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ON A THEOREM OF KUIPER 

ROBERT WELLS AND LUIZ A. FAVARO 

1. I n t r o d u c t i o n . Let Aw+i be the s tandard (n + 1) simplex with its s tan
dard tr iangulation. By the Generalized Poincare Conjecture, if w ^ 5 and 
2n is a smooth homotopy w-sphere, then there exists a smooth tr iangulation 

/ : K —> 2W, where K is a suitable subdivision of dAn+i. On the other hand, 
in [3], N . Kuiper proves the following theorem. 

T H E O R E M (Kuiper) . If Xn is a smooth homotopy n-sphere and there exists a 
smooth triangulation f : dA„+i —> 2W, then 2W is diffeomorphic to the standard 
sphere. 

The object of this paper is to give an easier proof of Kuiper 's Theorem, and 
to extend tha t theorem in a ra ther special sett ing. To arrive a t t ha t sett ing, 
we define a subset S(n + 1) C Rn+1 = Euclidean (n + 1)-space by induction 
on n: For n = 0 we set S (I) = [0; oo ) ; assuming S(n) C Rn has been defined, 
we set 

S(n + 1) = (5(«) X [0, 1]) U Rn X ( - oo, 0] C Rn X ^ = i ^ + 1 . 

The set 5 ( » + 1) is an (n + l)-submanifold of Rn+1 and we call it the solid 
model in dimension n + 1. We set Af(?z) = dS(n + 1), and we call M{n) 
the model in dimension n. Let ^é(n) be the pseudogroup defined by 

*Jit(n)-= {<p\<p : [/ —> ^>(f/) is a homeomorphism, [ /and <p([/) are open inM(n), 
and <̂  extends to an affine isomorphism of Rn+1\. Similarly, let Sf (n + 1) be the 
pseudogroup defined by $f (n + 1) = {(p\cp : U —> <p(U) is a homeomorphism, 
U and <p(U) are open in S(n + 1), and <p extends to an affine isomorphism of 
7 ^ + 1 j . Then we say tha t an M(n) manifold Pis an n-manifold \P\ together with a 
maximal at las SP modelling \P\ on M(n) with coordinate transformations in 

Jé(n)\ thus P = ( |P | , SP). Similarly, an S(n + 1) manifold X is an (w + 1)-
manifold \X\ together with a maximal a t l a s 3 ? modelling \X\ on S(n + 1) with 
coordinate transformations in ff (n + 1); thus X = (\X\, 3T). Clearly the 
boundary of an S(n + 1) manifold is an M(n) manifold. In the usual cate
gories, every closed manifold is the boundary of a manifold, bu t since the 
product of an M(n) manifold with [0, 1) does not appear to have a canonical 
S(n + l ) - s t ruc ture , it is not clear t ha t every M{n) manifold is the boundary 
of some S(n + 1) manifold. T o repair this deficiency, we introduce the notion 
of a sided M(n) manifold. T o begin with, for x G M{n) we say t ha t dim (x) ^ r 
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if there exists an affine r-plane H such tha t x £ int# (H C\ M(n)), and we 

set dim (x) = max {r\ dim (x) ^ r} . If P is an M in) manifold and y Ç P , we 

set dim (3/) = dim (<p(x)) where y 6 U and (£/, <p) £ ^ is a char t of P . 

Clearly dim (y) is well defined. Then we set Pr = {y Ç P | dim (3/) ^ r j . 

Clearly 0 = P " 1 C P° C . . . C P " = P is a filtration of P by closed subsets; 

pr _ p r - i j s a n r manifold and ( P r — P7"-1)7* = 0 for i < r. Suppose 

y e Pn~l and ( [ / , <?), (V, $) £ ^ with y Ç £/ H F. Then the homeomorphism 

. - 1 

<p(ur\ v) ^0<^ > ^ ( t / n 7) 
extends to a unique affine isomorphism yl : P w + 1 —> P w + 1 and for W a suffi
ciently small open neighborhood of <p(y) in Rn+1, we will have either 

A (int 5(w + 1) nW) C int 5 ( » + 1) H 4 (W) 

or 

,4 (int S O + l ) H IT) C ^ W - ^ 0 + 1). 

In the first case we set s(\//, <p) = + 1 and in the second case we set s(\//, if) = 
— 1. In the s tandard way, the function 5 determines a { + 1 , —1 {-bundle c ( P ) 
over P n _ 1 . If this bundle is trivial, we say tha t P is sideable; in tha t case a 
section 5 ^ of P is a side and the other section —Sf is the opposite side. A side-
able M(n) manifold P together with a side S^ is called a sided M in) manifold] 
we will abuse notation sometimes by writing (P,<50 = P and —P = (P , —S/*). 
Clearly, if X is an S (» + 1)-manifold and P = dX, then P inherits a side from 
X. Examples of sided M(n) manifolds are dAn+1, d[-l, l]n+\ and d [ - l , l]n+1/ 

( - 1 ) . s 

If X is an S(n + 1) manifold, then the ring 

Cœ(X) = {f:X->R\fo ^ : <p(U) -+R is C°° for any (<̂ , £7) Ç ^ J 

is well defined. If P is an Af («) manifold, we say tha t an open r-facet of P is 
a component of P r — Pr~l and a closed r-facet is the closure of an open /--facet; 
a closed r-facet inherits an S{r) s tructure, and with tha t s t ructure we call it 
an r-facet. Let the ring yrn(P) = {/ : P ->R\f\F£ Cco(P) for P any face t o f P J . 
Similarly, if TV is a smooth manifold or an S(k) manifold, we may define 
C°°(X, TV) and ^ m ( P , N). For y G P , let ^ „ ( P ) be the set of derivations of 
y?m{P) a t y. I t follows from Thorn's Lemma below tha t 

ym{M{n)) = {/ : M ( « ) -> R\f = g\M(n), g : P w + 1 -> P is C°°j ; 

then for x £ M(n) we have tha t @x(M(n)) is a real vector race of dimension 
n + 1 if dim (x) :g w — 1 and of dimension n if dim (x) = n. If (U, ip) is a 
char t of P with y £ U, then we define rf^(y) : @y{P) -> ^ ( ? / ) ( M ( w ) ) in the 
usual way; clearly d<p(j) is an isomorphism, so ^y{P) is a real vector space of 
dimension n + 1 if y Ç P71-1 and of dimension n if 3> Ç P — P w _ 1 . For x £ 
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M(n) we may identify the tangent cone to M{n) a t x with a subset TCX(M{U)) 
of 3ïx{M{n))', then for y £ P and (£/, <p) as above we set 

rCy(P) =d<p(y)TC9(w)(M(n)), 

and rCy{P) is well defined. Then rCy(P) is a subcone of &y(P), piecewise 
linearly isomorphic to Rn. For N a smooth manifold and / Ç y?m(P} N), the 
linear map df (y) : 2) y{P) —> ry(N) is defined in the usual manner . We will 
say t h a t P —> TV smooths P to N if 

i ) / G ^ r o ( P , TV), 

ii) / is a homeomorphism, and 
iii) df (3/) : T C „ ( P ) - » ^(TV) is 1 - 1 onto. 

In t h a t case we will say tha t P subdivides TV, t h a t P is a subdivision of TV, and 
tha t TV is a smoothing of P . We may extend the notion of subdivision to a pair 
of M(n) manifolds. If P and Q are M(n) manifolds, we set 

Aff ( P , Q) = {/ : P -> CI the map «,(£/ n / " 1 ( 7 ) ) ^ 0 / ° ^ > * ( 7 ) 

extends to an affine map Rn+ —» P w + for ([/ , <p) a char t of P and 

( 7 , i/0 a chart of 0} . 

For such / , the map df (y) : rCy(P) -> rCm{Q) is defined. If / Ç Aff (P , Q) 
we will say tha t if subdivides Q if 

i) / is a homeomorphism, 
ii) for each open facet 0 of P there is an open facet 0' of Q with / ( 0 ) C 0', 

and 

iii) df (y) : T C ; ( . P ) - » TC / ( Î , ) ((?) is 1 - 1 onto. 

If (P , ^ ) and (Q,J~) are sided M(w) manifolds, a n d / : P - » Q subdivides Ç, 
t h e n / pulls the s ide^ 7" of Ç back to a s i d e / * ^ 7 " of P . If / * J r " = y , we say 
of the map / tha t it M\n)-subdivides (Q, J^~), and we say tha t (P , Sf) is an 
M (n)-subdivision of (Q,J^ ). I t is straightforward t ha t if g : P —> () subdivides 
or M{n) subdivides Q and / : Q —> TV smooths Q, then / o g smooths P . T h e 
natura l equivalence relations on M(n) manifolds are M{n)-equivalence and 
equivalence: (Q,^~) is M (n)-equivalent to {Qf,^f) if there exists (P,S^) t ha t 
is an Tkf(w) subdivision of both (<2, ̂ ~ ) and (Qf, 3^') ; the definition of equiv
alence is similar except tha t sides do not enter. Neither of these relations is 
very t ractable, so we will introduce a coarser (by Proposition 3 below) equiv
alence relation on a certain class of sided M{n) manifolds. T o introduce the 
coarser equivalence relation, wre let 

^é(n) = {<p\(p: U—><p(U) i sadiffeomorphismand U, (p(U) open C M{n)\ 

and Sf(n + 1) = {<p\(p : U —* <p(U) is a diffeomorphism and U, y{U) 

open C S(n + 1)}. 

Then smooth M(n) manifolds are those modelled on M(n) with coordinate 
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t ransformations i n ^ ( w ) and smooth S(n + 1) manifolds are those modelled 
on S(n + 1) with coordinate transformations in ^ ( w + 1). As in the affine 
case above, we may introduce the dimension filtration, siding, facets, tangent 
cones, smoothing and subdivision. Moreover, an M(n) or S(n + 1) manifold 
relaxes to a unique smooth M(n) or smooth S(n + 1) manifold, and closed 
smooth manifolds are automatical ly smooth M in) manifolds. If P and Q are 
compact sided smooth M(n) manifolds, we will say tha t P is strongly cobordant to 
Q if there is a smooth 5 (n + 1) manifold X such tha t X = P J J — Q, and X\s PL 
isomorphic t o P X [0,1]. Let ^ = {P\P is strongly cobordant to a smooth mani
fold } .Suppose P G *$ and t ha t X is a strong cobordism from P to a smooth mani
fold iV. There is a smooth vector field 4̂ on X, transverse to P. By the Cairns 
Hirsch Theorem, there is a smooth submanifold Nf C int X which is transverse to 
A. We may push P into the region of X between N' and N by means of a solution 
of A. T h u s we have a copy Pf of P between N and iV. Let F be the closure of 
the region between N and P ' , and let Z be the closure of the region between P 
and P'. Then F defines a strong cobordism from —P to N and Z from P to P . 
Thus , writing ^ for strong cobordism we have P f ^ implies — P Ç ^ and 
P C ^ implies P ~ P. Suppose X is a strong cobordism from P to (X As above, 
we may insert a smooth manifold N in int X (transverse to a smooth field 
transverse to P ) . We may pu t a copy P ' of P between TV and Q, and a copy 
<2' of Q between P and TV so tha t the closure of the region between P' and Q' 
is a strong cobordism from P' to Q'. But with the inherited sides, it is a strong 
cobordism from —P to — Q; t ha t is, a strong cobordism from Q to P . T h u s 
P ^ Q implies Q ~ P. Finally, if P ^ Q via X and Q ~ T via F, we may pu t 
smooth manifolds N and TV7 in int X and int F respectively so tha t the closures 
Xo, Xi, F0 , Y\ of the regions between P and iV, between N and <2, between Q 
and TV' and between N' and P are strong cobordisms. From Proposition 3 
below we conclude tha t N and N' are dififeomorphic. Then glueing X0 and Y\ 
smoothly by a difïeomorphism N —* N', we obtain a strong cobordism Z from 
P to P. T h u s ~ is transit ive. Finally, if P ^ iV via X with TV smooth, X W^ X 
is a strong cobordism from P to —P. Thus ^ is an equivalence relation on *$ 
and P ~ - P for P Ç <£\ 

Now, the theorem we wish to prove is most natural ly stated in ^y^ proposi
tions. 

PROPOSITION 1. If two compact smooth manifolds are strongly cobordant to the 
same M(n) manifold, and n ^ 6, then they are diffeomorphic. 

PROPOSITION 2. Let P be a sideable M in) manifold, and M a smooth manifold. 
Then there is a smoothing from P to M if and only if P and M are strongly 
cobordant. 

PROPOSITION 3. If two smoothable sided M\n) manifolds are M(n)-equivalent, 

then they are strongly cobordant. 

PROPOSITION 4. If n ^ 5 and M is an orientable compact closed smooth n-
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manifold smoothly immersible in Rn+l, then there exists an M(n) manifold strongly 
cobordant to M. 

P R O P O S I T I O N 5. If the smooth compact closed homotopy n-sphere 2 bounds a 
smooth compact parallelizable manifold, then there exist a polyhedron P C Rn+2 

which is an M(n) manifold strongly cobordant to 2 . 

From these propositions we conclude t ha t for each smooth homotopy n-
sphere 2 , the classes 

K(2) = {<2|<2 is an M{n) manifold, Q strongly cobordant to 2} 

are each non-empty, and mutual ly disjoint. Also, if 2 is a non-s tandard 
bPn+i sphere, then the polyhedron P supplied by Proposition 5 supplies two 
examples: 1) the cone CP is a polyhedron, PL isomorphic to In+l, bu t not 
smoothable, and 2) the suspension SP = CP W P CP is a polyhedron, PL iso
morphic to dln+1, bu t not smoothable. 

2. Proofs . Proposition 1 is the result t h a t an M(n) manifold has a t most one 
diffeomorphism class of smoothings. I t may be obtained as a corollary of a 
"Bounda ry Collar Theorem" for smooth S(n + 1) manifolds, and t ha t in turn 
is an immediate consequence of a lemma of Thorn [4]. In addit ion, we will 
require a simple proposition about S(n + 1). 

PROPOSITION 6. Suppose p £ S(n + 1) with dimS(n+i)P = r = n. Then there 
is a basis eY, . . . , en+i of rp(R

n+1) such that the n-facets of S{n + 1) containing p 
are Fu . . . , Fn+1-r with rp{Ft) = span (eu . . . , eh . . . . en+1). 

Proof. T h e proposition is t rue for n = 0. We prove it inductively in dimen
sion n + 1. We may write S(n + 1) = S = T X [0, 1] \J Rn X ( - 0 0 , 0] with 
T = S(n). If d\ms(p) = n, the proposition is immediate . If d i m s ( ^ ) = r < n, 
then p = (q, t) with q G T and 0 ^ / ^ 1. If 0 < / < 1, then dims(p) = 
1 + dimT(q). Let ei , . . . , en' be the basis of Tq{Rn) given by the proposition 
in dimension n. Let eiy . . . , en be the parallel vectors a t p = (q, t) and let en+1 

be the vertical vector a t p. Then near p, the w-facets are Fi X [0, 1], . . . , 
Fn-(r-i) X [0, 1] where TV, . • . , Fn-(T-i) are the (n — 1)-facets of T con
taining q, and clearly we have TP(F/ X [0, 1]) = span (ei, . . . , eu . . . , en+i). 
If / = 0 or 1, then dims(q , t) = dimT(q) ; let ei , . . . , en' be the basis given by 
the proposition in dimension n, for Tq(R

n). Let e\, . . . , ên+r-i, . . . , en+i be the 
parallel basis a t p, and let en-r+i be the vertical vector there. Then , near p, 
the n-facets of 5 are Fi X [0, 1], . . . , Fn-/ X [0, 1], Fn_r+1 where Fn_r+i = T 
1 if / = 1 and Fn-T+1 = clos (7?w - T) X 0 if / = 0. But TP(F/ X [0, 1]) = 
span Oi, . . . , eu . . . , en+1) and rp(F n_ r + i ) = span (eu . . . , 4 - r+ i , • • • , ^ + i ) , 
so the proposition is proved. 

PROPOSITION 7 (Thorn's Lemma) . Let eu . . . , en+1 be a base of Rn+1, let 
C C t/{span (d, . . . , ei, . . . , ew + i) | l ^ i S r), and let f : C —> R be such that 
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each restriction / | C P \ span {e\, . . . , eu . . . , en+i) is C°° for 1 ^ i ^ r. jTAew 
/ftere is a Cœ function F : P n + 1 —» J? which restricts to f. 

Proof. T h e proof proceeds by induction on r. For r = 1, there is almost 
nothing to prove. Suppose the lemma has been proved for r — 1. Then 

g =f\Cr\ C 7 { s p a n ( « l f . . . , g f f . . . f ^ + 1 ) | l ^ i ^ r - 1} 

extends to a C°° function G : Rn+1 —» P . T o e x t e n d / , it suffices/ — G\C. Thus 
we may assume t h a t f\C C\ span (e\, . . . , eit . . . , en+i) = 0 for 1 ^ i < r. 
But then we may assume in addition span {e\, . . . , êt, . . . , en+i) C C for 
1 <; i < r. And in this case F(xu . . . , xn+i) = / ( x i , . . . , x r_i, 0, x r + i , . . . , xn+i) 
is the desired extension, and the lemma is proved. 

T H E O R E M 1. Suppose Mi and M2 are smooth S(n + 1) manifolds; Ni and N2 

are components of dM\ and dM2 respectively; andf : iVi —> N2 is an isomorphism 
of smooth sided M(n) manifolds. Then f extends to an isomorphism of smooth 
S(n + 1) manifolds from an open neighborhood of Ni in Mi to an open neighbor
hood of N2 in M2. 

Proof. Suppose x £Ni with d i m ^ x ) < n. Then there exist charts (£/, cp) of 
Ni a t x and (V, $) of N2 a t / ( x ) such t h a t / ( f / ) C V and <p(U) C M{n) and 
^ ( F ) C M(n). Then d i m ^ x ) = dimM(w)<^(x) = dimM(n)\p(f(x)) a n d / i n d u c e s 
a smooth map g : <p(£/) —> ^ ( F) ; t ha t is, g is C°° on each facet. By Proposition 
6, there is a basis (ei, . . . , era+i) of Rn+1 a t <p(x) such tha t the hyperplanes 
spanned by the ^-facets of <p(U) a t <p(x) are span (d, . . . , eit . . . , en+i) for 
1 ^ i S r. Regarding (ei, . . . , en+i) as a basis of T<p(X)Rn+l, we see t ha t for 
i = 1, . . . ,n + 1 the vectors dg(<p(x))ei = e( are defined, tha t {eî, . . . , en+/) 
is a basis of Rn+1 a t g(<p(x)) = iK/ (x ) ) , and tha t the hyperplanes spanned by 
the ^-facets of yf/{V) a t g(<p(x)) are span (e / , . . . , e/, . . . , ew+/) for 1 ^ i ^ r. 
Now ^(£7) C £/{span \eu . . . , éf, . . . , e„+i)|l S i S r\ and g\<p(U) C\ 
span (^i, . . . , eu . . . , en+i) is C°° for 1 ^ i ^ r. By Thorn's Lemma, there is 
a C°° extension G : P w + 1 - » Rn+1. Returning to the charts ( [ / , <p) and ( F , i£), 
we may assume tha t there exist charts (0, <J>) of Mi a t x and (P , >F) of M2 a t 
/ ( x ) such tha t <ï>(0) C 5(w + 1), and 0 H A^ = U with $ | 17 = <p, and simi
larly for (P , >F) and ( F , \f/). By means of the Euclidean metric and its exponen
tial map we see tha t it follows from the hypothesis t h a t / preserves siding tha t 
G ( $ ( 0 ) ) C * ( P ) so tha t / | U extends to a C°° map 0 -> P . I t follows tha t there 
exist open neighborhoods JVi and J/2 of Ni71'1 and 7V2

W_1 in Afi and M2 

respectively, and a C°° map P ' i ^ / —>JV2 extending /|«/^i P\ Ni . Since 
x G A/y"-1 was arbi t rary and dg(<p(x)) carried the base e to the base e', it 
follows tha t dFf (x) is non-singular for x Ç A/'i^-1. Thus we may assume tha t P r 

is a diffeomorphism^K/ -^J/2. Finally, by means of open collars of the open 
w-facets we see tha t F' may be extended to a diffeomorphism 
where JVi is an open neighborhood of iV* in M{. The theorem is now proved. 

COROLLARY (Proposition 1). If two compact smooth manifolds are strongly 
cobordant to the same M(n) manifold and n ^ 6, then they are diffeomorphic. 
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Proof. Let the two smooth manifolds be TVi and TV2. We are assuming that Ni 
is strongly cobordant to the M{n) manifold TV and t h a t TV2 is s trongly co-
bordan t to ±TV. Replacing TV2 if necessary with — TV2, we may assume t h a t 
Ni and N2 are strongly cobordant to TV. Let Mt be the strong cobordism from 
Nt to TV. By Theorem 1, the identi ty map TV —> TV extends to a diffeomorphism 

where ^Vi is an open neighborhood of TV in Mt. By Siebenmann's Collaring 
Theorem, we may find A1 compact CZ^Vi such t ha t dA\ = TVUTV/ with TV/ a 
smooth boundary of A\ and TV/ = irJVi — A\ d^Vi — Ax a homotopy 
equivalence. We may assume tha t M\ — A\ is a smooth s-cobordism from 
TV/ to Ni. Then TV/ and TVi are diffeomorphic by the /^-cobordism theorem. 
Passing to PL s t ructures, we see t ha t Ai is an s-cobordism from TV to TV/, so 
<p(A\) = A2 is an s-cobordism from TV to <?(TV/) = TV/. B u t since M2 is an 
5-cobordism from TV to TV2, it follows t ha t M2 — A 2 is a smooth s-cobordism 
from TV2

r to TV2. T h u s TVi and TV2 are diffeomorphic, and the corollary is proved. 

Next we obtain Proposition 2 and half of Proposition 3 as corollaries of a 
theorem on subdivision of smooth M{n) manifolds. Notice t ha t subdivision 
becomes smooth subdivision upon relaxing M(n) s t ructures to smooth M{n) 
structures, and tha t if the m a p / : P —> TV smooths P to TV, then it (smoothly) 
subdivides TV. 

T H E O R E M 2. Suppose M is a compact sided smooth M{n) manifold, TV is a 
smooth manifold, and f : M —» TV is a map that smoothly subdivides TV. Then 
M and TV are strongly cobordant. 

Proof. Suppose ( U, <p) is a char t of M and 7 : TV —> (0, 00 ) is a function on 
TV. Let r ( 7 ) : TV -> TV X (0, 00) be the graph of 7, and for X C TV, let 
L(y){X) = {(x, t)\x G X, t ^ y(x)}. Then we have a bisection g : (p(U) —> 
dL(y)((p(U)) defined by g = T(y) ofo <p~1. We will say t ha t 7 is admissible 
over (U, <p) if g extends to a diffeomorphism G : V —> V where V is an open 
neighborhood of <p(U) in S(n + 1) and V is an open neighborhood of 
dL(y)(V{U))mL(y)(<p(U)). 

LEMMA 1. Suppose p Ç M(n). Then there is an open set of n-planes H through 
p such that the orthogonal projection TTH : Rn+l —> H carries a neighborhood 0 of 
p in M(n) homeomorphically onto a neighborhood 0' of p in H so that 7r#|0 
smoothly subdivides 0'. 

Proof. The lemma is clear for n = 1. T h e existence of such planes may be 
established inductively, and the openness is clear. 

(liven such a plane H, there is a (unique) unit normal uH a t p which points 
into S(n + 1). Then there is a continuous function yH : 0 —> R such tha t 
{x + yH(x)uH\x Ç 0r( = 0 and such tha t near p the two sets S(n + 1) and 
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{x + tuH\x G 0', ^ 7H(%)\ are equal. Since the manifold M is M(n) oriented, 
we have an atlas s/ of charts of M such tha t (U, ç>) £<$/ implies <p(U) C M(n) 
and such tha t (U, <p), ( F , $) G s/ with U C\ V C\ Mn~l 9^ <j> implies t ha t the 
map 

<p(un v) -?-* ur\ v-^-> ^{ur\ v) 
extends to a diffeomorphism from an open set of S(n + 1) to an open set of 
S{n + 1). Let (U, <p) G s/ and x G Mn~l C\ U. Consider the composition 

<p(U) - ^ -> U -£->f(U) open C N. 

Since J o <p~l is smooth on <p(U)f by Thorn's Lemma it extends to a C°° map 
F : F ' - > / ( £ / ) . The differential dF(<p(x)) : T^R^1 -> T,(X)N is onto. By 
Lemma 1, we may choose an w-plane H through p = <p(x) so t ha t irH : 0 —-> 0' 
is a homeomorphism, 0, 0' C <p(U), and ^(/ r | if)(<^(x)) : T^H —> rf(X)N is an 
isomorphism. Thus we may assume tha t T7 : 0 —> 0' is a diffeomorphism. Let 
IF be an open neighborhood of (p(x) in Rn+1 on which F is defined. We may 
assume W is small enough tha t dim ker dF(y) = 1 for y G IF, and (by reducing 
0 and 0' about <p(x)) t ha t 0' = IF P\ 7J. Then ker d/7 is spanned by a smooth 
unit vector field with solution as; we may assume tha t <rs(y) is defined for 
|s| < e for some e > 0 and y G 0 W 0', and tha t for y G 0' there is /(y) such 
t ha t |/(;y)| < e and <rt(y)y G 0. Let 7r be the map 71- : 0 —» 0' defined by ir{y) = 
0"«(y):y; we may assume ir is a smooth homeomorphism. Notice t ha t the function 
71 : 0' —> i? defined by 71 : y —> — £(7r -1(j)) has the property t ha t 0 = 
Wyi(y)(y)\y G 0'} and that , after reversing the direction of the vector field 
if necessary, {at(y)\y G 0', yi(y) ^ t, ct(y)} defined is an open neighborhood 
V of 0 in S{n + 1). Now define a function y2 : F(O') -> 2? by 72(^(3^)) = 
7 i (y ) . By reducing 0' again, to a relatively compact subset, we may assume 
tha t for some c > 0 we have 7 = 72 + c : ^ (0 ' ) —» (0, 00). I t is straight
forward to see tha t T7 o 7r = / O (<^-1|0). Then it is clear tha t 7 is admissible 
over ( ^ ( O ) , <P\<P~1(0)) with G defined by G( , (? ) ) = (F(y),t + c) îor yi(y) ^t 
with at(y) defined and y G 0'. Since we may assume (<£_1(0), ^|<^_1(0)) G ^f, 
we have obtained Lemma 2 (notice tha t it is immediate for x G M — Mn~l)\ 

LEMMA 2. Let S$ be the orientation atlas of M chosen above. Then for any 
x G M there exist a chart at x, (U, p) G se, and 7 : TV —> (0, GO) admissible 
over (U, (p). 

This lemma states tha t locally admissible functions exist. We wish to glue 
locally admissible functions to obtain globally admissible functions. For tha t 
purpose we use Lemma 3: 

LEMMA 3. Suppose 7, 7 ' : TV —> (0, 00 ) are both admissible over (U, <p); then 
for any x G £/, 7 + 7 ' is admissible over ( F , <p) where x G F open C U. Suppose 
/x : TV —» (0, co ) is C°°. Then py is admissible over (U, <p). 
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Proof. As in the discussion before Lemma 2, by taking V small enough about 
x, we may assume that there exist a n-plane H through <p(x) G M(n), on open 
set W C ^w + 1 containing <p(V) = 0, open subset 0' of H containing cp(x), 
and a C°° extension T7 : W7 —>f(V) of / o <£>_1. As in that discussion, dim ker 
{dF(y)) = 1 îor y £ W so that ker dF is spanned by a C00 unit vector field 
whose direction we may choose so that it points into S(n + 1) on M(n) C\ W; 
we may assume that vector field is transverse to 0 and 0', and we may assume 
that the solution <pt of that vector field is defined for \t\ < e on 0 U 0', that 
for each y G 0 (respectively y G 0') there is t(y) with \t(y)\ < e (respectively 
t'(y) with \t'(y)\ < e) such that <ptiy)(y) G 0' (respectively <pt>iy)(y) G 0). We 
may assume F : 0' —> 7^(0') is a diffeomorphism. Finally, we may assume that 
a map w : J^ —> 0' is defined by 7r(y) = the unique point on 0' that is on the 
integral curve through y. Then w is C00 and 7r|0 : 0 —> 0' is a smooth homeo-
morphism such that F o ir = / o p - 1 . Granted these constructions, let 

G: (W, WC\S{n + 1)) 

-+{G(W),L(y)C\G(W) C (iVX (0, oo),NX (0, oo)) 

be the diffeomorphism defined by G(y) = (F(ir(y))} c + t'(ir(y))) where 
c > 0 is sufficiently large that y = c + V o TT : W -> (0, oo ). Let G : ( f , l f n 
5(w + 1)) —* (G(W), L(y) C\ G(W)) be a diffeomorphism making 7 admis
sible over (F(0f), <p) so that G{y) = (F(y), (F(y))) for y G 0. Consider the 
diffeomorphism G o (G) -1; it satisfies 

G o ( G ) - 1 ^ , 7(2)) = (2, 7(2)) for 2 G F(O'). 

It follows that there is a horizontal vector field A on G(W) such that A = 0 
on G(W) C\ T(y)(F'{0)) and exp A(z, 0 = pr (G 0 (G)"1^, 0 ) , 0 where 
pr : N X (0, 00 )—> iV is the projection (of course, it may be necessary to 
reduce the size of W about <p(x)). Notice that on M{n) C\ W we have 
(exp A) - 1 o G = G = (/ o <p~l) X ( 7 0 / 0 <^_1), and that on all W we have 
pr o (exp A) - 1 o G = F o IT. Thus, replacing G with (exp A) - 1 o G we see that 
we may assume that pr o G = F o T. Doing the same for y' and (£/, <p), we 
see that we may assume pr o G = F o ir. But then G' o G - 1 : (G(W), 
L(y)(F(0'))) -» (G ' ( ^ ) ,L (7 ' ) ( ^ (0 / ) ) ) is a diffeomorphism and G 'o G"1 (z, t) 
= (z, A(z, 0 ) f° r some C°° function A. Since L(y)(F'(Q)) is carried to 
L(7 ,)(i7(0 /)) , we have dth(z, y(z)) > 0 for all z G F(O'). Consider the map 
H(z, t) = (z, t + A(2, /)) defined on G(W). Clearly H is smooth, and at any 
point (z, y{z)) we have dH(z, y(z))dt = adt with a > 0. Since pr o if = pr, 
it follows that dH(z, y(z)) is non-singular for z G F(0'). Thus, there is an open 
set W CW such that 0 C W and such that H : G(W') -> H o G(W") is a 
diffeomorphism; thus H o G : W —» i J o G(W') is a diffeomorphism. But for 
y G A f ( » ) n W' = M ( » ) H W = 0,wehaveiIoG(:y) = H(F(*(y)), yF(w(y))) 
= (Jo ^ 6 0 , 7 ( / o ^Cy))) = (/o ^ (y ) , T(/O ^(y) ) + *(/o ^ ( y ) , 
7 ( / o ^-Hy)))) = ( / o <^~1(3;)) 7 ( / o ^ ( y ) ) + 7 ' ( / o v~lh)))' Similarly one 
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checks t ha t H o G(Wf C\ S(n + 1)) C L(y + ? ' ) (P(O')) so t ha t H o G makes 
7 + yf admissible over (V, <p) where V = f~1(F(0,))} and the first half of 
Lemma 3 is proved. The proof of the second half of Lemma 3 is straight
forward. 

Now Lemmas 2 and 3 fit together with a suitable C°° part i t ion of uni ty of N 
to complete the proof of Theorem 2. 

COROLLARY 1. (Proposition 2). Let P be a compact M(n) oriented manifold 
and N a smooth manifold. Then there is a smoothing from P to N if and only if 
P and N are strongly cobordant. 

Proof. L e t / : P —> N be a smoothing. Relax the M(n) s t ructure on P to a 
smooth M{n) s t ructure . Then / smoothly subdivides N, and Theorem 2 applies 
to imply tha t P and N are strongly cobordant. The other direction is an appli
cation of the Cavins-Hirsch Theorem: Let X be the strong cobordism from P 
(relaxed to a smooth M(n) manifold) to N. There exists a smooth vector field 
transverse to P , and pointing into X along P. By the Cairns-Hirsch Theorem 
there is a smooth compact manifold N' C int X transverse to the field, and 

g 
the solution curves of the field define a map P —* N t ha t smoothly subdivides 
N'. Relaxing further to PL s t ructure, we see tha t X = Xi U X2 where 
Xi C\ X2 = N' and both Xi and X2 are cobordisms, from P to N' and N' to N 
respectively. But we see tha t Xi is PL isomorphic to P X [0, 1] by means of 
the integral curves, and X also is PL isomorphic to P X [0, 1]. I t follows t ha t 
both X and X\ are regular neighborhoods of P , so tha t X2 is PL isomorphic to 
N' X [0, 1]. Then there is a unique smoothing on N' X [0, 1] extending t ha t 
on N' so X2 is diffeomorphic to N' X [0, 1]. Finally, if <p : N' —> N is a diffeo-
morphism, <p of is a smoothing from P to N and the corollary is proved. 

COROLLARY 2 (Proposition 3) . Suppose that P i and P2 are compact sided 
M(n)-manifolds such that each admits a smoothing. If they are M(n)-equivalent, 
then they are strongly cobordant. 

Proof. We may assume tha t there exists a map / : P i —* P 2 which M(n)-
subdivides P2. Let g : P 2 —> N be a map which smooths P 2 to TV. Then g of 
smooths P i to N. By Theorem 2, both P i and P 2 are strongly cobordant to N. 
Since strong cobordism is an equivalence relation, P i and P 2 are strongly 
cobordant , and the corollary is proved. 

T o prove Proposition 4, we need to introduce some constructions and ter
minology. We will say tha t a set of the form [a0, bo] X . . . X [ani bn] C R X 
. . . X R — Rn+l is a hyper-rectangle. Suppose 0 is an (open) (n + 1)-mani
fold and F : 0 —> P w + 1 an immersion. We will say tha t a subset C Ci © t ha t 
P maps homeomorphically onto a hyper-rectangle is an F-hyper-rectangle. 
Then a finite union P of P-hyper-rectangles has an obvious generalized poly
hedral s t ructure making F\P an affine map. 
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Suppose t ha t 0 and F are smooth, and t h a t M is a compact smooth sub-
manifold of 0. An F-simple neighborhood of M will be a finite union N of 
F-hyper-rectangles such t ha t (1) TV is a manifold, (2) M C int TV, and (3) the 
inclusion M C N is a simple homotopy equivalence. For a relative version of 
this definition let f : i^w+1 —> i? be projection on the last factor. Suppose t h a t 
both f o F\M and f o F|dAf are Morse functions with neither a J f i? a 
critical value. Let g = Ç o F\M. Then an F-simple neighborhood of g - 1[a , 0] is 
a finite union of hyper-rectangles in (f o F ) - 1 [ a , £] such t h a t [1) TV is a mani
fold, (2) g~l[a, ft] C int N, where the interior is with respect to the topology 
of ( f o F r t a , 0], and (3) the inclusion (g~l[a, 0], g~l{a} 0}) C (N, N C\ 
(f o F ) - 1 ^ , 0}) is a simple homotopy equivalence. 

I t seems intuitively clear t h a t a t least codimension 1 closed compact smooth 
submanifolds of 0 have F-simple neighborhoods - in fact arbi trar i ly small 
simple neighborhoods. Bu t we will settle for less. 

From now on M is always a compact smooth submanifold of 0. Let °ll be 
an open subset of 0 containing M. Let the pair of rotat ion groups (SO(n + 1), 
SO(n)) act on Rn+\ Rn in the usual way, where Rn = Rn X 0 C Rn+l. Notice 
t ha t for B £ SO(n + 1) the composition BF = B o F is also a smooth im
mersion of 0. Then define the open subset U(M, F,°tt) of SO(n + 1) to be 

{Z3 £ 5 0 (n + l ) | T h e r e is a Z? F-simple neighborhood TV of AT with 

i V C ^ } . 

Instead of proving t ha t arbitrari ly small F-simple neighborhoods of M exist, 
we will prove the following theorem. Then Proposition 4 will follow as a 
corollary. 

T H E O R E M 3. If M is a smooth closed compact n-submanifold of the smooth 
open (n + 1)-manifold 0, and F : 0 —» Rn+l is a smooth immersion, then for °tt 
an open neighborhood of M in 0 the set U(M, F, °tt) is open and dense in 
S0(n + 1). 

Proof. Clearly U(M, F, °ll) is open, and clearly the theorem is t rue in the 
zero dimensional case (n = 0) . From now on we make the inductive hypothe
sis t ha t the theorem has been proved in the {n — 1) dimensional case. 

I t is straightforward to see t ha t [C G S0(n + l ) | f o C o F\M is Morse} is 
an open dense subset of SO(n + 1 ) . We fix C in t h a t set and write gc = 
Ç o C o F\M. For a, 0 £ R such tha t neither is a critical value of gc, write 

V([a, 0], F, C, <%) = \B Ç 5 0 0 - l ) | T h e r e is a J ° o C o F-simple 

neighborhood of gc~l[&, &] in °^\-

LEMMA 1. If & —* Rn is a smooth immersion of a smooth n-manifold 0*, and 
P is a smooth compact n-submanifold of 0 , and 0 is an open neighborhood of P 
in 0 , then U(P, G, 0) is an open dense subset of S0(n). 
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Proof. By the induction hypothesis, U(dP, G, Û) is open dense in SO{n). 
Suppose B G U(dP, G, Û). Then there is a BG-simple neighborhood TV of dP 
in €. Bu t then P C N U P , and N VJ P is a PG-simple neighborhood of P 
in Û, and the lemma is proved. 

LEMMA 2. P/*e intersection of V([a, 0], P, C, <%), V([p, y] , P, C, ^ ) arcd 

7( [a , 7] , P, C, ^ ) w d«we in V([a, 0], P, C, <2T) H 7([0 , 7] , P, C ^ ) . 

P r w / . Suppose tha t B Ç 7([a , 0], P, C, <2T) H 7([0 , 7] , P C, ^ ) and let 0 
be any open neighborhood of B in tha t intersection. Then there exist 

o C o P-simple neighborhoods Ni of gc - 1 [a , P] and 7V2 of gc~
l[fi, 7] in ^ . 

Let G = 1 ^ ° 1 o C o P and let a = f o | ^ 1 o C o P = f o C o P Notice 

t ha t gc^iP) is an open smooth w-manifold SP, and tha t o C o P | ^ = 

G\& : ^ —> f " 1 ^ ) is a smooth immersion; and the SO{n) space f - 1 (^ ) identi
fies canonically with the SO(n) space Rn. Recall the basis (e0, • • • , en), and 
for x £ v~l(fi) define (x, t) Ç ^ by G(x, J) = G(x) + tew. This point is well 
defined for / sufficiently near 0; if X is compact and e, ô are sufficiently near 0, 
then X X [e, Ô] is well defined by X X [e, 5] = {(x, t)\x £ X, r Ç [e, 5]}. 
A similar construction is this: for Z) £ SO(n + 1) and x £ 0, then Z)x is well 
defined by G(Dx) = DG(x) provided D is sufficiently near the identity. And 
for X compact C @, there is a neighborhood of the identi ty such tha t D • X 
is well defined in tha t neighborhood. In the same way, for A £ SO(n) near the 
identi ty and X compact C &, A • X = {^4x|x £ X) is well defined by 
A{G\£P)(x) = G\£P{Ax). Now, there exist e and Ô with a < e < 0 and 0 < 
ô < 7, sufficiently near 0 tha t 

(1) iVi Pi <r-ira, 5] and 7V2 n ^ [ e , 7] are ^ o C o P-simple 

neighborhoods of gc_1[<*> 5] and gc_1[e> 5] respectively. 

(2) There is a compact w-submanifold P oi SP such tha t 

(i) g~l\h, e] C int C X [5, €] C (int^AY H i n t ^ W ) X [8, e] 

where TV/ = Nt H o - 1 ^ ) , and 

(ii) the inclusion gc~l(fi) C Q is a simple homotopy equivalence. 

Then by shrinking 0 about B suitably, we may extend (1) and (2) to the 
following: 

(1') For E e 0, IBE~l J ] N, C\ cr-Ha, Ô] and [ B ^ j l 7V2 H a~l[e, y] 

are n 0 C 0 P-simple neighborhoods of gc~l[&, 5] and 

gc^U, 7] respectively. 
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(2;) For E G 0, 

0) ScT1^, e] C [B o"1 J ] (int G X [«,€]) C [ ^ J ] 

[(int^AV) H ( i n t ^ O X [«, e]] 
V BE~l Ol 

(ii) the inclusion gc~l(fi) C n 1 Ç is a simple homotopy 

equivalence. 

Let ^__be open in gP, such that Y is compact, and Q X [ô, €] C ^ X 
[5, e] C ^ X [ô, e] C (int^A^iO H ( i n t ^ O X [8, e]. By shrinking 0 about J3 
again, we may assume E G 0 implies 

L 0 l j ^ X [5, e] C [ Q ^ J [(int^iVxO H (int^AY) X [5, e]]. 

By Lemma 1 carried over to {"HP) in place of Rn, and S" 1 o ( G | ^ ) : SP -> 
f - 1 ^ ) , we have that [/((?, 5 " 1 o (G|<^), ^ 0 is open dense in 50(«) . Thus, 
there is some £ G O H t/(Q, .S"1 o ( G | ^ ) , ^ ) . It follows that there is an 
EB~l o (G|^)-simple neighborhood N" of Q in V. 

From (1) it follows that ( | ^ j l # i ) ^ «^[«.fl and ( P ^ p j l ^ 2 ) 

r^g^-i o l 
C\ v~l[e, Ô] are o G-simple neighborhoods of gc_1[a> 5] and gc - l[a, 7] 

[JEJ^ - 1 Ol 
o G-hyper-rectangles, so 

is a union of o G-hyper-rectangles. And since 

N" X [ô, e] H P ^ " 1 J l iVj Pi * - > , Ô] = TV" X ô C (int*iViO X 6, 

and 

N"[6, e] r\ l3^'1 f\ N2 H (T-^e, 7] = N" X 6 C (int,tf20 X e, 

t£ 5 _ 1 Ol 
o G-polyhedral structure on TV makes it an 

M in) -manifold. Finally, the inclusion 

(gc-'la, 7], gc-H*, 7}) C (N, i v n o-M«, 7}) 
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is a homotopy equivalence, so N is a (relative) n o C o F-simple 

neighborhood of gc~
l[a, 7]. Thus E Ç F([a, 7], F, C, °U) and Lemma 2 is 

proved. 

LEMMA 3. If [a, 0] C gc(M) contains no critical values of gc, then V([a, 0], 
F, C,°ll) is open and dense in SO(n). 

Proof. Clearly V([a, 0], F, C, <%) is open. We set 

r = ( x f [a, 0]|F([a, x], F, C, ^ ) is open dense in SO(n)\. 

By the induction hypothesis, a G I\ Now we show that T is open in [a, £]. 
Suppose x Ç T; we may assume that x < 0. Let G = C o F : Û —> i£w+1 and 
a = f o G, and g_= f o G\M. Let y be an open subset of SP = o--1^) with 
g"1^) C V C ^ compact C ^ . We may de f ined X [x, ft] C ^ as in the 
proof_of Lemma 2, for ft sufficiently near x. Then for some b with x < b ^ (3 
and ^ X [x, 5] C *% there exists a compact smooth n submanifold Q of SP 
such that 

(i) g~\x, ft] C int (2 X [x, 6] Q X [x, 6] C ^ X [x, 6], and 
(ii) the inclusion g~l(x) C Q is a simple homotopy equivalence. 

By Lemma 1, the set U(Q, G|<^, ^ ) is open dense in SO{n). Suppose B £ 

U(Q, G\0>, V). Then there is a ^ J o (G|^)-simple neighborhood N' of 

Ç i n ^ . But then N' X [x, b] is a n o G-simple (relative) neighborhood 

of g-^x, ft] i n ^ X [x, ft]. Thus U(Q, G\&,V) C V([x, ft], F, C, «T) and the 
right hand set is open dense in SO(n). But already V([a, x], V, C, °i/) is open 
dense, so V([a, x], F, C, °tt) C V([x, ft], F, C, °tt) is open dense. Finally, an 
application of Lemma 2 shows that V([a, ft], F, C, &) is open in SO(n). Thus 
ft G T, and V must be open in [a, £]. 

To see that Y is closed, suppose a\ < a2 < a3 < . . . is an increasing sequence 
in T with limit y. We must show that y Ç T; we have a < 3/ < fi. As above, 
there will be some a with a < a < y such that V([a, y], F, C,°tt) is open dense 
in SO{n). Since a £ T, we have that V([a, a], F, C, tft) is already open dense 
in SO(n), and an application of Lemma 2 shows that V([a, y], F, C, %) is open 
dense. Consequently y Ç T, and T is closed in [a, ff]. 

Since T was already non-empty and open, it follows that T = [a, ft], and 
the lemma is proved. 

LEMMA 4. Suppose x is a critical point of g = f o C o F\M. Then there exists 
e > 0 such that V([x — e, x + «], F, C, ^ ) is 0/>ew and dewse iw SO(n). 

Proof. Let G = C o F and 0- = f o G and g = f o G\M. The canonical form 
of a Morse function at a critical point allows us to find a compact smooth 
«-submanifold P of ^ = o--1(x) and 7 > 0 such that x is the only critical 
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value in [x — 7, x + 7], and 

g~l[x -y,x + y]CintPX[x-yJx + y]CPX[x-y1x + y]C(%, 

and such that g_1(x) C P is a simple homotopy equivalence. Let ^ be an 
open subset of & such that P X [x — 7, x + 7] C ^ X [x - 7, x + 7] C ^ . 
Then by Lemma 2, we have that t/o = U(P, G\^,^) is open dense in SO(n). 
Now choose e > 7 such that [x — e, x — 7] U [x + 7, x + e] contains no 
critical values of g. Then U- = F([x — 7, x — e], C, P, ^ ) and U+ = 
F([x + 7, x + e], C, F, %) are open dense in SO(n) by Lemma 3. Now we 
argue as in the proof of Lemma 2: Suppose B £ U- (^ Uo C\ U+. Then there 

exist o G-simple neighborhoods iV_, iV X [x — 7, x + 7], and N+ of 

g_1[x — e, x — 7], P X [x — 7, x + 7], and g-1[x + 7, x + e] respectively. 
Let NJ = N„ H o - 1 ^ - 7) and iV+

; = N+ H o - 1 ^ + 7). Now we need to 
complicate notation somewhat more: There exist a, b such that 0 < a < 7 
< 6 < e and compact smooth w-submanifolds Q- and Ç+ of o--1(x — 7) and 
o-_1(x + 7) respectively, such that 

(i) g~l[x — b, x — a] C (int QJ) X [x — b, x — a] C Q- X [x — b, x — a] 
C (int NJ r\ int N X (x - 7) X [x - b, x - a], 

the same for + in place of —, and 
(ii) the inclusions g -1(x ~~ 7) C Q- and g_1(x + 7) C Q+ are 

simple homotopy equivalences. 
L e t ^ _ a n d ^ + be open in a~l(x — 7) = ^__and a~l{x + 7) = &+ respec
tively, such that y ± are compact and Q± C i^± C ^ ± C int N± Pi int N X 
(x ± 7). Let 0 be an open neighborhood of B in U- H C/0 P £7+. By shrinking 
0 about B suitably, we may assume that for E Ç 0 we have 

[73F-1 0"1 
Q 1 ^ - n a~^x - « . * - & ] a n d 

iV+ H o--1[x + 6, x + t] are o G-simple 

(relative) neighborhoods of g-1[x — e, x — b] and g-1[x + 6, x + e] 
respectively in ^ . 

(2) iV± H <r~l[x zb 6, x zb 7] = N±' X [x ± b, x db 7]. In particular, 

i\f±' X [x zb 7, x zb 6] is a o G-simple neighborhoods of 

g~l[x zb 7, x zb ft] in °à'. 

(3) ^ C p f 1 j l i n t ^ ' H i n t i V X (x ± 7 ) . 

Now 

£/_ n t/o r\ u+ r\ U[Q-, [^ J] o G|^_,^_) 
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N 

is open dense in SO(n)} so the intersection of this set with 0 is non-empty; 
let E be in t ha t intersection. We apply Lemma 1 to G± = G\0>± : SP± —» 
f _ 1 (x db 7) and we see tha t we may assume in addition tha t there exist 
E o G±-simple neighborhoods N±" of Q± in 1^±. Finally then, the inclusion 

(g~\x - e, x + e], g~Hx - e, x + «}) C ( [ [ ^ o ' 1 l ] N~ 

n <rl[x - e, x - ft] I U iV_" X [x - 6, x - a] U [ P ^ 1 J ] 

X [x - a, x + a]\ U 7V+" X [x + a, * + 6] U \BE~l J | iV+ 

n cr[x + ft, x + e], l ^ " 1 JI (iv_ n cr-Ux - e)) u (iv+ 

H c r - U x + e ) ) ) 

is a simple homotopy equivalence. But then E Ç F([x — e, x + e], F, C,°lt). 
T h u s F([x — e, x + e], F, C, °à) is dense; since it is already open, the lemma 
is proved. 

Proof of theorem. By Lemmas 3 and 4, we may write g(M) as a finite union 
of consecutive intervals [a, 0] such tha t for each [a, 0] the set V([a, 0], F} C,°tt) 
is open and dense in SO(n). I t follows tha t their intersection is open and dense, 

so we may choose B in their intersection so tha t • C is arbitrari ly close 

to C and there exists a 0 C 0 /^-simple neighborhood of M in °U'. 

T h u s U(M, F, °lt) is dense. Since it is already open, the theorem is proved. 

COROLLARY (Proposition 4) . If n ^ 5 and M is an orientable closed compact 
smooth n-manifold that immerses smoothly in Rn+1, then there exists an M (re
oriented manifold strongly cobordant to M. 

Proof. By taking the normal bundle of a smooth immers ion / : M —» Rn+1, we 
obtain a smooth open (n + 1) manifold © D M and a smooth immersion 
F : © —> Rn+l. By the theorem, there is C £ SO(n + 1) such tha t there exists 
C o G-simple neighborhood N of M in ©. Then TV is an S(n + 1) manifold 
and dN is an M(n) manifold. Moreover dN = doNVJdiN and N = 7V0 W Ni 
with iVo an s-cobordism from M to do^ . Since n ^ 5, 7V0 is a strong cobordism 
and the corollary is proved. 

Finally, we sketch the proof of Proposition 5 since the tilting details are 
fairly similar in technique to those of Theorem 3. 

PROPOSITION. Let 2 fte a smooth homotopy n-sphere that bounds a parallelizable 
manifold. Then there is a polyhedron P C ^ n + 2 that is an M(n) manifold strongly 
cobordant to 2 . 
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Proof. If n ^ 6 there is nothing to prove so we may assume n ^ 7. We have 
w = 2r — 1 and 2 = dX where X consists of an (« + 1) disk with r-handles 
attached so that X is parallelizable. We may immerse X in Rn+1 so that the 
disk lies in Rn X ( —GO , 0] and contains Dn X ( — 1, 0], so that each handle if 
is embedded and near Dn X 0 coincides with TH X [0, oo ) for some copy 
TH C int Dn of 57"-1 X Dr. We may assume that two handles intersect cross
wise in a disjoint union of copies of DT X Dr so that the double point manifold 
of the immersion F : X —» i?w+1 consists of a disjoint union of copies of Dr X 
Dr, which are pairwise interchanged by the double point involution. We may 
assume further, by cutting the embedded handles with affine «-spaces parallel 
to Rn X 0 that there exist I \ , T2, . . . , Tk C X such that each F(Tt) is the 
translate of some TH, and such that each component of X — Ti — T2 — . . . 
— Tk contains exactly one component of the double point manifold. For each 
pair of components of the double point manifold paired by the double point 
involution, assign + 1 to one member and — 1 to the other. Thus we may assign 
+ 1 or —1 to the corresponding component of X — T1 — . . . — I \ ; to obtain 
a smooth embedding X C Rn+2 we may find a C00 function h : X —> R, positive 
on each + 1 component of X — Ti,— . . . — Tk and negative on each —1 
component. Then x —> (F(x), h(x)) is an embedding. Instead we let Û = i n t X 
and we identify 2 with the boundary of an open collar of X. We may assume 
that 2 meets each Tf transversally in a copy of S7"-1 X 57"-1. After suitable 
tilting, we find F\0 P\ IYsimple neighborhoods iVi, . . . , Nk of 2 H rx, . . . , 
2 r\ Tk. These give rise to relative ^-simple neighborhoods iVi X [«i, bi],. . . , 
Nk X [ak, bk] of ( I \ X K 6J) H 2, . . . , (Tk X [ak, bk]) H 2 respectively, 
where [au bi] is a suitable closed neighborhood of xiy and Tt C. Rn X xt. After 
another tilt, we may suppose that we have as well a relative ^-simple neighbor
hood Moi X (^ [Û - T, X (a/ , bx') - . . . - T, X (a*', V ) ] where (a/ , 6/) 
is a suitable open interval containing [aiy bt]. Finally, we have relative .F-simple 
neighborhoods Ri X [ai , a j , . . . , Rk X [akl ak] of 2 H ( I \ X [a/, a j ) , . . . , 
2 n ( r , X [a*', a*]) respectively, and Li X [bu V ] , . . . , Lk X [bk, bk'] of 
2 H (Ti X [6i, &i']), . . . , 2 Pi ( I \ X [bk, bk']) respectively. We may assume 
that each Rf X a/ and Lj X b/ is contained in the interior of a corresponding 
«-facet of M, and that i?* X at U int iV< X at and L, X b, C int iV, X bj. 
Then 

(U{2*< X [a/, at] U iV, X [a„ &<] U L, X [6„ b/]\i = 1, . . . , *}) 
U M = Y 

is an F-simple neighborhood of 2, and its boundary is strongly cobordant to 2. 
Notice that each component of M is in some component of X — Ti — . . . 
— Tk and so inherits + 1 or — 1 . Let M+ be the union of all those components 
inheriting + 1 and M- the union of all those inheriting — 1 . Each Rt and L ; 

is in one of these components and so inherits a + 1 or a — 1, which we write as 
û(Rt) or û(Lj). Define a map G : Y -» Rn+1 X R by G{x) = (/?(*), + 1 ) if 
x Ç ¥ + and G(x) = (F(x), - 1 ) if x G Af_, and G(x) = (F(x), 0) if x G 
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U [Nt X [at, bt]\i = 1, . . . , *} . For (x, t) <= RtX [a/, at], set 

G(x, t) = (F(x, t), 0) + (o, - 4 ^ - (/ - a ,)) 

and for (x, t) g Z^ X [&y, 6/] , set 

G(x, t) = (F(x, /), 0) + (o, ^ J $ (f - 6i)) • 

Then G determines an affine isomorphism from dY to P = G(dY), and P is 
a subpolyhedron of i?w+1. The proof of Proposition 5 is complete. 
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