ON A THEOREM OF KUIPER

ROBERT WELLS AND LUIZ A. FAVARO

1. Introduction. Let Δ_{n+1} be the standard (n + 1) simplex with its standard triangulation. By the Generalized Poincare Conjecture, if $n \ge 5$ and Σ^n is a smooth homotopy *n*-sphere, then there exists a smooth triangulation $f: K \to \Sigma^n$, where K is a suitable subdivision of $\partial \Delta_{n+1}$. On the other hand, in [3], N. Kuiper proves the following theorem.

THEOREM (Kuiper). If Σ^n is a smooth homotopy n-sphere and there exists a smooth triangulation $f: \partial \Delta_{n+1} \to \Sigma^n$, then Σ^n is diffeomorphic to the standard sphere.

The object of this paper is to give an easier proof of Kuiper's Theorem, and to extend that theorem in a rather special setting. To arrive at that setting, we define a subset $S(n + 1) \subset \mathbb{R}^{n+1}$ = Euclidean (n + 1)-space by induction on n: For n = 0 we set $S(1) = [0; \infty)$; assuming $S(n) \subset \mathbb{R}^n$ has been defined, we set

 $S(n+1) = (S(n) \times [0,1]) \cup \mathbb{R}^n \times (-\infty,0] \subset \mathbb{R}^n \times \mathbb{R} = \mathbb{R}^{n+1}.$

The set S(n + 1) is an (n + 1)-submanifold of \mathbb{R}^{n+1} and we call it the *solid* model in dimension n + 1. We set $M(n) = \partial S(n + 1)$, and we call M(n)the *model* in dimension n. Let $\mathcal{M}(n)$ be the pseudogroup defined by $\mathcal{M}(n) = \{\varphi | \varphi : U \to \varphi(U) \text{ is a homeomorphism, } U \text{ and } \varphi(U) \text{ are open in } M(n), \}$ and φ extends to an affine isomorphism of \mathbb{R}^{n+1} . Similarly, let $\mathcal{S}(n+1)$ be the pseudogroup defined by $\mathscr{S}(n+1) = \{\varphi | \varphi : U \to \varphi(U) \text{ is a homeomorphism,} \}$ U and $\varphi(U)$ are open in S(n+1), and φ extends to an affine isomorphism of \mathbb{R}^{n+1} . Then we say that an M(n) manifold P is an n-manifold |P| together with a maximal atlas \mathscr{P} modelling |P| on M(n) with coordinate transformations in $\mathcal{M}(n)$; thus $P = (|P|, \mathcal{P})$. Similarly, an S(n+1) manifold X is an (n+1)manifold |X| together with a maximal atlas \mathscr{X} modelling |X| on S(n+1) with coordinate transformations in $\mathscr{G}(n+1)$; thus $X = (|X|, \mathscr{X})$. Clearly the boundary of an S(n + 1) manifold is an M(n) manifold. In the usual categories, every closed manifold is the boundary of a manifold, but since the product of an M(n) manifold with [0, 1) does not appear to have a canonical S(n + 1)-structure, it is not clear that every M(n) manifold is the boundary of some S(n + 1) manifold. To repair this deficiency, we introduce the notion of a sided M(n) manifold. To begin with, for $x \in M(n)$ we say that dim $(x) \ge r$

Received June 12, 1974.

if there exists an affine r-plane H such that $x \in \operatorname{int}_H (H \cap M(n))$, and we set dim $(x) = \max \{r | \dim (x) \ge r\}$. If P is an M(n) manifold and $y \in P$, we set dim $(y) = \dim (\varphi(x))$ where $y \in U$ and $(U, \varphi) \in \mathscr{P}$ is a chart of P. Clearly dim (y) is well defined. Then we set $P^r = \{y \in P | \dim (y) \le r\}$. Clearly $\phi = P^{-1} \subset P^0 \subset \ldots \subset P^n = P$ is a filtration of P by closed subsets; $P^r - P^{r-1}$ is an r manifold and $(P^r - P^{r-1})^r = \phi$ for i < r. Suppose $y \in P^{n-1}$ and $(U, \varphi), (V, \psi) \in \mathscr{P}$ with $y \in U \cap V$. Then the homeomorphism

$$\varphi(U \cap V) \xrightarrow{\psi \circ \varphi^{-1}} \psi(U \cap V)$$

extends to a *unique* affine isomorphism $A : \mathbb{R}^{n+1} \to \mathbb{R}^{n+1}$ and for W a sufficiently small open neighborhood of $\varphi(y)$ in \mathbb{R}^{n+1} , we will have either

$$A(\operatorname{int} S(n+1) \cap W) \subset \operatorname{int} S(n+1) \cap A(W)$$

or

$$A(\operatorname{int} S(n+1) \cap W) \subset A(W) - S(n+1).$$

In the first case we set $s(\psi, \varphi) = +1$ and in the second case we set $s(\psi, \varphi) = -1$. In the standard way, the function *s* determines a $\{+1, -1\}$ -bundle $\sigma(P)$ over P^{n-1} . If this bundle is trivial, we say that *P* is sideable; in that case a section \mathscr{S} of *P* is a *side* and the other section $-\mathscr{S}$ is the *opposite side*. A sideable M(n) manifold *P* together with a side \mathscr{S} is called a *sided* M(n) manifold; we will abuse notation sometimes by writing $(P, \mathscr{S}) = P$ and $-P = (P, -\mathscr{S})$. Clearly, if *X* is an S(n + 1)-manifold and $P = \partial X$, then *P* inherits a side from *X*. Examples of sided M(n) manifolds are $\partial \Delta_{n+1}$, $\partial [-1, 1]^{n+1}$, and $\partial [-1, 1]^{n+1}/((-1))$.

If X is an S(n + 1) manifold, then the ring

$$C^{\infty}(X) = \{ f: X \to R | f \circ \varphi^{-1} : \varphi(U) \to R \text{ is } C^{\infty} \text{ for any } (\varphi, U) \in \mathscr{X} \}$$

is well defined. If P is an M(n) manifold, we say that an *open r-facet* of P is a component of $P^r - P^{r-1}$ and a *closed r-facet* is the closure of an open *r*-facet; a closed *r*-facet inherits an S(r) structure, and with that structure we call it an *r*-facet. Let the ring $\mathscr{S}m(P) = \{f : P \to R | f | F \in C^{\infty}(F) \text{ for } F \text{ any facet of } P\}$. Similarly, if N is a smooth manifold or an S(k) manifold, we may define $C^{\infty}(X, N)$ and $\mathscr{S}m(P, N)$. For $y \in P$, let $\mathscr{D}_{y}(P)$ be the set of derivations of $\mathscr{S}m(P)$ at y. It follows from Thom's Lemma below that

$$\mathscr{G}m(M(n)) = \{f: M(n) \to R | f = g | M(n), g: R^{n+1} \to R \text{ is } C^{\infty}\};$$

then for $x \in M(n)$ we have that $\mathscr{D}_x(M(n))$ is a real vector race of dimension n + 1 if dim $(x) \leq n - 1$ and of dimension n if dim (x) = n. If (U, φ) is a chart of P with $y \in U$, then we define $d\varphi(y) : \mathscr{D}_y(P) \to \mathscr{D}_{\varphi(y)}(M(n))$ in the usual way; clearly $d\varphi(y)$ is an isomorphism, so $\mathscr{D}_y(P)$ is a real vector space of dimension n + 1 if $y \in P^{n-1}$ and of dimension n if $y \in P - P^{n-1}$. For $x \in$

M(n) we may identify the tangent cone to M(n) at x with a subset $\tau C_x(M(n))$ of $\mathscr{D}_x(M(n))$; then for $y \in P$ and (U, φ) as above we set

$$\tau C_{\boldsymbol{y}}(P) = d\varphi(\boldsymbol{y})\tau C_{\varphi(\boldsymbol{y})}(M(\boldsymbol{n})),$$

and $\tau C_y(P)$ is well defined. Then $\tau C_y(P)$ is a subcone of $\mathscr{D}_y(P)$, piecewise linearly isomorphic to \mathbb{R}^n . For N a smooth manifold and $f \in \mathscr{Gm}(P, N)$, the linear map df $(y) : \mathscr{D}_y(P) \to \tau y(N)$ is defined in the usual manner. We will say that $P \to N$ smooths P to N if

i) $f \in \mathscr{G}m(P, N)$,

ii) f is a homeomorphism, and

iii) df $(y) : \tau C_y(P) \to \tau_y(N)$ is 1 - 1 onto.

In that case we will say that P subdivides N, that P is a subdivision of N, and that N is a smoothing of P. We may extend the notion of subdivision to a pair of M(n) manifolds. If P and Q are M(n) manifolds, we set

Aff
$$(P, Q) = \{f : P \to Q | \text{ the map } \varphi(U \cap f^{-1}(V)) \xrightarrow{\psi \circ f \circ \varphi^{-1}} \psi(V)$$

extends to an affine map $\mathbb{R}^{n+1} \to \mathbb{R}^{n+1}$ for (U, φ) a chart of P and

 (V, ψ) a chart of Q.

For such f, the map df $(y) : \tau C_y(P) \to \tau C_{f(y)}(Q)$ is defined. If $f \in \text{Aff}(P, Q)$ we will say that if *subdivides* Q if

i) f is a homeomorphism,

ii) for each open facet 0 of P there is an open facet 0' of Q with $f(0) \subset 0'$, and

iii) df $(y) : \tau C_y(P) \to \tau C_{f(y)}(Q)$ is 1 - 1 onto.

If (P, \mathscr{S}) and (Q, \mathscr{T}) are sided M(n) manifolds, and $f: P \to Q$ subdivides Q, then f pulls the side \mathscr{T} of Q back to a side $f^*\mathscr{T}$ of P. If $f^*\mathscr{T} = \mathscr{S}$, we say of the map f that it M(n)-subdivides (Q, \mathscr{T}) , and we say that $(P, \mathscr{S})_{\bullet}$ is an M(n)-subdivision of (Q, \mathscr{T}) . It is straightforward that if $g: P \to Q$ subdivides or M(n) subdivides Q and $f: Q \to N$ smooths Q, then $f \circ g$ smooths P. The natural equivalence relations on M(n) manifolds are M(n)-equivalence and equivalence: (Q, \mathscr{T}) is M(n)-equivalent to (Q', \mathscr{T}') if there exists (P, \mathscr{S}) that is an M(n) subdivision of both (Q, \mathscr{T}) and (Q', \mathscr{T}') ; the definition of equivalence is similar except that sides do not enter. Neither of these relations is very tractable, so we will introduce a coarser (by Proposition 3 below) equivalence relation on a certain class of sided M(n) manifolds. To introduce the coarser equivalence relation, we let

 $\overline{\mathcal{M}}(n) = \{\varphi | \varphi : U \to \varphi(U) \text{ is a diffeomorphism and } U, \varphi(U) \text{ open} \subset M(n) \}$ and $\overline{\mathscr{G}}(n+1) = \{\varphi | \varphi : U \to \varphi(U) \text{ is a diffeomorphism and } U, \varphi(U)$ open $\subset S(n+1) \}.$

Then smooth M(n) manifolds are those modelled on M(n) with coordinate

transformations in $\mathcal{M}(n)$ and smooth S(n+1) manifolds are those modelled on S(n+1) with coordinate transformations in $\overline{\mathscr{I}}(n+1)$. As in the affine case above, we may introduce the dimension filtration, siding, facets, tangent cones, smoothing and subdivision. Moreover, an M(n) or S(n + 1) manifold relaxes to a unique smooth M(n) or smooth S(n + 1) manifold, and closed smooth manifolds are automatically smooth M(n) manifolds. If P and Q are compact sided smooth M(n) manifolds, we will say that P is strongly cobordant to Q if there is a smooth S(n + 1) manifold X such that $X = P \prod_{n=1}^{\infty} -Q$, and X is PL isomorphic to $P \times [0, 1]$. Let $\mathscr{C} = \{P | P \text{ is strongly cobordant to a smooth mani-}$ fold}.Suppose $P \in \mathscr{C}$ and that X is a strong cobordism from P to a smooth manifold N. There is a smooth vector field A on X, transverse to P. By the Cairns Hirsch Theorem, there is a smooth submanifold $N' \subset \operatorname{int} X$ which is transverse to A. We may push P into the region of X between N' and N by means of a solution of A. Thus we have a copy P' of P between N and N'. Let Y be the closure of the region between N and P', and let Z be the closure of the region between Pand P'. Then Y defines a strong cobordism from -P to N and Z from P to P. Thus, writing \sim for strong cobordism we have $P \in \mathscr{C}$ implies $-P \in \mathscr{C}$ and $P \in \mathscr{C}$ implies $P \sim P$. Suppose X is a strong cobordism from P to Q. As above, we may insert a smooth manifold N in int X (transverse to a smooth field transverse to P). We may put a copy P' of P between N and Q, and a copy Q' of Q between P and N so that the closure of the region between P' and Q' is a strong cobordism from P' to Q'. But with the inherited sides, it is a strong cobordism from -P to -Q; that is, a strong cobordism from Q to P. Thus $P \sim Q$ implies $Q \sim P$. Finally, if $P \sim Q$ via X and $Q \sim T$ via Y, we may put smooth manifolds N and N' in int X and int Y respectively so that the closures X_0, X_1, Y_0, Y_1 of the regions between P and N, between N and Q, between Q and N' and between N' and T are strong cobordisms. From Proposition 3 below we conclude that N and N' are diffeomorphic. Then glueing X_0 and Y_1 smoothly by a diffeomorphism $N \to N'$, we obtain a strong cobordism Z from P to T. Thus ~ is transitive. Finally, if $P \sim N$ via X with N smooth, $X \cup_N X$ is a strong cobordism from P to -P. Thus \sim is an equivalence relation on \mathscr{C} and $P \sim -P$ for $P \in \mathscr{C}$.

Now, the theorem we wish to prove is most naturally stated in five propositions.

PROPOSITION 1. If two compact smooth manifolds are strongly cobordant to the same M(n) manifold, and $n \ge 6$, then they are diffeomorphic.

PROPOSITION 2. Let P be a sideable M(n) manifold, and M a smooth manifold. Then there is a smoothing from P to M if and only if P and M are strongly cobordant.

PROPOSITION 3. If two smoothable sided M(n) manifolds are M(n)-equivalent, then they are strongly cobordant.

PROPOSITION 4. If $n \ge 5$ and M is an orientable compact closed smooth n-

manifold smoothly immersible in \mathbb{R}^{n+1} , then there exists an M(n) manifold strongly cobordant to M.

PROPOSITION 5. If the smooth compact closed homotopy n-sphere Σ bounds a smooth compact parallelizable manifold, then there exist a polyhedron $P \subset \mathbb{R}^{n+2}$ which is an M(n) manifold strongly cobordant to Σ .

From these propositions we conclude that for each smooth homotopy n-sphere Σ , the classes

 $K(\Sigma) = \{Q|Q \text{ is an } M(n) \text{ manifold, } Q \text{ strongly cobordant to } \Sigma\}$

are each non-empty, and mutually disjoint. Also, if Σ is a non-standard bP_{n+1} sphere, then the polyhedron P supplied by Proposition 5 supplies two examples: 1) the cone CP is a polyhedron, PL isomorphic to I^{n+1} , but not smoothable, and 2) the suspension $SP = CP \cup_P CP$ is a polyhedron, PL isomorphic to ∂I^{n+1} , but not smoothable.

2. Proofs. Proposition 1 is the result that an M(n) manifold has at most one diffeomorphism class of smoothings. It may be obtained as a corollary of a "Boundary Collar Theorem" for smooth S(n + 1) manifolds, and that in turn is an immediate consequence of a lemma of Thom [4]. In addition, we will require a simple proposition about S(n + 1).

PROPOSITION 6. Suppose $p \in S(n + 1)$ with $\dim_{S(n+1)}p = r \leq n$. Then there is a basis e_1, \ldots, e_{n+1} of $\tau_p(\mathbb{R}^{n+1})$ such that the n-facets of S(n + 1) containing p are F_1, \ldots, F_{n+1-r} with $\tau_p(F_i) = \text{span } (e_1, \ldots, \hat{e}_i, \ldots, e_{n+1})$.

Proof. The proposition is true for n = 0. We prove it inductively in dimension n + 1. We may write $S(n + 1) = S = T \times [0, 1] \cup \mathbb{R}^n \times (-\infty, 0]$ with T = S(n). If dim_S(p) = n, the proposition is immediate. If dim_S(p) = r < n, then p = (q, t) with $q \in T$ and $0 \leq t \leq 1$. If 0 < t < 1, then $\dim_{S}(p) =$ $1 + \dim_T(q)$. Let e_1', \ldots, e_n' be the basis of $\tau_q(\mathbb{R}^n)$ given by the proposition in dimension n. Let e_1, \ldots, e_n be the parallel vectors at p = (q, t) and let e_{n+1} be the vertical vector at p. Then near p, the n-facets are $F_1 \times [0, 1], \ldots$, $F_{n-(r-1)}' \times [0, 1]$ where $F_1', \ldots, F_{n-(r-1)}'$ are the (n-1)-facets of T containing q, and clearly we have $\tau_p(F_i \times [0, 1]) = \text{span}(e_1, \ldots, \hat{e}_i, \ldots, e_{n+1}).$ If t = 0 or 1, then $\dim_{S}(q, t) = \dim_{T}(q)$; let e_{1}', \ldots, e_{n}' be the basis given by the proposition in dimension n, for $\tau_q(\mathbb{R}^n)$. Let $e_1, \ldots, \hat{e}_{n+r-1}, \ldots, e_{n+1}$ be the parallel basis at p, and let e_{n-r+1} be the vertical vector there. Then, near p, the *n*-facets of S are $F_1' \times [0, 1], \ldots, F_{n-r'} \times [0, 1], F_{n-r+1}$ where $F_{n-r+1} = T$ 1 if t = 1 and $F_{n-r+1} = clos (R^n - T) \times 0$ if t = 0. But $\tau_p(F_i \times [0, 1]) =$ span $(e_1, \ldots, \hat{e}_i, \ldots, e_{n+1})$ and $\tau_p(F_{n-r+1}) = \text{span } (e_1, \ldots, \hat{e}_{n-r+1}, \ldots, e_{n+1})$, so the proposition is proved.

PROPOSITION 7 (Thom's Lemma). Let e_1, \ldots, e_{n+1} be a base of \mathbb{R}^{n+1} , let $C \subset U\{\text{span } (e_1, \ldots, \hat{e}_i, \ldots, e_{n+1}) | 1 \leq i \leq r\}$, and let $f: C \to \mathbb{R}$ be such that

each restriction $f|C \cap \text{span}(e_1, \ldots, \hat{e}_i, \ldots, e_{n+1})$ is C^{∞} for $1 \leq i \leq r$. Then there is a C^{∞} function $F: \mathbb{R}^{n+1} \to \mathbb{R}$ which restricts to f.

Proof. The proof proceeds by induction on r. For r = 1, there is almost nothing to prove. Suppose the lemma has been proved for r - 1. Then

$$g = f|C \cap U\{\text{span } (e_1, \ldots, \hat{e}_i, \ldots, e_{n+1})| 1 \leq i \leq r-1\}$$

extends to a C^{∞} function $G: \mathbb{R}^{n+1} \to \mathbb{R}$. To extend f, it suffices f - G|C. Thus we may assume that $f|C \cap \text{span } (e_1, \ldots, \hat{e}_i, \ldots, e_{n+1}) = 0$ for $1 \leq i < r$. But then we may assume in addition span $(e_1, \ldots, \hat{e}_i, \ldots, e_{n+1}) \subset C$ for $1 \leq i < r$. And in this case $F(x_1, \ldots, x_{n+1}) = f(x_1, \ldots, x_{r-1}, 0, x_{r+1}, \ldots, x_{n+1})$ is the desired extension, and the lemma is proved.

THEOREM 1. Suppose M_1 and M_2 are smooth S(n + 1) manifolds; N_1 and N_2 are components of ∂M_1 and ∂M_2 respectively; and $f: N_1 \rightarrow N_2$ is an isomorphism of smooth sided M(n) manifolds. Then f extends to an isomorphism of smooth S(n + 1) manifolds from an open neighborhood of N_1 in M_1 to an open neighborhood of N_2 in M_2 .

Proof. Suppose $x \in N_1$ with $\dim_{N_1}(x) < n$. Then there exist charts (U, φ) of N_1 at x and (V, ψ) of N_2 at f(x) such that $f(U) \subset V$ and $\varphi(U) \subset M(n)$ and $\psi(V) \subset M(n)$. Then $\dim_{N_1}(x) = \dim_{M(n)}\varphi(x) = \dim_{M(n)}\psi(f(x))$ and f induces a smooth map $g: \varphi(U) \to \psi(V)$; that is, g is C^{∞} on each facet. By Proposition 6, there is a basis (e_1, \ldots, e_{n+1}) of \mathbb{R}^{n+1} at $\varphi(x)$ such that the hyperplanes spanned by the *n*-facets of $\varphi(U)$ at $\varphi(x)$ are span $(e_1, \ldots, \hat{e}_i, \ldots, e_{n+1})$ for $1 \leq i \leq r$. Regarding (e_1, \ldots, e_{n+1}) as a basis of $\tau_{\varphi(x)} R^{n+1}$, we see that for $i = 1, \ldots, n + 1$ the vectors $dg(\varphi(x))e_i = e'_i$ are defined, that (e'_1, \ldots, e'_{n+1}) is a basis of R^{n+1} at $g(\varphi(x)) = \psi(f(x))$, and that the hyperplanes spanned by the *n*-facets of $\psi(V)$ at $g(\varphi(x))$ are span $(e_1', \ldots, \hat{e}_i', \ldots, e_{n+1}')$ for $1 \leq i \leq r$. Now $\varphi(U) \subset U\{\text{span } (e_1, \ldots, \hat{e}_i, \ldots, e_{n+1}) | 1 \leq i \leq r\}$ and $g|\varphi(U) \cap$ span $(e_1, \ldots, \hat{e}_i, \ldots, e_{n+1})$ is C^{∞} for $1 \leq i \leq r$. By Thom's Lemma, there is a C^{∞} extension $G: \mathbb{R}^{n+1} \to \mathbb{R}^{n+1}$. Returning to the charts (U, φ) and (V, ψ) , we may assume that there exist charts $(0, \Phi)$ of M_1 at x and (P, Ψ) of M_2 at f(x) such that $\Phi(0) \subset S(n+1)$, and $0 \cap N_1 = U$ with $\Phi|U = \varphi$, and similarly for (P, Ψ) and (V, ψ) . By means of the Euclidean metric and its exponential map we see that it follows from the hypothesis that f preserves siding that $G(\Phi(0)) \subset \Psi(P)$ so that f|U extends to a C^{∞} map $0 \to P$. It follows that there exist open neighborhoods \mathcal{N}_1 and \mathcal{N}_2 of N_1^{n-1} and N_2^{n-1} in M_1 and M_2 respectively, and a C^{∞} map $F': \mathcal{N}_1' \to \mathcal{N}_2'$ extending $f|\mathcal{N}_1 \cap N_1$. Since $x \in N_1^{n-1}$ was arbitrary and $dg(\varphi(x))$ carried the base e to the base e', it follows that dF'(x) is non-singular for $x \in N_1^{n-1}$. Thus we may assume that F'is a diffeomorphism $\mathcal{N}_1' \to \mathcal{N}_2'$. Finally, by means of open collars of the open *n*-facets we see that F' may be extended to a diffeomorphism $F: \mathcal{N}_1 \to \mathcal{N}_2$, where \mathcal{N}_i is an open neighborhood of N_i in M_i . The theorem is now proved.

COROLLARY (Proposition 1). If two compact smooth manifolds are strongly cobordant to the same M(n) manifold and $n \ge 6$, then they are diffeomorphic.

Proof. Let the two smooth manifolds be N_1 and N_2 . We are assuming that N_1 is strongly cobordant to the M(n) manifold N and that N_2 is strongly cobordant to $\pm N$. Replacing N_2 if necessary with $-N_2$, we may assume that N_1 and N_2 are strongly cobordant to N. Let M_i be the strong cobordism from N_i to N. By Theorem 1, the identity map $N \rightarrow N$ extends to a diffeomorphism

 $\mathcal{N}_1 \xrightarrow{\varphi} \mathcal{N}_2$

where \mathcal{N}_i is an open neighborhood of N in M_i . By Siebenmann's Collaring Theorem, we may find A_1 compact $\subset \mathcal{N}_1$ such that $\partial A_1 = N \cup N_1'$ with N_1' a smooth boundary of A_1 and $N_1' = \operatorname{fr} \mathcal{N}_1 - A_1 \subset \overline{\mathcal{N}_1 - A_1}$ a homotopy equivalence. We may assume that $\overline{M_1 - A_1}$ is a smooth s-cobordism from N_1' to N_1 . Then N_1' and N_1 are diffeomorphic by the *h*-cobordism theorem. Passing to *PL* structures, we see that A_1 is an s-cobordism from N to N_1' , so $\varphi(A_1) = A_2$ is an s-cobordism from N to $\varphi(N_1') = N_2'$. But since M_2 is an s-cobordism from N to N_2 , it follows that $\overline{M_2 - A_2}$ is a smooth s-cobordism from N_2' to N_2 . Thus N_1 and N_2 are diffeomorphic, and the corollary is proved.

Next we obtain Proposition 2 and half of Proposition 3 as corollaries of a theorem on subdivision of smooth M(n) manifolds. Notice that subdivision becomes smooth subdivision upon relaxing M(n) structures to smooth M(n) structures, and that if the map $f: P \to N$ smooths P to N, then it (smoothly) subdivides N.

THEOREM 2. Suppose M is a compact sided smooth M(n) manifold, N is a smooth manifold, and $f: M \to N$ is a map that smoothly subdivides N. Then M and N are strongly cobordant.

Proof. Suppose (U, φ) is a chart of M and $\gamma : N \to (0, \infty)$ is a function on N. Let $\Gamma(\gamma) : N \to N \times (0, \infty)$ be the graph of γ , and for $X \subset N$, let $L(\gamma)(X) = \{(x, t) | x \in X, t \ge \gamma(x)\}$. Then we have a bijection $g : \varphi(U) \to \partial L(\gamma)(\varphi(U))$ defined by $g = \Gamma(\gamma) \circ f \circ \varphi^{-1}$. We will say that γ is admissible over (U, φ) if g extends to a diffeomorphism $G : V' \to V$ where V' is an open neighborhood of $\varphi(U)$ in S(n + 1) and V is an open neighborhood of $\partial L(\gamma)(\varphi(U))$ in $L(\gamma)(\varphi(U))$.

LEMMA 1. Suppose $p \in M(n)$. Then there is an open set of n-planes H through p such that the orthogonal projection $\pi_H : \mathbb{R}^{n+1} \to H$ carries a neighborhood 0 of p in M(n) homeomorphically onto a neighborhood 0' of p in H so that $\pi_H|0$ smoothly subdivides 0'.

Proof. The lemma is clear for n = 1. The existence of such planes may be established inductively, and the openness is clear.

Given such a plane *H*, there is a (unique) unit normal u_H at p which points into S(n + 1). Then there is a continuous function $\gamma_H : 0 \to R$ such that $\{x + \gamma_H(x)u_H | x \in 0'\} = 0$ and such that near p the two sets S(n + 1) and $\{x + tu_H | x \in 0', t \ge \gamma_H(x)\}$ are equal. Since the manifold M is M(n) oriented, we have an atlas \mathscr{A} of charts of M such that $(U, \varphi) \in \mathscr{A}$ implies $\varphi(U) \subset M(n)$ and such that $(U, \varphi), (V, \psi) \in \mathscr{A}$ with $U \cap V \cap M^{n-1} \neq \phi$ implies that the map

$$\varphi(U \cap V) \xrightarrow{\varphi^{-1}} U \cap V \xrightarrow{\psi} \psi(U \cap V)$$

extends to a diffeomorphism from an open set of S(n + 1) to an open set of S(n + 1). Let $(U, \varphi) \in \mathscr{A}$ and $x \in M^{n-1} \cap U$. Consider the composition

$$\varphi(U) \xrightarrow{\varphi^{-1}} U \xrightarrow{f} f(U)$$
 open $\subset N$.

Since $f \circ \varphi^{-1}$ is smooth on $\varphi(U)$, by Thom's Lemma it extends to a C^{∞} map $F: V' \to f(U)$. The differential $dF(\varphi(x)): \tau_{\varphi(x)}R^{n+1} \to \tau_{f(x)}N$ is onto. By Lemma 1, we may choose an *n*-plane H through $p = \varphi(x)$ so that $\pi_H : 0 \to 0'$ is a homeomorphism, 0, 0' $\subset \varphi(U)$, and $d(F|H)(\varphi(x)) : \tau_{\varphi(x)}H \to \tau_{f(x)}N$ is an isomorphism. Thus we may assume that $F: 0 \rightarrow 0'$ is a diffeomorphism. Let W be an open neighborhood of $\varphi(x)$ in \mathbb{R}^{n+1} on which F is defined. We may assume W is small enough that dim ker dF(y) = 1 for $y \in W$, and (by reducing 0 and 0' about $\varphi(x)$) that $0' = W \cap H$. Then ker dF is spanned by a smooth unit vector field with solution σ_s ; we may assume that $\sigma_s(y)$ is defined for $|s| < \epsilon$ for some $\epsilon > 0$ and $y \in 0 \cup 0'$, and that for $y \in 0'$ there is t(y) such that $|t(y)| < \epsilon$ and $\sigma_{t(y)} y \in 0$. Let π be the map $\pi : 0 \to 0'$ defined by $\pi(y) =$ $\sigma_{t(y)}y$; we may assume π is a smooth homeomorphism. Notice that the function $\gamma_1: 0' \to R$ defined by $\gamma_1: y \to -t(\pi^{-1}(y))$ has the property that 0 = $\{\pi_{\gamma_1(y)}(y)|y \in 0'\}$ and that, after reversing the direction of the vector field if necessary, $\{\sigma_i(y)|y \in 0', \gamma_1(y) \leq t, \sigma_i(y)\}$ defined is an open neighborhood V' of 0 in S(n + 1). Now define a function $\gamma_2: F(0') \to R$ by $\gamma_2(F(y)) =$ $\gamma_1(y)$. By reducing 0' again, to a relatively compact subset, we may assume that for some c > 0 we have $\gamma = \gamma_2 + c : F(0') \to (0, \infty)$. It is straightforward to see that $F \circ \pi = f \circ (\varphi^{-1}|0)$. Then it is clear that γ is admissible over $(\varphi^{-1}(0), \varphi | \varphi^{-1}(0))$ with G defined by $G(_t(y)) = (F(y), t+c)$ for $\gamma_1(y) \leq t$ with $\sigma_t(y)$ defined and $y \in 0'$. Since we may assume $(\varphi^{-1}(0), \varphi|\varphi^{-1}(0)) \in \mathscr{A}$, we have obtained Lemma 2 (notice that it is immediate for $x \in M - M^{n-1}$):

LEMMA 2. Let \mathscr{A} be the orientation atlas of M chosen above. Then for any $x \in M$ there exist a chart at x, $(U, \varphi) \in \mathscr{A}$, and $\gamma : N \to (0, \infty)$ admissible over (U, φ) .

This lemma states that locally admissible functions exist. We wish to glue locally admissible functions to obtain globally admissible functions. For that purpose we use Lemma 3:

LEMMA 3. Suppose $\gamma, \gamma' : N \to (0, \infty)$ are both admissible over (U, φ) ; then for any $x \in U, \gamma + \gamma'$ is admissible over (V, φ) where $x \in V$ open $\subset U$. Suppose $\mu : N \to (0, \infty)$ is C^{∞} . Then $\mu\gamma$ is admissible over (U, φ) . Proof. As in the discussion before Lemma 2, by taking V small enough about x, we may assume that there exist a *n*-plane H through $\varphi(x) \in M(n)$, on open set $W \subset \mathbb{R}^{n+1}$ containing $\varphi(V) = 0$, open subset 0' of H containing $\varphi(x)$, and a \mathbb{C}^{∞} extension $F: W \to f(V)$ of $f \circ \varphi^{-1}$. As in that discussion, dim ker (dF(y)) = 1 for $y \in W$ so that ker dF is spanned by a \mathbb{C}^{∞} unit vector field whose direction we may choose so that it points into S(n + 1) on $M(n) \cap W$; we may assume that vector field is transverse to 0 and 0', and we may assume that the solution φ_t of that vector field is defined for $|t| < \epsilon$ on $0 \cup 0'$, that for each $y \in 0$ (respectively $y \in 0'$) there is t(y) with $|t(y)| < \epsilon$ (respectively t'(y) with $|t'(y)| < \epsilon$) such that $\varphi_{t(y)}(y) \in 0'$ (respectively $\varphi_{t'(y)}(y) \in 0$). We may assume $F: 0' \to F(0')$ is a diffeomorphism. Finally, we may assume that a map $\pi: W \to 0'$ is defined by $\pi(y) =$ the unique point on 0' that is on the integral curve through y. Then π is \mathbb{C}^{∞} and $\pi|0: 0 \to 0'$ is a smooth homeomorphism such that $F \circ \pi = f \circ \varphi^{-1}$. Granted these constructions, let

$$\bar{G}: (W, W \cap S(n+1)) \rightarrow (\bar{G}(W), L(\bar{\gamma}) \cap \bar{G}(W) \subset (N \times (0, \infty), N \times (0, \infty))$$

be the diffeomorphism defined by $\bar{G}(y) = (F(\pi(y)), c + t'(\pi(y)))$ where c > 0 is sufficiently large that $\bar{\gamma} = c + t' \circ \pi : W \to (0, \infty)$. Let $G : (W, W \cap S(n+1)) \to (G(W), L(\gamma) \cap G(W))$ be a diffeomorphism making γ admissible over $(F(0'), \varphi)$ so that G(y) = (F(y), (F(y))) for $y \in 0$. Consider the diffeomorphism $G \circ (\bar{G})^{-1}$; it satisfies

$$G \circ (\overline{G})^{-1}(z, \overline{\gamma}(z)) = (z, \gamma(z))$$
 for $z \in F(0')$.

It follows that there is a horizontal vector field Λ on G(W) such that $\Lambda = 0$ on $G(W) \cap \Gamma(\bar{\gamma})(F'(0))$ and exp $\Lambda(z, t) = \operatorname{pr}(\bar{G} \circ (G)^{-1}(z, t)), t)$ where pr : $N \times (0, \infty) \rightarrow N$ is the projection (of course, it may be necessary to reduce the size of W about $\varphi(x)$). Notice that on $M(n) \cap W$ we have $(\exp \Lambda)^{-1} \circ G = G = (f \circ \varphi^{-1}) \times (\gamma \circ f \circ \varphi^{-1})$, and that on all W we have pr \circ (exp Λ)⁻¹ \circ $G = F \circ \pi$. Thus, replacing G with (exp Λ)⁻¹ \circ G we see that we may assume that pro $G = F \circ \pi$. Doing the same for γ' and (U, φ) , we see that we may assume $\operatorname{pr} \circ G = F \circ \pi$. But then $G' \circ G^{-1} : (G(W))$, $L(\gamma)(F(0'))) \rightarrow (G'(W), L(\gamma')(F(0')))$ is a diffeomorphism and $G' \circ G^{-1}(z, t)$ = (z, h(z, t)) for some C^{∞} function h. Since $L(\gamma)(F'(0))$ is carried to $L(\gamma')(F(0'))$, we have $\partial_t h(z, \gamma(z)) > 0$ for all $z \in F(0')$. Consider the map H(z, t) = (z, t + h(z, t)) defined on G(W). Clearly H is smooth, and at any point $(z, \gamma(z))$ we have $dH(z, \gamma(z))\partial_t = a\partial_t$ with a > 0. Since pro H = pr, it follows that $dH(z, \gamma(z))$ is non-singular for $z \in F(0')$. Thus, there is an open set $W' \subset W$ such that $0 \subset W'$ and such that $H: G(W') \to H \circ G(W')$ is a diffeomorphism; thus $H \circ G : W' \to H \circ G(W')$ is a diffeomorphism. But for $y \in M(n) \cap W' = M(n) \cap W = 0$, we have $H \circ G(y) = H(F(\pi(y)), \gamma F(\pi(y)))$ $= (f \circ \varphi^{-1}(y), \gamma(f \circ \varphi^{-1}(y))) = (f \circ \varphi^{-1}(y), \gamma(f \circ \varphi^{-1}(y)) + h(f \circ \varphi^{-1}(y)),$ $\gamma(f \circ \varphi^{-1}(y))) = (f \circ \varphi^{-1}(y), \gamma(f \circ \varphi^{-1}(y)) + \gamma'(f \circ \varphi^{-1}(y))).$ Similarly one checks that $H \circ G(W' \cap S(n+1)) \subset L(\gamma + \gamma')(F(0'))$ so that $H \circ G$ makes $\gamma + \gamma'$ admissible over (V, φ) where $V = f^{-1}(F(0'))$, and the first half of Lemma 3 is proved. The proof of the second half of Lemma 3 is straightforward.

Now Lemmas 2 and 3 fit together with a suitable C^{∞} partition of unity of N to complete the proof of Theorem 2.

COROLLARY 1. (Proposition 2). Let P be a compact M(n) oriented manifold and N a smooth manifold. Then there is a smoothing from P to N if and only if P and N are strongly cobordant.

Proof. Let $f: P \to N$ be a smoothing. Relax the M(n) structure on P to a smooth M(n) structure. Then f smoothly subdivides N, and Theorem 2 applies to imply that P and N are strongly cobordant. The other direction is an application of the Cavins-Hirsch Theorem: Let X be the strong cobordism from P (relaxed to a smooth M(n) manifold) to N. There exists a smooth vector field transverse to P, and pointing into X along P. By the Cairns-Hirsch Theorem there is a smooth compact manifold $N' \subset \operatorname{int} X$ transverse to the field, and

the solution curves of the field define a map $P \xrightarrow{g} N$ that smoothly subdivides N'. Relaxing further to PL structure, we see that $X = X_1 \cup X_2$ where $X_1 \cap X_2 = N'$ and both X_1 and X_2 are cobordisms, from P to N' and N' to N respectively. But we see that X_1 is PL isomorphic to $P \times [0, 1]$ by means of the integral curves, and X also is PL isomorphic to $P \times [0, 1]$. It follows that both X and X_1 are regular neighborhoods of P, so that X_2 is PL isomorphic to $N' \times [0, 1]$. Then there is a unique smoothing on $N' \times [0, 1]$ extending that on N' so X_2 is diffeomorphic to $N' \times [0, 1]$. Finally, if $\varphi : N' \to N$ is a diffeomorphism, $\varphi \circ f$ is a smoothing from P to N and the corollary is proved.

COROLLARY 2 (Proposition 3). Suppose that P_1 and P_2 are compact sided M(n)-manifolds such that each admits a smoothing. If they are M(n)-equivalent, then they are strongly cobordant.

Proof. We may assume that there exists a map $f: P_1 \to P_2$ which M(n)-subdivides P_2 . Let $g: P_2 \to N$ be a map which smooths P_2 to N. Then $g \circ f$ smooths P_1 to N. By Theorem 2, both P_1 and P_2 are strongly cobordant to N. Since strong cobordism is an equivalence relation, P_1 and P_2 are strongly cobordant, and the corollary is proved.

To prove Proposition 4, we need to introduce some constructions and terminology. We will say that a set of the form $[a_0, b_0] \times \ldots \times [a_n, b_n] \subset R \times \ldots \times R = R^{n+1}$ is a hyper-rectangle. Suppose \mathcal{O} is an (open) (n + 1)-manifold and $F : \mathcal{O} \to R^{n+1}$ an immersion. We will say that a subset $C \subset \mathcal{O}$ that F maps homeomorphically onto a hyper-rectangle is an *F*-hyper-rectangle. Then a finite union P of *F*-hyper-rectangles has an obvious generalized polyhedral structure making F|P an affine map. Suppose that \mathcal{O} and F are smooth, and that M is a compact smooth submanifold of \mathcal{O} . An *F*-simple neighborhood of M will be a finite union N of *F*-hyper-rectangles such that (1) N is a manifold, (2) $M \subset \operatorname{int} N$, and (3) the inclusion $M \subset N$ is a simple homotopy equivalence. For a relative version of this definition let $\zeta : \mathbb{R}^{n+1} \to \mathbb{R}$ be projection on the last factor. Suppose that both $\zeta \circ F | M$ and $\zeta \circ F | \partial M$ are Morse functions with neither α , $\beta \in \mathbb{R}$ a critical value. Let $g = \zeta \circ F | M$. Then an *F*-simple neighborhood of $g^{-1}[\alpha, \beta]$ is a finite union of hyper-rectangles in $(\zeta \circ F)^{-1}[\alpha, \beta]$ such that [1) N is a manifold, (2) $g^{-1}[\alpha, \beta] \subset \operatorname{int} N$, where the interior is with respect to the topology of $(\zeta \circ F)^{-1}[\alpha, \beta]$, and (3) the inclusion $(g^{-1}[\alpha, \beta], g^{-1}\{\alpha, \beta\}) \subset (N, N \cap$ $(\zeta \circ F)^{-1}[\alpha, \beta]$) is a simple homotopy equivalence.

It seems intuitively clear that at least codimension 1 closed compact smooth submanifolds of \mathcal{O} have *F*-simple neighborhoods – in fact arbitrarily small simple neighborhoods. But we will settle for less.

From now on M is always a compact smooth submanifold of \mathcal{O} . Let \mathcal{U} be an open subset of \mathcal{O} containing M. Let the pair of rotation groups (SO(n + 1), SO(n)) act on \mathbb{R}^{n+1} , \mathbb{R}^n in the usual way, where $\mathbb{R}^n = \mathbb{R}^n \times 0 \subset \mathbb{R}^{n+1}$. Notice that for $B \in SO(n + 1)$ the composition $BF = B \circ F$ is also a smooth immersion of \mathcal{O} . Then define the open subset $U(M, F, \mathcal{U})$ of SO(n + 1) to be

$$\{B \in SO(n+1) | \text{There is a } BF\text{-simple neighborhood } N \text{ of } M \text{ with} N \subset \mathcal{U} \}.$$

Instead of proving that arbitrarily small F-simple neighborhoods of M exist, we will prove the following theorem. Then Proposition 4 will follow as a corollary.

THEOREM 3. If M is a smooth closed compact n-submanifold of the smooth open (n + 1)-manifold \mathcal{O} , and $F : \mathcal{O} \to \mathbb{R}^{n+1}$ is a smooth immersion, then for \mathcal{U} an open neighborhood of M in \mathcal{O} the set $U(M, F, \mathcal{U})$ is open and dense in SO(n + 1).

Proof. Clearly $U(M, F, \mathscr{U})$ is open, and clearly the theorem is true in the zero dimensional case (n = 0). From now on we make the inductive hypothesis that the theorem has been proved in the (n - 1) dimensional case.

It is straightforward to see that $\{C \in SO(n + 1) | \zeta \circ C \circ F | M \text{ is Morse}\}$ is an open dense subset of SO(n + 1). We fix C in that set and write $g_C = \zeta \circ C \circ F | M$. For $\alpha, \beta \in R$ such that neither is a critical value of g_C , write

$$V([\alpha, \beta], F, C, \mathscr{U}) = \{B \in SO(n-1) | \text{There is a} \begin{bmatrix} B0\\01 \end{bmatrix} \circ C \circ F \text{-simple}$$

neighborhood of $g_c^{-1}[\alpha, \beta]$ in $\mathscr{U}\}.$

LEMMA 1. If $\mathscr{P} \xrightarrow{G} \mathbb{R}^n$ is a smooth immersion of a smooth n-manifold \mathscr{P} , and P is a smooth compact n-submanifold of \mathscr{P} , and \mathscr{O} is an open neighborhood of P in \mathscr{P} , then $U(P, G, \mathscr{O})$ is an open dense subset of SO(n).

Proof. By the induction hypothesis, $U(\partial P, G, \mathcal{O})$ is open dense in SO(n). Suppose $B \in U(\partial P, G, \mathcal{O})$. Then there is a *BG*-simple neighborhood *N* of ∂P in \mathcal{O} . But then $P \subset N \cup P$, and $N \cup P$ is a *BG*-simple neighborhood of *P* in \mathcal{O} , and the lemma is proved.

LEMMA 2. The intersection of $V([\alpha, \beta], F, C, \mathcal{U}), V([\beta, \gamma], F, C, \mathcal{U})$ and $V([\alpha, \gamma], F, C, \mathcal{U})$ is dense in $V([\alpha, \beta], F, C, \mathcal{U}) \cap V([\beta, \gamma], F, C, \mathcal{U})$.

Proof. Suppose that $B \in V([\alpha, \beta], F, C, \mathcal{U}) \cap V([\beta, \gamma], F, C, \mathcal{U})$ and let O be any open neighborhood of B in that intersection. Then there exist $\begin{bmatrix} B0\\01 \end{bmatrix} \circ C \circ F \text{-simple neighborhoods } N_1 \text{ of } g_C^{-1}[\alpha,\beta] \text{ and } N_2 \text{ of } g_C^{-1}[\beta,\gamma] \text{ in } \mathscr{U}.$ Let $G = \begin{bmatrix} B0\\01 \end{bmatrix} \circ C \circ F$ and let $\sigma = \zeta \circ \begin{bmatrix} B0\\01 \end{bmatrix} \circ C \circ F = \zeta \circ C \circ F$. Notice that $g_c^{-1}(\beta)$ is an open smooth *n*-manifold \mathscr{P} , and that $\begin{bmatrix} B0\\ 10 \end{bmatrix} \circ C \circ F | \mathscr{P} =$ $G|\mathscr{P}:\mathscr{P}\to\zeta^{-1}(\beta)$ is a smooth immersion; and the SO(n) space $\zeta^{-1}(\beta)$ identifies canonically with the SO(n) space \mathbb{R}^n . Recall the basis (e_0, \ldots, e_n) , and for $x \in \sigma^{-1}(\beta)$ define $(x, t) \in \mathcal{O}$ by $G(x, t) = G(x) + te_n$. This point is well defined for t sufficiently near β ; if X is compact and ϵ , δ are sufficiently near β , then $X \times [\epsilon, \delta]$ is well defined by $X \times [\epsilon, \delta] = \{(x, t) | x \in X, r \in [\epsilon, \delta] \}$. A similar construction is this: for $D \in SO(n + 1)$ and $x \in \mathcal{O}$, then Dx is well defined by G(Dx) = DG(x) provided D is sufficiently near the identity. And for X compact $\subset \mathcal{O}$, there is a neighborhood of the identity such that $D \cdot X$ is well defined in that neighborhood. In the same way, for $A \in SO(n)$ near the identity and X compact $\subset \mathcal{P}$, $A \cdot X = \{Ax | x \in X\}$ is well defined by $A(G|\mathscr{P})(x) = G|\mathscr{P}(Ax)$. Now, there exist ϵ and δ with $\alpha < \epsilon < \beta$ and $\beta < \epsilon$ $\delta < \gamma$, sufficiently near β that

(1)
$$N_1 \cap \sigma^{-1}[\alpha, \delta]$$
 and $N_2 \cap \sigma^{-1}[\epsilon, \gamma]$ are $\begin{bmatrix} B0\\01 \end{bmatrix} \circ C \circ F$ -simple neighborhoods of $g_c^{-1}[\alpha, \delta]$ and $g_c^{-1}[\epsilon, \delta]$ respectively.

(2) There is a compact *n*-submanifold P of \mathscr{P} such that (i) $g^{-1}[\delta, \epsilon] \subset \operatorname{int} Q \times [\delta, \epsilon] \subset (\operatorname{int}_{\mathscr{P}} N_1' \cap \operatorname{int}_{\mathscr{P}} N_2') \times [\delta, \epsilon]$ where $N_i' = N_i \cap \sigma^{-1}(\beta)$, and

(ii) the inclusion $g_c^{-1}(\beta) \subset Q$ is a simple homotopy equivalence.

Then by shrinking O about B suitably, we may extend (1) and (2) to the following:

(1') For
$$E \in O$$
, $\begin{bmatrix} BE^{-1} & 0 \\ 0 & 1 \end{bmatrix} N_1 \cap \sigma^{-1}[\alpha, \delta]$ and $\begin{bmatrix} BE^{-1} & 0 \\ 0 & 1 \end{bmatrix} N_2 \cap \sigma^{-1}[\epsilon, \gamma]$
are $\begin{bmatrix} E & 0 \\ 0 & 1 \end{bmatrix} \circ C \circ F$ -simple neighborhoods of $g_c^{-1}[\alpha, \delta]$ and $g_c^{-1}[\epsilon, \gamma]$ respectively

(2') For $E \in O$,

(i)
$$g_c^{-1}[\delta, \epsilon] \subset \begin{bmatrix} BE^{-1} & 0\\ 0 & 1 \end{bmatrix}$$
 (int $Q \times [\delta, \epsilon]$) $\subset \begin{bmatrix} BE^{-1} & 0\\ 0 & 1 \end{bmatrix}$
[(int<sub>\$\varnothingty N_1') \cap (int_{\$\varnothingty N_2') \times [\delta, \epsilon]]}
(ii) the inclusion $g_c^{-1}(\beta) \subset \begin{bmatrix} BE^{-1} & 0\\ 0 & 1 \end{bmatrix} Q$ is a simple homotopy
equivalence.</sub>

Let \mathscr{V} be open in \mathscr{P} , such that \mathscr{V} is compact, and $Q \times [\delta, \epsilon] \subset \mathscr{V} \times [\delta, \epsilon] \subset \mathscr{V} \times [\delta, \epsilon] \subset (\operatorname{int}_{\mathscr{P}} N_1') \cap (\operatorname{int}_{\mathscr{P}} N_2') \times [\delta, \epsilon]$. By shrinking O about B again, we may assume $E \in O$ implies

$$\overline{\mathscr{V}} \times [\delta, \epsilon] \subset \begin{bmatrix} BE^{-1} & 0\\ 0 & 1 \end{bmatrix} [(\operatorname{int}_{\mathscr{P}} N_1') \cap (\operatorname{int}_{\mathscr{P}} N_2') \times [\delta, \epsilon]].$$

By Lemma 1 carried over to $\zeta^{-1}(\beta)$ in place of \mathbb{R}^n , and $\mathbb{B}^{-1} \circ (G|\mathscr{P}) : \mathscr{P} \to \zeta^{-1}(\beta)$, we have that $U(Q, \mathbb{B}^{-1} \circ (G|\mathscr{P}), \mathscr{V})$ is open dense in SO(n). Thus, there is some $E \in 0 \cap U(Q, \mathbb{B}^{-1} \circ (G|\mathscr{P}), \mathscr{V})$. It follows that there is an $E\mathbb{B}^{-1} \circ (G|\mathscr{P})$ -simple neighborhood N'' of Q in \mathscr{V} .

From (1) it follows that $\left(\begin{bmatrix} BE^{-1} & 0\\ 0 & 1 \end{bmatrix} N_1\right) \cap \sigma^{-1}[\alpha, \delta]$ and $\left(\begin{bmatrix} BE^{-1} & 0\\ 0 & 1 \end{bmatrix} N_2\right)$ $\cap \sigma^{-1}[\epsilon, \delta]$ are $\begin{bmatrix} EB^{-1} & 0\\ 0 & 1 \end{bmatrix} \circ G$ -simple neighborhoods of $g_c^{-1}[\alpha, \delta]$ and $g_c^{-1}[\alpha, \gamma]$ respectively. But $N'' \times [\delta, \epsilon]$ is a union of $\begin{bmatrix} EB^{-1} & 0\\ 0 & 1 \end{bmatrix} \circ G$ -hyper-rectangles, so $N = \left[\left(\begin{bmatrix} BE^{-1} & 0\\ 0 & 1 \end{bmatrix} N_1 \right) \cap \sigma^{-1}[\alpha, \delta] \right] \cup N''$ $\times [\delta, \epsilon] \cup \left[\left(\begin{bmatrix} BE^{-1} & 0\\ 0 & 1 \end{bmatrix} N_2 \right) \cap \sigma^{-1}[\epsilon, \gamma] \right]$

is a union of $\begin{bmatrix} EB^{-1} & 0\\ 0 & 1 \end{bmatrix} \circ G$ -hyper-rectangles. And since

$$N^{\prime\prime} \times [\delta, \epsilon] \cap \begin{bmatrix} BE^{-1} & 0 \\ 0 & 1 \end{bmatrix} N_1 \cap \sigma^{-1}[\alpha, \delta] = N^{\prime\prime} \times \delta \subset (\operatorname{int}_{\mathscr{P}} N_1^{\prime}) \times \delta,$$

and

$$N^{\prime\prime}[\delta, \epsilon] \cap \begin{bmatrix} BE^{-1} & 0 \\ 0 & 1 \end{bmatrix} N_2 \cap \sigma^{-1}[\epsilon, \gamma] = N^{\prime\prime} \times \epsilon \subset (\operatorname{int}_{\mathscr{P}} N_2^{\prime}) \times \epsilon,$$

it follows that the $\begin{bmatrix} EB^{-1} & 0\\ 0 & 1 \end{bmatrix} \circ G$ -polyhedral structure on N makes it an M(n)-manifold. Finally, the inclusion

$$(g_c^{-1}[\alpha, \gamma], g_c^{-1}\{\alpha, \gamma\}) \subset (N, N \cap \sigma^{-1}\{\alpha, \gamma\})$$

https://doi.org/10.4153/CJM-1976-004-8 Published online by Cambridge University Press

36

is a homotopy equivalence, so N is a (relative) $\begin{bmatrix} E & 0 \\ 0 & 1 \end{bmatrix} \circ C \circ F$ -simple neighborhood of $g_c^{-1}[\alpha, \gamma]$. Thus $E \in V([\alpha, \gamma], F, C, \mathscr{U})$ and Lemma 2 is proved.

LEMMA 3. If $[\alpha, \beta] \subset g_c(M)$ contains no critical values of g_c , then $V([\alpha, \beta], F, C, \mathcal{U})$ is open and dense in SO(n).

Proof. Clearly $V([\alpha, \beta], F, C, \mathscr{U})$ is open. We set

 $\Gamma = \{x \in [\alpha, \beta] | V([\alpha, x], F, C, \mathcal{U}) \text{ is open dense in } SO(n) \}.$

By the induction hypothesis, $\alpha \in \Gamma$. Now we show that Γ is open in $[\alpha, \beta]$. Suppose $x \in \Gamma$; we may assume that $x < \beta$. Let $G = C \circ F : \mathcal{O} \to \mathbb{R}^{n+1}$ and $\sigma = \zeta \circ G$, and $g = \zeta \circ G | M$. Let \mathscr{V} be an open subset of $\mathscr{P} = \sigma^{-1}(x)$ with $g^{-1}(x) \subset \mathscr{V} \subset \widetilde{\mathscr{V}}$ compact $\subset \mathscr{U}$. We may define $\widetilde{\mathscr{V}} \times [x, b] \subset \mathcal{O}$ as in the proof of Lemma 2, for *b* sufficiently near *x*. Then for some *b* with $x < b \leq \beta$ and $\widetilde{\mathscr{V}} \times [x, b] \subset \mathscr{U}$ there exists a compact smooth *n* submanifold *Q* of \mathscr{P} such that

(i) $g^{-1}[x, b] \subset \text{int } Q \times [x, b] Q \times [x, b] \subset \mathscr{V} \times [x, b]$, and

(ii) the inclusion $g^{-1}(x) \subset Q$ is a simple homotopy equivalence.

By Lemma 1, the set $U(Q, G|\mathscr{P}, \mathscr{V})$ is open dense in SO(n). Suppose $B \in U(Q, G|\mathscr{P}, \mathscr{V})$. Then there is a $\begin{bmatrix} B & 0 \\ 0 & 1 \end{bmatrix} \circ (G|\mathscr{P})$ -simple neighborhood N' of Q in \mathscr{V} . But then $N' \times [x, b]$ is a $\begin{bmatrix} B & 0 \\ 0 & 1 \end{bmatrix} \circ G$ -simple (relative) neighborhood of $g^{-1}[x, b]$ in $\mathscr{V} \times [x, b]$. Thus $U(Q, G|\mathscr{P}, \mathscr{V}) \subset V([x, b], F, C, \mathscr{U})$ and the right hand set is open dense in SO(n). But already $V([\alpha, x], V, C, \mathscr{U})$ is open dense, so $V([\alpha, x], F, C, \mathscr{U}) \subset V([x, b], F, C, \mathscr{U})$ is open dense, so point C ($[\alpha, x], F, C, \mathscr{U}) \subset V([x, b], F, C, \mathscr{U})$ is open dense. Finally, an application of Lemma 2 shows that $V([\alpha, b], F, C, \mathscr{U})$ is open in SO(n). Thus $b \in \Gamma$, and Γ must be open in $[\alpha, \beta]$.

To see that Γ is closed, suppose $a_1 < a_2 < a_3 < \ldots$ is an increasing sequence in Γ with limit y. We must show that $y \in \Gamma$; we have $\alpha < y < \beta$. As above, there will be some a with $\alpha < a < y$ such that $V([a, y], F, C, \mathscr{U})$ is open dense in SO(n). Since $a \in \Gamma$, we have that $V([\alpha, a], F, C, \mathscr{U})$ is already open dense in SO(n), and an application of Lemma 2 shows that $V([\alpha, y], F, C, \mathscr{U})$ is open dense. Consequently $y \in \Gamma$, and Γ is closed in $[\alpha, \beta]$.

Since Γ was already non-empty and open, it follows that $\Gamma = [\alpha, \beta]$, and the lemma is proved.

LEMMA 4. Suppose x is a critical point of $g = \zeta \circ C \circ F | M$. Then there exists $\epsilon > 0$ such that $V([x - \epsilon, x + \epsilon], F, C, \mathcal{U})$ is open and dense in SO(n).

Proof. Let $G = C \circ F$ and $\sigma = \zeta \circ G$ and $g = \zeta \circ G|M$. The canonical form of a Morse function at a critical point allows us to find a compact smooth *n*-submanifold P of $\mathscr{P} = \sigma^{-1}(x)$ and $\gamma > 0$ such that x is the only critical

value in $[x - \gamma, x + \gamma]$, and

 $g^{-1}[x - \gamma, x + \gamma] \subset \text{int } P \times [x - \gamma, x + \gamma] \subset P \times [x - \gamma, x + \gamma] \subset \mathcal{U},$ and such that $g^{-1}(x) \subset P$ is a simple homotopy equivalence. Let \mathscr{V} be an open subset of \mathscr{P} such that $P \times [x - \gamma, x + \gamma] \subset \mathscr{V} \times [x - \gamma, x + \gamma] \subset \mathscr{U}.$ Then by Lemma 2, we have that $U_0 = U(P, G|\mathscr{P}, \mathscr{V})$ is open dense in SO(n). Now choose $\epsilon > \gamma$ such that $[x - \epsilon, x - \gamma] \cup [x + \gamma, x + \epsilon]$ contains no critical values of g. Then $U_- = V([x - \gamma, x - \epsilon], C, F, \mathscr{U})$ and $U_+ =$ $V([x + \gamma, x + \epsilon], C, F, \mathscr{U})$ are open dense in SO(n) by Lemma 3. Now we argue as in the proof of Lemma 2: Suppose $B \in U_- \cap U_0 \cap U_+$. Then there exist $\begin{bmatrix} B & 0\\ 0 & 1 \end{bmatrix} \circ G$ -simple neighborhoods N_- , $N \times [x - \gamma, x + \gamma]$, and N_+ of $g^{-1}[x - \epsilon, x - \gamma]$, $P \times [x - \gamma, x + \gamma]$, and $g^{-1}[x + \gamma, x + \epsilon]$ respectively. Let $N_-' = N_- \cap \sigma^{-1}(x - \gamma)$ and $N_+' = N_+ \cap \sigma^{-1}(x + \gamma)$. Now we need to complicate notation somewhat more: There exist a, b such that $0 < a < \gamma$ $< b < \epsilon$ and compact smooth *n*-submanifolds Q_- and Q_+ of $\sigma^{-1}(x - \gamma)$ and $\sigma^{-1}(x + \gamma)$ respectively, such that

(i)
$$g^{-1}[x-b, x-a] \subset (int Q_-) \times [x-b, x-a] \subset Q_- \times [x-b, x-a] \subset (int N_-' \cap int N \times (x-\gamma) \times [x-b, x-a],$$

the same for
$$+$$
 in place of $-$, and

(ii) the inclusions
$$g^{-1}(x - \gamma) \subset Q_{-}$$
 and $g^{-1}(x + \gamma) \subset Q_{+}$ are

simple homotopy equivalences. Let \mathscr{V}_{-} and \mathscr{V}_{+} be open in $\sigma^{-1}(x - \gamma) = \mathscr{P}_{-}$ and $\sigma^{-1}(x + \gamma) = \mathscr{P}_{+}$ respectively, such that $\widetilde{\mathscr{V}}_{\pm}$ are compact and $Q_{\pm} \subset \widetilde{\mathscr{V}}_{\pm} \subset \widetilde{\mathscr{V}}_{\pm} \subset$ int $N_{\pm}' \cap$ int $N \times (x \pm \gamma)$. Let 0 be an open neighborhood of *B* in $U_{-} \cap U_{0} \cap U_{+}$. By shrinking 0 about *B* suitably, we may assume that for $E \in 0$ we have

(1)
$$\begin{bmatrix} BE^{-1} & 0\\ 0 & 1 \end{bmatrix} N_{-} \cap \sigma^{-1}[x - \epsilon, x - b] \text{ and} \\ \begin{bmatrix} BE^{-1} & 0\\ 0 & 1 \end{bmatrix} N_{+} \cap \sigma^{-1}[x + b, x + \epsilon] \text{ are } \begin{bmatrix} E & 0\\ 0 & 1 \end{bmatrix} \circ G \text{-simple} \\ \text{(relative) neighborhoods of } g^{-1}[x - \epsilon, x - b] \text{ and } g^{-1}[x + b, x + \epsilon] \\ \text{respectively in } \mathscr{U}.$$

(2)
$$N_{\pm} \cap \sigma^{-1}[x \pm b, x \pm \gamma] = N_{\pm}' \times [x \pm b, x \pm \gamma]$$
. In particular,
 $N_{\pm}' \times [x \pm \gamma, x \pm b]$ is a $\begin{bmatrix} B & 0\\ 0 & 1 \end{bmatrix} \circ G$ -simple neighborhoods of
 $g^{-1}[x \pm \gamma, x \pm b]$ in \mathscr{U} .

(3)
$$\mathscr{V}_{\pm} \subset \begin{bmatrix} BE^{-1} & 0\\ 0 & 1 \end{bmatrix}$$
 int $N_{\pm}' \cap$ int $N \times (x \pm \gamma)$.
Now

$$U_{-} \cap U_{0} \cap U_{+} \cap U\left(Q_{-}, \begin{bmatrix} B & 0 \\ 0 & 1 \end{bmatrix} \circ G | \mathscr{P}_{-}, \mathscr{V}_{-}\right)$$
$$\cap U\left(Q_{+}, \begin{bmatrix} B & 0 \\ 0 & 1 \end{bmatrix} \circ G | \mathscr{P}_{+}, \mathscr{V}_{+}\right)$$

is open dense in SO(n), so the intersection of this set with 0 is non-empty; let E be in that intersection. We apply Lemma 1 to $G_{\pm} = G|\mathscr{P}_{\pm}: \mathscr{P}_{\pm} \rightarrow \zeta^{-1}(x \pm \gamma)$ and we see that we may assume in addition that there exist $E \circ G_{\pm}$ -simple neighborhoods $N_{\pm}^{\prime\prime}$ of Q_{\pm} in \mathscr{V}_{\pm} . Finally then, the inclusion

$$(g^{-1}[x - \epsilon, x + \epsilon], g^{-1}\{x - \epsilon, x + \epsilon\}) \subset \left(\begin{bmatrix} BE^{-1} & 0\\ 0 & 1 \end{bmatrix} N_{-1} \\ \cap \sigma^{-1}[x - \epsilon, x - b] \end{bmatrix} \cup N_{-}^{\prime\prime} \times [x - b, x - a] \cup \begin{bmatrix} BE^{-1} & 0\\ 0 & 1 \end{bmatrix} N_{-1} \\ \times [x - a, x + a] \end{bmatrix} \cup N_{+}^{\prime\prime} \times [x + a, x + b] \cup \begin{bmatrix} BE^{-1} & 0\\ 0 & 1 \end{bmatrix} N_{+1} \\ \cap \sigma[x + b, x + \epsilon], \begin{bmatrix} BE^{-1} & 0\\ 0 & 1 \end{bmatrix} (N_{-1} \cap \sigma^{-1}(x - \epsilon)) \cup (N_{+1} \\ \cap \sigma^{-1}(x + \epsilon)) \right)$$

is a simple homotopy equivalence. But then $E \in V([x - \epsilon, x + \epsilon], F, C, \mathscr{U})$. Thus $V([x - \epsilon, x + \epsilon], F, C, \mathscr{U})$ is dense; since it is already open, the lemma is proved.

Proof of theorem. By Lemmas 3 and 4, we may write g(M) as a finite union of consecutive intervals $[\alpha, \beta]$ such that for each $[\alpha, \beta]$ the set $V([\alpha, \beta], F, C, \mathscr{U})$ is open and dense in SO(n). It follows that their intersection is open and dense, so we may choose B in their intersection so that $\begin{bmatrix} B & 0 \\ 0 & 1 \end{bmatrix} \cdot C$ is arbitrarily close to C and there exists a $\begin{bmatrix} B & 0 \\ 0 & 1 \end{bmatrix} \circ C \circ F$ -simple neighborhood of M in \mathscr{U} . Thus $U(M, F, \mathscr{U})$ is dense. Since it is already open, the theorem is proved.

COROLLARY (Proposition 4). If $n \ge 5$ and M is an orientable closed compact smooth n-manifold that immerses smoothly in \mathbb{R}^{n+1} , then there exists an M(n)oriented manifold strongly cobordant to M.

Proof. By taking the normal bundle of a smooth immersion $f: M \to \mathbb{R}^{n+1}$, we obtain a smooth open (n + 1) manifold $\mathcal{O} \supset M$ and a smooth immersion $F: \mathcal{O} \to \mathbb{R}^{n+1}$. By the theorem, there is $C \in SO(n + 1)$ such that there exists $C \circ G$ -simple neighborhood N of M in \mathcal{O} . Then N is an S(n + 1) manifold and ∂N is an M(n) manifold. Moreover $\partial N = \partial_0 N \cup \partial_1 N$ and $N = N_0 \cup N_1$ with N_0 an s-cobordism from M to $\partial_0 N$. Since $n \geq 5$, N_0 is a strong cobordism and the corollary is proved.

Finally, we sketch the proof of Proposition 5 since the tilting details are fairly similar in technique to those of Theorem 3.

PROPOSITION. Let Σ be a smooth homotopy n-sphere that bounds a parallelizable manifold. Then there is a polyhedron $P \subset \mathbb{R}^{n+2}$ that is an M(n) manifold strongly cobordant to Σ .

Proof. If $n \leq 6$ there is nothing to prove so we may assume $n \geq 7$. We have n = 2r - 1 and $\Sigma = \partial X$ where X consists of an (n + 1) disk with r-handles attached so that X is parallelizable. We may immerse X in \mathbb{R}^{n+1} so that the disk lies in $\mathbb{R}^n \times (-\infty, 0]$ and contains $\mathbb{D}^n \times (-1, 0]$, so that each handle H is embedded and near $D^n \times 0$ coincides with $\Gamma_H \times [0, \infty)$ for some copy $\Gamma_{H} \subset \text{int } D^{n} \text{ of } S^{r-1} \times D^{r}$. We may assume that two handles intersect crosswise in a disjoint union of copies of $D^r \times D^r$ so that the double point manifold of the immersion $F: X \to \mathbb{R}^{n+1}$ consists of a disjoint union of copies of $D^r \times$ D^r , which are pairwise interchanged by the double point involution. We may assume further, by cutting the embedded handles with affine *n*-spaces parallel to $\mathbb{R}^n \times 0$ that there exist $\Gamma_1, \Gamma_2, \ldots, \Gamma_k \subset X$ such that each $F(\Gamma_i)$ is the translate of some Γ_H , and such that each component of $X - \Gamma_1 - \Gamma_2 - \ldots$ $-\Gamma_k$ contains exactly one component of the double point manifold. For each pair of components of the double point manifold paired by the double point involution, assign +1 to one member and -1 to the other. Thus we may assign +1 or -1 to the corresponding component of $X - \Gamma_1 - \ldots - \Gamma_k$; to obtain a smooth embedding $X \subset \mathbb{R}^{n+2}$ we may find a C^{∞} function $h: X \to \mathbb{R}$, positive on each +1 component of $X - \Gamma_1, - \ldots - \Gamma_k$ and negative on each -1 component. Then $x \to (F(x), h(x))$ is an embedding. Instead we let $\mathscr{O} = \operatorname{int} X$ and we identify Σ with the boundary of an open collar of X. We may assume that Σ meets each Γ_i transversally in a copy of $S^{r-1} \times S^{r-1}$. After suitable tilting, we find $F | \mathcal{O} \cap \Gamma_i$ -simple neighborhoods N_1, \ldots, N_k of $\Sigma \cap \Gamma_1, \ldots,$ $\Sigma \cap \Gamma_k$. These give rise to relative F-simple neighborhoods $N_1 \times [a_1, b_1], \ldots,$ $N_k \times [a_k, b_k]$ of $(\Gamma_1 \times [a_1, b_1]) \cap \Sigma, \ldots, (\Gamma_k \times [a_k, b_k]) \cap \Sigma$ respectively, where $[a_i, b_i]$ is a suitable closed neighborhood of x_i , and $\Gamma_i \subset \mathbb{R}^n \times x_i$. After another tilt, we may suppose that we have as well a relative F-simple neighborhood M of $\Sigma \cap [\mathcal{O} - \Gamma_1 \times (a_1', b_1') - \ldots - \Gamma_k \times (a_k', b_k')]$ where (a_i', b_i') is a suitable open interval containing $[a_i, b_i]$. Finally, we have relative F-simple neighborhoods $R_1 \times [a_1', a_1], \ldots, R_k \times [a_k', a_k]$ of $\Sigma \cap (\Gamma_1 \times [a_1', a_1]), \ldots,$ $\Sigma \cap (\Gamma_k \times [a_k', a_k])$ respectively, and $L_1 \times [b_1, b_1'], \ldots, L_k \times [b_k, b_k']$ of $\Sigma \cap (\Gamma_1 \times [b_1, b_1']), \ldots, \Sigma \cap (\Gamma_k \times [b_k, b_k'])$ respectively. We may assume that each $R_i \times a'_i$ and $L_j \times b'_j$ is contained in the interior of a corresponding *n*-facet of M, and that $R_i \times a_i \cup \text{int } N_i \times a_i$ and $L_i \times b_i \subset \text{int } N_i \times b_i$. Then

$$(\bigcup \{R_i \times [a_i', a_i] \cup N_i \times [a_i, b_i] \cup L_i \times [b_i, b_i'] | i = 1, \dots, k\})$$
$$\bigcup M = Y$$

is an *F*-simple neighborhood of Σ , and its boundary is strongly cobordant to Σ . Notice that each component of *M* is in some component of $X - \Gamma_1 - \ldots$ $- \Gamma_k$ and so inherits +1 or -1. Let M_+ be the union of all those components inheriting +1 and M_- the union of all those inheriting -1. Each R_i and L_j is in one of these components and so inherits a + 1 or a - 1, which we write as $\mathscr{O}(R_i)$ or $\mathscr{O}(L_j)$. Define a map $G: Y \to R^{n+1} \times R$ by G(x) = (F(x), +1) if $x \in M_+$ and G(x) = (F(x), -1) if $x \in M_-$, and G(x) = (F(x), 0) if $x \in$

$$\bigcup \{N_i \times [a_i, b_i] | i = 1, ..., k\}. \text{ For } (x, t) \in R_i \times [a_i', a_i], \\ G(x, t) = (F(x, t), 0) + \left(0, \frac{\sigma(R_i)}{a_i' - a_i} (t - a_i)\right)$$

and for $(x, t) \in L_j \times [b_j, b_j']$, set

$$G(x, t) = (F(x, t), 0) + \left(0, \frac{\sigma(L_j)}{b_j' - b_j} (t - b_j)\right).$$

Then G determines an affine isomorphism from ∂Y to $P = G(\partial Y)$, and P is a subpolyhedron of \mathbb{R}^{n+1} . The proof of Proposition 5 is complete.

References

- 1. J. Cerf, Topologie de certaines espaces de plongements, (Gauthier-Villars, Paris, 1961).
- 2. M. W. Hirsch, On combinatorial submanifolds of differentiable manifolds, Comment. Math. Helv. 36(1962), 103-111.
- **3.** N. H. Kuiper, On the smoothings of triangulated and combinatorial manifolds, pp. 3-22, Differential and Combinatorial Topology (Princeton).
- 4. R. Thom, Les classes caracteristiques de Pontrjagin des varietes triangules, pp. 54-67, Symposium Internacional de Topologia Algebraica (Mexico, 1966).

The Pennsylvania State University, University Park, Pennsylvania set