cases

according to the value of h and derive contradictions.

Case 1. h = 0.

At first, we prove the following claim.

Claim 2
(a + 1)p − (a + b) − bn + 2

p − 1
> 1.
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Proof Since

p ≥
(a + b − 1)(a + b − 2)

a + 1
+

bn

a
,

we have

(a + 1)p − (a + b) − bn + 2 − (p − 1) = ap − (a + b) − bn + 3

≥ a
( (a + b − 1)(a + b − 2)

a + 1
+

bn

a

)

− (a + b) − bn + 3

=

a(a + b − 1)(a + b − 2)

a + 1
− (a + b) + 3

≥ (a + b − 2) − (a + b) + 3 > 0

Thus, we have
(a + 1)p − (a + b) − bn + 2

p − 1
> 1.

Let m = |{x : x ∈ T, dG−S(x) = 0}|, and let Y = V (G) \ S. Then NG(Y ) 6= V (G)

since h = 0. In view of the definition of the binding number bind(G), we get that

|NG(Y )| ≥ bind(G)|Y |.

Thus, we have p − m ≥ |NG(Y )| ≥ bind(G)|Y | = bind(G)(p − |S|), that is,

(2) |S| ≥ p −
p − m

bind(G)
.

Using |S| + |T| ≤ p and (1) and (2) and Claim 2, we obtain

bn − 1 ≥ max{ f (N) : N ⊆ S, |N| = n} − 1

≥ δG(S, T) = f (S) + dG−S(T) − g(T)

≥ (a + 1)|S| + |T| − m − (b − 1)|T|

= (a + 1)|S| − (b − 2)|T| − m

≥ (a + 1)|S| − (b − 2)(p − |S|) − m

= (a + b − 1)|S| − (b − 2)p − m

≥ (a + b − 1)(p −
p − m

bind(G)
) − (b − 2)p − m

= (a + 1)p − (a + b − 1)
p − m

bind(G)
− m

> (a + 1)p − (a + b − 1)
(p − m)((a + 1)p − (a + b) − bn + 2)

(a + b − 1)(p − 1)
− m
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= (a + 1)p −
(p − m)((a + 1)p − (a + b) − bn + 2)

p − 1
− m

≥ (a + 1)p −
(p − 1)((a + 1)p − (a + b) − bn + 2)

p − 1
− 1

= bn + (a + b) − 3

≥ bn,

which is a contradiction.

Case 2. 1 ≤ h ≤ b − 2. Let x1 be a vertex in T such that dG−S(x1) = h, and let

Y = (V (G) \ S) \ NG−S(x1). Then x1 ∈ Y \ NG(Y ), so Y 6= ∅ and NG(Y ) 6= V (G).

In view of the definition of the binding number bind(G), we obtain

|NG(Y )|

|Y |
≥ bind(G).

Thus, we get that p − 1 ≥ |NG(Y )| ≥ bind(G)|Y | = bind(G)(p − h − |S|), that is,

(3) |S| ≥ p − h −
p − 1

bind(G)
.

By |S| + |T| ≤ p and (1) and (3), we have

bn − 1 ≥ max{ f (N) : N ⊆ S, |N| = n} − 1

≥ δG(S, T) = f (S) + dG−S(T) − g(T)

≥ (a + 1)|S| + dG−S(T) − (b − 1)|T|

≥ (a + 1)|S| + h|T| − (b − 1)|T|

= (a + 1)|S| − (b − h − 1)|T|

≥ (a + 1)|S| − (b − h − 1)(p − |S|)

= (a + b − h)|S| − (b − h − 1)p

≥ (a + b − h)
(

p − h −
p − 1

bind(G)

)

− (b − h − 1)p

> (a + b − h)
(

p − h −
(a + 1)p − (a + b) − bn + 2

a + b − 1

)

− (b − h − 1)p.

(4)

Let f (h) = (a + b − h)(p − h − (a+1)p−(a+b)−bn+2
a+b−1

) − (b − h − 1)p. In fact, the

function f (h) attains its minimum value at h = 1, since 1 ≤ h ≤ b − 2 is an integer.

Then we get f (h) ≥ f (1). Combining this with (4), we obtain

bn − 1 > f (1) = (a + b − 1)
(

p − 1 −
(a + 1)p − (a + b) − bn + 2

a + b − 1

)

− (b − 2)p
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= (a + b − 1)(p − 1) − ((a + 1)p − (a + b) − bn + 2) − (b − 2)p

= bn − 1,

which is a contradiction.

From the argument above, we deduce the contradictions, so the hypothesis cannot

hold. Hence, G is a (g, f , n)-critical graph.

Remark Let us show that the condition bind(G) > (a+b−1)(p−1)
(a+1)p−(a+b)−bn+2

in Theorem 3

cannot be replaced by bind(G) ≥ (a+b−1)(p−1)
(a+1)p−(a+b)−bn+2

. Let a ≥ 2, b = a + 1, n ≥ 0 be

three integers such that a + b + n is odd, and let p =
(a+b−1)(a+b−2)+(a+b−2)+(a+2b−1)n

b

be an integer, and let l =
a+b+n−1

2
and

m = p−2l = p− (a + b + n−1) =

(a + b − 1)(a − 2) + (a + b − 2) + (a + b − 1)n

b
.

Clearly, m is an integer. Let H = Km ∨ lK2. Let X = V (lK2), for any x ∈ X, then

|NH(X \ x)| = p − 1. By the definition of bind(H),

bind(H) =

|NH(X \ x)|

|X \ x|
=

p − 1

2l − 1
=

p − 1

a + b + n − 2

=

(a + b − 1)(p − 1)

bp − (a + b) − bn + 2
=

(a + b − 1)(p − 1)

(a + 1)p − (a + b) − bn + 2
.

Let S = V (Km) ⊆ V (H), T = V (lK2) ⊆ V (H), then |S| = m ≥ n, |T| = 2l. Since

a ≤ g(x) < f (x) ≤ b and b = a + 1, then we have g(x) = a and f (x) = b = a + 1.

Thus, we get

δH(S, T) = f (S) + dH−S(T) − g(T) = (a + 1)|S| + |T| − (b − 1)|T|

= (a + 1)|S| − (b − 2)|T| = b|S| − (a − 1)|T|

= b
(a + b − 1)(a − 2) + (a + b − 2) + (a + b − 1)n

b

− (a − 1)(a + b + n − 1)

= bn − 1 < bn = max{ f (N) : N ⊆ S, |N| = n}.

By Theorem 6, H is not a (g, f , n)-critical graph. In the above sense, the result of

Theorem 3 is best possible.
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