ON A THEOREM OF KUIPER

ROBERT WELLS AND LUIZ A. FAVARO

1. Introduction. Let Δ_{n+1} be the standard $(n+1)$ simplex with its standard triangulation. By the Generalized Poincare Conjecture, if $n \geqq 5$ and Σ^{n} is a smooth homotopy n-sphere, then there exists a smooth triangulation $f: K \rightarrow \Sigma^{n}$, where K is a suitable subdivision of $\partial \Delta_{n+1}$. On the other hand, in [3], N. Kuiper proves the following theorem.

Theorem (Kuiper). If Σ^{n} is a smooth homotopy n-sphere and there exists a smooth triangulation $f: \partial \Delta_{n+1} \rightarrow \Sigma^{n}$, then Σ^{n} is diffeomorphic to the standard sphere.

The object of this paper is to give an easier proof of Kuiper's Theorem, and to extend that theorem in a rather special setting. To arrive at that setting, we define a subset $S(n+1) \subset R^{n+1}=$ Euclidean $(n+1)$-space by induction on n : For $n=0$ we set $S(1)=[0 ; \infty)$; assuming $S(n) \subset R^{n}$ has been defined, we set

$$
S(n+1)=(S(n) \times[0,1]) \cup R^{n} \times(-\infty, 0] \subset R^{n} \times R=R^{n+1}
$$

The set $S(n+1)$ is an $(n+1)$-submanifold of R^{n+1} and we call it the solid model in dimension $n+1$. We set $M(n)=\partial S(n+1)$, and we call $M(n)$ the model in dimension n. Let $\mathscr{M}(n)$ be the pseudogroup defined by $\mathscr{M}(n)=\{\varphi \mid \varphi: U \rightarrow \varphi(U)$ is a homeomorphism, U and $\varphi(U)$ are open in $M(n)$, and φ extends to an affine isomorphism of $\left.R^{n+1}\right\}$. Similarly, let $\mathscr{S}(n+1)$ be the pseudogroup defined by $\mathscr{S}(n+1)=\{\varphi \mid \varphi: U \rightarrow \varphi(U)$ is a homeomorphism, U and $\varphi(U)$ are open in $S(n+1)$, and φ extends to an affine isomorphism of $\left.R^{n+1}\right\}$. Then we say that an $M(n)$ manifold P is an n-manifold $|P|$ together with a maximal atlas \mathscr{P} modelling $|P|$ on $M(n)$ with coordinate transformations in $\mathscr{M}(n)$; thus $P=(|P|, \mathscr{P})$. Similarly, an $S(n+1)$ manifold X is an $(n+1)$ manifold $|X|$ together with a maximal atlas \mathscr{X} modelling $|X|$ on $S(n+1)$ with coordinate transformations in $\mathscr{S}(n+1)$; thus $X=(|X|, \mathscr{X})$. Clearly the boundary of an $S(n+1)$ manifold is an $M(n)$ manifold. In the usual categories, every closed manifold is the boundary of a manifold, but since the product of an $M(n)$ manifold with $[0,1)$ does not appear to have a canonical $S(n+1)$-structure, it is not clear that every $M(n)$ manifold is the boundary of some $S(n+1)$ manifold. To repair this deficiency, we introduce the notion of a sided $M(n)$ manifold. To begin with, for $x \in M(n)$ we say that $\operatorname{dim}(x) \geqq r$

[^0]if there exists an affine r-plane H such that $x \in \operatorname{int}_{H}(H \cap M(n))$, and we set $\operatorname{dim}(x)=\max \{r \mid \operatorname{dim}(x) \geqq r\}$. If P is an $M(n)$ manifold and $y \in P$, we set $\operatorname{dim}(y)=\operatorname{dim}(\varphi(x))$ where $y \in U$ and $(U, \varphi) \in \mathscr{P}$ is a chart of P. Clearly $\operatorname{dim}(y)$ is well defined. Then we set $P^{r}=\{y \in P \mid \operatorname{dim}(y) \leqq r\}$. Clearly $\phi=P^{-1} \subset P^{0} \subset \ldots \subset P^{n}=P$ is a filtration of P by closed subsets; $P^{r}-P^{r-1}$ is an r manifold and $\left(P^{r}-P^{r-1}\right)^{r}=\phi$ for $i<r$. Suppose $y \in P^{n-1}$ and $(U, \varphi),(V, \psi) \in \mathscr{P}$ with $y \in U \cap V$. Then the homeomorphism
$$
\varphi(U \cap V) \xrightarrow{\psi \circ \varphi^{-1}} \psi(U \cap V)
$$
extends to a unique affine isomorphism $A: R^{n+1} \rightarrow R^{n+1}$ and for W a sufficiently small open neighborhood of $\varphi(y)$ in R^{n+1}, we will have either
$$
A(\operatorname{int} S(n+1) \cap W) \subset \operatorname{int} S(n+1) \cap A(W)
$$
or
$$
A(\operatorname{int} S(n+1) \cap W) \subset A(W)-S(n+1)
$$

In the first case we set $s(\psi, \varphi)=+1$ and in the second case we set $s(\psi, \varphi)=$ -1 . In the standard way, the function s determines a $\{+1,-1\}$-bundle $\sigma(P)$ over P^{n-1}. If this bundle is trivial, we say that P is sideable; in that case a section \mathscr{S} of P is a side and the other section $-\mathscr{S}$ is the opposite side. A sideable $M(n)$ manifold P together with a side \mathscr{S} is called a sided $M(n)$ manifold; we will abuse notation sometimes by writing $(P, \mathscr{S})=P$ and $-P=(P,-\mathscr{S})$. Clearly, if X is an $S(n+1)$-manifold and $P=\partial X$, then P inherits a side from X. Examples of sided $M(n)$ manifolds are $\partial \Delta_{n+1}, \partial[-1,1]^{n+1}$, and $\partial[-1,1]^{n+1} /$ (-1).

If X is an $S(n+1)$ manifold, then the ring

$$
C^{\infty}(X)=\left\{f: X \rightarrow R \mid f \circ \varphi^{-1}: \varphi(U) \rightarrow R \text { is } C^{\infty} \text { for any }(\varphi, U) \in \mathscr{X}\right\}
$$

is well defined. If P is an $M(n)$ manifold, we say that an open r-facet of P is a component of $P^{r}-P^{r-1}$ and a closed r-facet is the closure of an open r-facet; a closed r-facet inherits an $S(r)$ structure, and with that structure we call it an r-facet. Let the ring $\mathscr{S} m(P)=\left\{f: P \rightarrow R|f| F \in C^{\infty}(F)\right.$ for F any facet of $\left.P\right\}$. Similarly, if N is a smooth manifold or an $S(k)$ manifold, we may define $C^{\infty}(X, N)$ and $\mathscr{S}_{m}(P, N)$. For $y \in P$, let $\mathscr{D}_{y}(P)$ be the set of derivations of $\mathscr{S}_{m}(P)$ at y. It follows from Thom's Lemma below that

$$
\mathscr{S}_{m}(M(n))=\left\{f: M(n) \rightarrow R|f=g| M(n), g: R^{n+1} \rightarrow R \text { is } C^{\infty}\right\} ;
$$

then for $x \in M(n)$ we have that $\mathscr{D}_{x}(M(n))$ is a real vector race of dimension $n+1$ if $\operatorname{dim}(x) \leqq n-1$ and of dimension n if $\operatorname{dim}(x)=n$. If (U, φ) is a chart of P with $y \in U$, then we define $d \varphi(y): \mathscr{D}_{y}(P) \rightarrow \mathscr{D}_{\varphi(y)}(M(n))$ in the usual way; clearly $d_{\varphi}(y)$ is an isomorphism, so $\mathscr{D}_{y}(P)$ is a real vector space of dimension $n+1$ if $y \in P^{n-1}$ and of dimension n if $y \in P-P^{n-1}$. For $x \in$
$M(n)$ we may identify the tangent cone to $M(n)$ at x with a subset $\tau C_{x}(M(n))$ of $\mathscr{D}_{x}(M(n))$; then for $y \in P$ and (U, φ) as above we set

$$
\tau C_{y}(P)=d \varphi(y) \tau C_{\varphi(y)}(M(n))
$$

and $\tau C_{y}(P)$ is well defined. Then $\tau C_{y}(P)$ is a subcone of $\mathscr{D}_{y}(P)$, piecewise linearly isomorphic to R^{n}. For N a smooth manifold and $f \in \mathscr{S} m(P, N)$, the linear map df $(y): \mathscr{D}_{y}(P) \rightarrow \tau y(N)$ is defined in the usual manner. We will say that $P \rightarrow N$ smooths P to N if
i) $f \in \mathscr{S} m(P, N)$,
ii) f is a homeomorphism, and
iii) df $(y): \tau C_{y}(P) \rightarrow \tau_{y}(N)$ is $1-1$ onto.

In that case we will say that P subdivides N, that P is a subdivision of N, and that N is a smoothing of P. We may extend the notion of subdivision to a pair of $M(n)$ manifolds. If P and Q are $M(n)$ manifolds, we set
$\operatorname{Aff}(P, Q)=\left\{f: P \rightarrow Q \mid\right.$ the $\operatorname{map} \varphi\left(U \cap f^{-1}(V)\right) \xrightarrow{\psi \circ f \circ \varphi^{-1}} \psi(V)$
extends to an affine map $R^{n+1} \rightarrow R^{n+1}$ for (U, φ) a chart of P and (V, ψ) a chart of $Q\}$.

For such f, the map df $(y): \tau C_{y}(P) \rightarrow \tau C_{f(y)}(Q)$ is defined. If $f \in \operatorname{Aff}(P, Q)$ we will say that if subdivides Q if
i) f is a homeomorphism,
ii) for each open facet 0 of P there is an open facet 0^{\prime} of Q with $f(0) \subset 0^{\prime}$, and
iii) df $(y): \tau C_{y}(P) \rightarrow \tau C_{f(y)}(Q)$ is $1-1$ onto.

If (P, \mathscr{S}) and (Q, \mathscr{T}) are sided $M(n)$ manifolds, and $f: P \rightarrow Q$ subdivides Q, then f pulls the side \mathscr{T} of Q back to a side $f^{*} \mathscr{T}$ of P. If $f * \mathscr{T}=\mathscr{S}$, we say of the map f that it $M(n)$-subdivides (Q, \mathscr{T}), and we say that $(P, \mathscr{S})_{d}$ is an $M(n)$-subdivision of (Q, \mathscr{T}). It is straightforward that if $g: P \rightarrow Q$ subdivides or $M(n)$ suldivides Q and $f: Q \rightarrow N$ smooths Q, then $f \circ g$ smooths P. The natural equivalence relations on $M(n)$ manifolds are $M(n)$-equivalence and equivalence: (Q, \mathscr{T}) is $M(n)$-equivalent to $\left(Q^{\prime}, \mathscr{T}^{\prime}\right)$ if there exists (P, \mathscr{S}) that is an $M(n)$ subdivision of both (Q, \mathscr{T}) and $\left(Q^{\prime}, \mathscr{T}^{\prime}\right)$; the definition of equivalence is similar except that sides do not enter. Neither of these relations is very tractable, so we will introduce a coarser (by Proposition 3 below) equivalence relation on a certain class of sided $M(n)$ manifolds. To introduce the coarser equivalence relation, we let
$\overline{\mathscr{M}}(n)=\{\varphi \mid \varphi: U \rightarrow \varphi(U)$ is a diffeomorphism and $U, \varphi(U)$ open $\subset M(n)\}$ and $\overline{\mathscr{S}}(n+1)=\{\varphi \mid \varphi: U \rightarrow \varphi(U)$ is a diffeomorphism and $U, \varphi(U)$ open $\subset S(n+1)\}$.

Then smooth $M(n)$ manifolds are those modelled on $M(n)$ with coordinate
transformations in $\bar{M}(n)$ and smooth $S(n+1)$ manifolds are those modelled on $S(n+1)$ with coordinate transformations in $\overline{\mathscr{S}}(n+1)$. As in the affine case above, we may introduce the dimension filtration, siding, facets, tangent cones, smoothing and subdivision. Moreover, an $M(n)$ or $S(n+1)$ manifold relaxes to a unique smooth $M(n)$ or smooth $S(n+1)$ manifold, and closed smooth manifolds are automatically smooth $M(n)$ manifolds. If P and Q are compact sided smooth $M(n)$ manifolds, we will say that P is strongly cobordant to Q if there is a smooth $S(n+1)$ manifold X such that $X=P \coprod-Q$, and X is $P L$ isomorphic to $P \times[0,1]$. Let $\mathscr{C}=\{P \mid P$ is strongly cobordant to a smooth manifold $\}$. Suppose $P \in \mathscr{C}$ and that X is a strong cobordism from P to a smooth manifold N. There is a smooth vector field A on X, transverse to P. By the Cairns Hirsch Theorem, there is a smooth submanifold $N^{\prime} \subset$ int X which is transverse to A. We may push P into the region of X between N^{\prime} and N by means of a solution of A. Thus we have a copy P^{\prime} of P between N and N^{\prime}. Let Y be the closure of the region between N and P^{\prime}, and let Z be the closure of the region between P and P^{\prime}. Then Y defines a strong cobordism from $-P$ to N and Z from P to P. Thus, writing \sim for strong cobordism we have $P \in \mathscr{C}$ implies $-P \in \mathscr{C}$ and $P \in \mathscr{C}$ implies $P \sim P$. Suppose X is a strong cobordism from P to Q. As above, we may insert a smooth manifold N in int X (transverse to a smooth field transverse to P). We may put a copy P^{\prime} of P between N and Q, and a copy Q^{\prime} of Q between P and N so that the closure of the region between P^{\prime} and Q^{\prime} is a strong cobordism from P^{\prime} to Q^{\prime}. But with the inherited sides, it is a strong cobordism from $-P$ to $-Q$; that is, a strong cobordism from Q to P. Thus $P \sim Q$ implies $Q \sim P$. Finally, if $P \sim Q$ via X and $Q \sim T$ via Y, we may put smooth manifolds N and N^{\prime} in int X and int Y respectively so that the closures $X_{0}, X_{1}, Y_{0}, Y_{1}$ of the regions between P and N, between N and Q, between Q and N^{\prime} and between N^{\prime} and T are strong cobordisms. From Proposition 3 below we conclude that N and N^{\prime} are diffeomorphic. Then glueing X_{0} and Y_{1} smoothly by a diffeomorphism $N \rightarrow N^{\prime}$, we obtain a strong cobordism Z from P to T. Thus \sim is transitive. Finally, if $P \sim N$ via X with N smooth, $X \cup_{N} X$ is a strong cobordism from P to $-P$. Thus \sim is an equivalence relation on \mathscr{C} and $P \sim-P$ for $P \in \mathscr{C}$.

Now, the theorem we wish to prove is most naturally stated in five propositions.

Proposition 1. If two compact smooth manifolds are strongly cobordant to the same $M(n)$ manifold, and $n \geqq 6$, then they are diffeomorphic.

Proposition 2. Let P be a sideable $M(n)$ manifold, and M a smooth manifold. Then there is a smoothing from P to M if and only if P and M are strongly cobordant.

Proposition 3. If two smoothable sided $M(n)$ manifolds are $M(n)$-equivalent, then they are strongly cobordant.

Proposition 4. If $n \geqq 5$ and M is an orientable compact closed smooth n -
manifold smoothly immersible in R^{n+1}, then there exists an $M(n)$ manifold strongly cobordant to M.

Proposition 5. If the smooth compact closed homotopy n-sphere Σ bounds a smooth compact parallelizable manifold, then there exist a polyhedron $P \subset R^{n+2}$ which is an $M(n)$ manifold strongly cobordant to Σ.

From these propositions we conclude that for each smooth homotopy n sphere Σ, the classes

$$
K(\Sigma)=\{Q \mid Q \text { is an } M(n) \text { manifold, } Q \text { strongly cobordant to } \Sigma\}
$$

are each non-empty, and mutually disjoint. Also, if Σ is a non-standard $b P_{n+1}$ sphere, then the polyhedron P supplied by Proposition 5 supplies two examples: 1) the cone $C P$ is a polyhedron, $P L$ isomorphic to I^{n+1}, but not smoothable, and 2) the suspension $S P=C P \cup_{P} C P$ is a polyhedron, $P L$ isomorphic to ∂I^{n+1}, but not smoothable.
2. Proofs. Proposition 1 is the result that an $M(n)$ manifold has at most one diffeomorphism class of smoothings. It may be obtained as a corollary of a "Boundary Collar Theorem" for smooth $S(n+1)$ manifolds, and that in turn is an immediate consequence of a lemma of Thom [4]. In addition, we will require a simple proposition about $S(n+1)$.

Proposition 6. Suppose $p \in S(n+1)$ with $\operatorname{dim}_{S(n+1)} p=r \leqq n$. Then there is a basis e_{1}, \ldots, e_{n+1} of $\tau_{p}\left(R^{n+1}\right)$ such that the n-facets of $S(n+1)$ containing p are F_{1}, \ldots, F_{n+1-r} with $\tau_{p}\left(F_{i}\right)=\operatorname{span}\left(e_{1}, \ldots, \hat{e}_{i}, \ldots e_{n+1}\right)$.

Proof. The proposition is true for $n=0$. We prove it inductively in dimen$\operatorname{sion} n+1$. We may write $S(n+1)=S=T \times[0,1] \cup R^{n} \times(-\infty, 0]$ with $T=S(n)$. If $\operatorname{dim}_{S}(p)=n$, the proposition is immediate. If $\operatorname{dim}_{S}(p)=r<n$, then $p=(q, t)$ with $q \in T$ and $0 \leqq t \leqq 1$. If $0<t<1$, then $\operatorname{dim}_{S}(p)=$ $1+\operatorname{dim}_{T}(q)$. Let $e_{1}{ }^{\prime}, \ldots, e_{n}{ }^{\prime}$ be the basis of $\tau_{q}\left(R^{n}\right)$ given by the proposition in dimension n. Let e_{1}, \ldots, e_{n} be the parallel vectors at $p=(q, t)$ and let e_{n+1} be the vertical vector at p. Then near p, the n-facets are $F_{1}^{\prime} \times[0,1], \ldots$, $F_{n-(r-1)}{ }^{\prime} \times[0,1]$ where $F_{1}{ }^{\prime}, \ldots, F_{n-(r-1)}{ }^{\prime}$ are the $(n-1)$-facets of T containing q, and clearly we have $\tau_{p}\left(F_{i}{ }^{\prime} \times[0,1]\right)=\operatorname{span}\left(e_{1}, \ldots, \hat{e}_{i}, \ldots, e_{n+1}\right)$. If $t=0$ or 1 , then $\operatorname{dim}_{S}(q, t)=\operatorname{dim}_{T}(q)$; let $e_{1}{ }^{\prime}, \ldots, e_{n}{ }^{\prime}$ be the basis given by the proposition in dimension n, for $\tau_{q}\left(R^{n}\right)$. Let $e_{1}, \ldots, \hat{e}_{n+r-1}, \ldots, e_{n+1}$ be the parallel basis at p, and let e_{n-r+1} be the vertical vector there. Then, near p, the n-facets of S are $F_{1}{ }^{\prime} \times[0,1], \ldots, F_{n-r}{ }^{\prime} \times[0,1], F_{n-r+1}$ where $F_{n-r+1}=T$ 1 if $t=1$ and $F_{n-r+1}=\operatorname{clos}\left(R^{n}-T\right) \times 0$ if $t=0$. But $\tau_{p}\left(F_{i}{ }^{\prime} \times[0,1]\right)=$ $\operatorname{span}\left(e_{1}, \ldots, \hat{e}_{i}, \ldots, e_{n+1}\right)$ and $\tau_{p}\left(F_{n-r+1}\right)=\operatorname{span}\left(e_{1}, \ldots, \hat{e}_{n-r+1}, \ldots, e_{n+1}\right)$, so the proposition is proved.

Proposition 7 (Thom's Lemma). Let e_{1}, \ldots, e_{n+1} be a base of R^{n+1}, let $C \subset U\left\{\operatorname{span}\left(e_{1}, \ldots, \hat{e}_{i}, \ldots, e_{n+1}\right) \mid 1 \leqq i \leqq r\right\}$, and let $f: C \rightarrow R$ be such that
each restriction $f \mid C \cap \operatorname{span}\left(e_{1}, \ldots, \hat{e}_{i}, \ldots, e_{n+1}\right)$ is C^{∞} for $1 \leqq i \leqq r$. Then there is a C^{∞} function $F: R^{n+1} \rightarrow R$ which restricts to f.

Proof. The proof proceeds by induction on r. For $r=1$, there is almost nothing to prove. Suppose the lemma has been proved for $r-1$. Then

$$
g=f \mid C \cap U\left\{\operatorname{span}\left(e_{1}, \ldots, \hat{e}_{i}, \ldots, e_{n+1}\right) \mid 1 \leqq i \leqq r-1\right\}
$$

extends to a C^{∞} function $G: R^{n+1} \rightarrow R$. To extend f, it suffices $f-G \mid C$. Thus we may assume that $f \mid C \cap \operatorname{span}\left(e_{1}, \ldots, \hat{e}_{i}, \ldots, e_{n+1}\right)=0$ for $1 \leqq i<r$. But then we may assume in addition span $\left(e_{1}, \ldots, \hat{e}_{i}, \ldots, e_{n+1}\right) \subset C$ for $1 \leqq i<r$. And in this case $F\left(x_{1}, \ldots, x_{n+1}\right)=f\left(x_{1}, \ldots, x_{r-1}, 0, x_{r+1}, \ldots, x_{n+1}\right)$ is the desired extension, and the lemma is proved.
Theorem 1. Suppose M_{1} and M_{2} are smooth $S(n+1)$ manifolds; N_{1} and N_{2} are components of ∂M_{1} and ∂M_{2} respectively; and $f: N_{1} \rightarrow N_{2}$ is an isomorphism of smooth sided $M(n)$ manifolds. Then f extends to an isomorphism of smooth $S(n+1)$ manifolds from an open neighborhood of N_{1} in M_{1} to an open neighborhood of N_{2} in M_{2}.

Proof. Suppose $x \in N_{1}$ with $\operatorname{dim}_{N_{1}}(x)<n$. Then there exist charts (U, φ) of N_{1} at x and (V, ψ) of N_{2} at $f(x)$ such that $f(U) \subset V$ and $\varphi(U) \subset M(n)$ and $\psi(V) \subset M(n)$. Then $\operatorname{dim}_{N_{1}}(x)=\operatorname{dim}_{M(n)} \varphi(x)=\operatorname{dim}_{M(n)} \psi(f(x))$ and f induces a smooth map $g: \varphi(U) \rightarrow \psi(V)$; that is, g is C^{∞} on each facet. By Proposition 6 , there is a basis $\left(e_{1}, \ldots, e_{n+1}\right)$ of R^{n+1} at $\varphi(x)$ such that the hyperplanes spanned by the n-facets of $\varphi(U)$ at $\varphi(x)$ are span $\left(e_{1}, \ldots, \hat{e}_{i}, \ldots, e_{n+1}\right)$ for $1 \leqq i \leqq r$. Regarding (e_{1}, \ldots, e_{n+1}) as a basis of $\tau_{\varphi(x)} R^{n+1}$, we see that for $i=1, \ldots, n+1$ the vectors $d g(\varphi(x)) e_{i}=e_{i}{ }^{\prime}$ are defined, that $\left(e_{1}{ }^{\prime}, \ldots, e_{n+1}{ }^{\prime}\right)$ is a basis of R^{n+1} at $g(\varphi(x))=\psi(f(x))$, and that the hyperplanes spanned by the n-facets of $\psi(V)$ at $g(\varphi(x))$ are span $\left(e_{1}{ }^{\prime}, \ldots, \hat{e}_{i}{ }^{\prime}, \ldots, e_{n+1}{ }^{\prime}\right)$ for $1 \leqq i \leqq r$. Now $\varphi(U) \subset U\left\{\operatorname{span}\left(e_{1}, \ldots, \hat{e}_{i}, \ldots, e_{n+1}\right) \mid 1 \leqq i \leqq r\right\}$ and $g \mid \varphi(U) \cap$ $\operatorname{span}\left(e_{1}, \ldots, \hat{e}_{i}, \ldots, e_{n+1}\right)$ is C^{∞} for $1 \leqq i \leqq r$. By Thom's Lemma, there is a C^{∞} extension $G: R^{n+1} \rightarrow R^{n+1}$. Returning to the charts (U, φ) and (V, ψ), we may assume that there exist charts $(0, \Phi)$ of M_{1} at x and (P, Ψ) of M_{2} at $f(x)$ such that $\Phi(0) \subset S(n+1)$, and $0 \cap N_{1}=U$ with $\Phi \mid U=\varphi$, and similarly for (P, Ψ) and (V, ψ). By means of the Euclidean metric and its exponential map we see that it follows from the hypothesis that f preserves siding that $G(\Phi(0)) \subset \Psi(P)$ so that $f \mid U$ extends to a $C^{\infty} \operatorname{map} 0 \rightarrow P$. It follows that there exist open neighborhoods \mathscr{N}_{1}^{\prime} and \mathscr{N}_{2}^{\prime} of $N_{1}{ }^{n-1}$ and $N_{2}{ }^{n-1}$ in M_{1} and M_{2} respectively, and a C^{∞} map $F^{\prime}: \mathscr{N}_{1}^{\prime} \rightarrow \mathscr{N}_{2}{ }^{\prime}$ extending $f \mid \mathscr{N}_{1} \cap \mathrm{~N}_{1}$. Since $x \in N_{1}{ }^{n-1}$ was arbitrary and $d g(\varphi(x))$ carried the base e to the base e^{\prime}, it follows that $d F^{\prime}(x)$ is non-singular for $x \in N_{1}{ }^{n-1}$. Thus we may assume that F^{\prime} is a diffeomorphism $\mathscr{N}_{1}{ }^{\prime} \rightarrow \mathscr{N}_{2}{ }^{\prime}$. Finally, by means of open collars of the open n-facets we see that F^{\prime} may be extended to a diffeomorphism $F: \mathscr{N}_{1} \rightarrow \mathscr{N}_{2}$, where \mathscr{N}_{i} is an open neighborhood of N_{i} in M_{i}. The theorem is now proved.

Corollary (Proposition 1). If two compact smooth manifolds are strongly cobordant to the same $M(n)$ manifold and $n \geqq 6$, then they are diffeomorphic.

Proof. Let the two smooth manifolds be N_{1} and N_{2}. We are assuming that N_{1} is strongly cobordant to the $M(n)$ manifold N and that N_{2} is strongly cobordant to $\pm N$. Replacing N_{2} if necessary with $-N_{2}$, we may assume that N_{1} and N_{2} are strongly cobordant to N. Let M_{i} be the strong cobordism from N_{i} to N. By Theorem 1, the identity map $N \rightarrow N$ extends to a diffeomorphism

$$
\mathscr{N}_{1} \xrightarrow{\varphi} \mathscr{N}_{2}
$$

where \mathscr{N}_{i} is an open neighborhood of N in M_{i}. By Siebenmann's Collaring Theorem, we may find A_{1} compact $\subset \mathscr{N}_{1}$ such that $\partial A_{1}=N \cup N_{1}{ }^{\prime}$ with $N_{1}{ }^{\prime}$ a smooth boundary of A_{1} and $N_{1}{ }^{\prime}=\mathrm{fr} \mathscr{N}_{1}-A_{1} \subset \overline{\mathcal{N}_{1}-A_{1}}$ a homotopy equivalence. We may assume that $\overline{M_{1}-A_{1}}$ is a smooth s-cobordism from $N_{1}{ }^{\prime}$ to N_{1}. Then $N_{1}{ }^{\prime}$ and N_{1} are diffeomorphic by the h-cobordism theorem. Passing to $P L$ structures, we see that A_{1} is an s-cobordism from N to $N_{1}{ }^{\prime}$, so $\varphi\left(A_{1}\right)=A_{2}$ is an s-cobordism from N to $\varphi\left(N_{1}{ }^{\prime}\right)=N_{2}{ }^{\prime}$. But since M_{2} is an s-cobordism from N to N_{2}, it follows that $\overline{M_{2}-A_{2}}$ is a smooth s-cobordism from $N_{2}{ }^{\prime}$ to N_{2}. Thus N_{1} and N_{2} are diffeomorphic, and the corollary is proved.

Next we obtain Proposition 2 and half of Proposition 3 as corollaries of a theorem on subdivision of smooth $M(n)$ manifolds. Notice that subdivision becomes smooth subdivision upon relaxing $M(n)$ structures to smooth $M(n)$ structures, and that if the map $f: P \rightarrow N$ smooths P to N, then it (smoothly) subdivides N.

Theorem 2. Suppose M is a compact sided smooth $M(n)$ manifold, N is a smooth manifold, and $f: M \rightarrow N$ is a map that smoothly subdivides N. Then M and N are strongly cobordant.

Proof. Suppose (U, φ) is a chart of M and $\gamma: N \rightarrow(0, \infty)$ is a function on N. Let $\Gamma(\gamma): N \rightarrow N \times(0, \infty)$ be the graph of γ, and for $X \subset N$, let $L(\gamma)(X)=\{(x, t) \mid x \in X, t \geqq \gamma(x)\}$. Then we have a bijection $g: \varphi(U) \rightarrow$ $\partial L(\gamma)(\varphi(U))$ defined by $g=\Gamma(\gamma) \circ f \circ \varphi^{-1}$. We will say that γ is admissible $\operatorname{over}(U, \varphi)$ if g extends to a diffeomorphism $G: V^{\prime} \rightarrow V$ where V^{\prime} is an open neighborhood of $\varphi(U)$ in $S(n+1)$ and V is an open neighborhood of $\partial L(\gamma)(\varphi(U))$ in $L(\gamma)(\varphi(U))$.

Lemma 1. Suppose $p \in M(n)$. Then there is an open set of n-planes H through p such that the orthogonal projection $\pi_{H}: R^{n+1} \rightarrow H$ carries a neighborhood 0 of p in $M(n)$ homeomorphically onto a neighborhood 0^{\prime} of p in H so that $\pi_{H} \mid 0$ smoothly subdivides 0^{\prime}.

Proof. The lemma is clear for $n=1$. The existence of such planes may be established inductively, and the openness is clear.

Given such a plane H, there is a (unique) unit normal u_{H} at p which points into $S(n+1)$. Then there is a continuous function $\gamma_{H}: 0 \rightarrow R$ such that $\left\{x+\gamma_{H}(x) u_{H} \mid x \in 0^{\prime}\right\}=0$ and such that near p the two sets $S(n+1)$ and
$\left\{x+t u_{H} \mid x \in 0^{\prime}, t \geqq \gamma_{H}(x)\right\}$ are equal. Since the manifold M is $M(n)$ oriented, we have an atlas \mathscr{A} of charts of M such that $(U, \varphi) \in \mathscr{A}$ implies $\varphi(U) \subset M(n)$ and such that $(U, \varphi),(V, \psi) \in \mathscr{A}$ with $U \cap V \cap M^{n-1} \neq \phi$ implies that the map

$$
\varphi(U \cap V) \xrightarrow{\varphi^{-1}} U \cap V \xrightarrow{\psi} \psi(U \cap V)
$$

extends to a diffeomorphism from an open set of $S(n+1)$ to an open set of $S(n+1)$. Let $(U, \varphi) \in \mathscr{A}$ and $x \in M^{n-1} \cap U$. Consider the composition

$$
\varphi(U) \xrightarrow{\varphi^{-1}} U \xrightarrow{f} f(U) \text { open } \subset N .
$$

Since $f \circ \varphi^{-1}$ is smooth on $\varphi(U)$, by Thom's Lemma it extends to a C^{∞} map $F: V^{\prime} \rightarrow f(U)$. The differential $d F(\varphi(x)): \tau_{\varphi(x)} R^{n+1} \rightarrow \tau_{\rho_{(x)}} N$ is onto. By Lemma 1, we may choose an n-plane H through $p=\varphi(x)$ so that $\pi_{H}: 0 \rightarrow 0^{\prime}$ is a homeomorphism, $0,0^{\prime} \subset \varphi(U)$, and $d(F \mid H)(\varphi(x)): \tau_{\varphi(x)} H \rightarrow \tau_{\rho(x)} N$ is an isomorphism. Thus we may assume that $F: 0 \rightarrow 0^{\prime}$ is a diffeomorphism. Let W be an open neighborhood of $\varphi(x)$ in R^{n+1} on which F is defined. We may assume W is small enough that $\operatorname{dim} \operatorname{ker} d F(y)=1$ for $y \in W$, and (by reducing 0 and 0^{\prime} about $\varphi(x)$) that $0^{\prime}=W \cap H$. Then ker $d F$ is spanned by a smooth unit vector field with solution σ_{s}; we may assume that $\sigma_{s}(y)$ is defined for $|s|<\epsilon$ for some $\epsilon>0$ and $y \in 0 \cup 0^{\prime}$, and that for $y \in 0^{\prime}$ there is $t(y)$ such that $|t(y)|<\epsilon$ and $\sigma_{t(y)} y \in 0$. Let π be the map $\pi: 0 \rightarrow 0^{\prime}$ defined by $\pi(y)=$ $\sigma_{t(y)} y$; we may assume π is a smooth homeomorphism. Notice that the function $\gamma_{1}: 0^{\prime} \rightarrow R$ defined by $\gamma_{1}: y \rightarrow-t\left(\pi^{-1}(y)\right)$ has the property that $0=$ $\left\{\pi_{\gamma_{1}(y)}(y) \mid y \in 0^{\prime}\right\}$ and that, after reversing the direction of the vector field if necessary, $\left\{\sigma_{t}(y) \mid y \in 0^{\prime}, \gamma_{1}(y) \leqq t, \sigma_{t}(y)\right\}$ defined is an open neighborhood V^{\prime} of 0 in $S(n+1)$. Now define a function $\gamma_{2}: F\left(0^{\prime}\right) \rightarrow R$ by $\gamma_{2}(F(y))=$ $\gamma_{1}(y)$. By reducing 0^{\prime} again, to a relatively compact subset, we may assume that for some $c>0$ we have $\gamma=\gamma_{2}+c: F\left(0^{\prime}\right) \rightarrow(0, \infty)$. It is straightforward to see that $F \circ \pi=f \circ\left(\varphi^{-1} \mid 0\right)$. Then it is clear that γ is admissible over ($\left.\varphi^{-1}(0), \varphi \mid \varphi^{-1}(0)\right)$ with G defined by $G\left({ }_{t}(y)\right)=(F(y), t+c)$ for $\gamma_{1}(y) \leqq t$ with $\sigma_{t}(y)$ defined and $y \in 0^{\prime}$. Since we may assume $\left(\varphi^{-1}(0), \varphi \mid \varphi^{-1}(0)\right) \in \mathscr{A}$, we have obtained Lemma 2 (notice that it is immediate for $x \in M-M^{n-1}$):

Lemma 2. Let \mathscr{A} be the orientation atlas of M chosen above. Then for any $x \in M$ there exist a chart at $x,(U, \varphi) \in \mathscr{A}$, and $\gamma: N \rightarrow(0, \infty)$ admissible over (U, φ).

This lemma states that locally admissible functions exist. We wish to glue locally admissible functions to obtain globally admissible functions. For that purpose we use Lemma 3:

Lemma 3. Suppose $\gamma, \gamma^{\prime}: N \rightarrow(0, \infty)$ are both admissible over (U, φ); then for any $x \in U, \gamma+\gamma^{\prime}$ is admissible over (V, φ) where $x \in V$ open $\subset U$.Suppose $\mu: N \rightarrow(0, \infty)$ is C^{∞}. Then $\mu \gamma$ is admissible over (U, φ).

Proof. As in the discussion before Lemma 2, by taking V small enough about x, we may assume that there exist a n-plane H through $\varphi(x) \in M(n)$, on open set $W \subset R^{n+1}$ containing $\varphi(V)=0$, open subset 0^{\prime} of H containing $\varphi(x)$, and a C^{∞} extension $F: W \rightarrow f(V)$ of $f \circ \varphi^{-1}$. As in that discussion, dim ker $(d F(y))=1$ for $y \in W$ so that ker $d F$ is spanned by a C^{∞} unit vector field whose direction we may choose so that it points into $S(n+1)$ on $M(n) \cap W$; we may assume that vector field is transverse to 0 and 0^{\prime}, and we may assume that the solution φ_{t} of that vector field is defined for $|t|<\epsilon$ on $0 \cup 0^{\prime}$, that for each $y \in 0$ (respectively $y \in 0^{\prime}$) there is $t(y)$ with $|t(y)|<\epsilon$ (respectively $t^{\prime}(y)$ with $\left|t^{\prime}(y)\right|<\epsilon$) such that $\varphi_{t(y)}(y) \in 0^{\prime}$ (respectively $\varphi_{i^{\prime}(y)}(y) \in 0$). We may assume $F: 0^{\prime} \rightarrow F\left(0^{\prime}\right)$ is a diffeomorphism. Finally, we may assume that a map $\pi: W \rightarrow 0^{\prime}$ is defined by $\pi(y)=$ the unique point on 0^{\prime} that is on the integral curve through y. Then π is C^{∞} and $\pi \mid 0: 0 \rightarrow 0^{\prime}$ is a smooth homeomorphism such that $F \circ \pi=f \circ \varphi^{-1}$. Granted these constructions, let

$$
\begin{aligned}
\bar{G}:(W, W \cap & S(n+1)) \\
& \rightarrow(\bar{G}(W), L(\bar{\gamma}) \cap \bar{G}(W) \subset(N \times(0, \infty), N \times(0, \infty))
\end{aligned}
$$

be the diffeomorphism defined by $\bar{G}(y)=\left(F(\pi(y)), c+t^{\prime}(\pi(y))\right)$ where $c>0$ is sufficiently large that $\bar{\gamma}=c+t^{\prime} \circ \pi: W \rightarrow(0, \infty)$. Let $G:(W, W \cap$ $S(n+1)) \rightarrow(G(W), L(\gamma) \cap G(W))$ be a diffeomorphism making γ admissible over $\left(F\left(0^{\prime}\right), \varphi\right)$ so that $G(y)=(F(y),(F(y)))$ for $y \in 0$. Consider the diffeomorphism $G \circ(\bar{G})^{-1}$; it satisfies

$$
G \circ(\bar{G})^{-1}(z, \bar{\gamma}(z))=(z, \gamma(z)) \text { for } z \in F\left(0^{\prime}\right)
$$

It follows that there is a horizontal vector field Λ on $G(W)$ such that $\Lambda=0$ on $G(W) \cap \Gamma(\bar{\gamma})\left(F^{\prime}(0)\right)$ and $\left.\exp \Lambda(z, t)=\operatorname{pr}\left(\bar{G} \circ(G)^{-1}(z, t)\right), t\right)$ where pr : $N \times(0, \infty) \rightarrow N$ is the projection (of course, it may be necessary to reduce the size of W about $\varphi(x)$). Notice that on $M(n) \cap W$ we have $(\exp \Lambda)^{-1} \circ G=G=\left(f \circ \varphi^{-1}\right) \times\left(\gamma \circ f \circ \varphi^{-1}\right)$, and that on all W we have $\operatorname{pr} \circ(\exp \Lambda)^{-1} \circ G=F \circ \pi$. Thus, replacing G with $(\exp \Lambda)^{-1} \circ G$ we see that we may assume that proG=F○r. Doing the same for γ^{\prime} and (U, φ), we see that we may assume pro $G=F \circ \pi$. But then $G^{\prime} \circ G^{-1}:(G(W)$, $\left.L(\gamma)\left(F\left(0^{\prime}\right)\right)\right) \rightarrow\left(G^{\prime}(W), L\left(\gamma^{\prime}\right)\left(F\left(0^{\prime}\right)\right)\right)$ is a diffeomorphism and $G^{\prime} \circ G^{-1}(z, t)$ $=(z, h(z, t))$ for some C^{∞} function h. Since $L(\gamma)\left(F^{\prime}(0)\right)$ is carried to $L\left(\gamma^{\prime}\right)\left(F\left(0^{\prime}\right)\right)$, we have $\partial_{t} h(z, \gamma(z))>0$ for all $z \in F\left(0^{\prime}\right)$. Consider the map $H(z, t)=(z, t+h(z, t))$ defined on $G(W)$. Clearly H is smooth, and at any point $(z, \gamma(z))$ we have $d H(z, \gamma(z)) \partial_{t}=a \partial_{t}$ with $a>0$. Since pr $\circ H=\operatorname{pr}$, it follows that $d H(z, \gamma(z))$ is non-singular for $z \in F\left(0^{\prime}\right)$. Thus, there is an open set $W^{\prime} \subset W$ such that $0 \subset W^{\prime}$ and such that $H: G\left(W^{\prime}\right) \rightarrow H \circ G\left(W^{\prime}\right)$ is a diffeomorphism; thus $H \circ G: W^{\prime} \rightarrow H \circ G\left(W^{\prime}\right)$ is a diffeomorphism. But for $y \in M(n) \cap W^{\prime}=M(n) \cap W=0$, we have $H \circ G(y)=H(F(\pi(y)), \gamma F(\pi(y)))$ $=\left(f \circ \varphi^{-1}(y), \gamma\left(f \circ \varphi^{-1}(y)\right)\right)=\left(f \circ \varphi^{-1}(y), \gamma\left(f \circ \varphi^{-1}(y)\right)+h\left(f \circ \varphi^{-1}(y)\right.\right.$, $\left.\left.\left.\gamma\left(f \circ \varphi^{-1}(y)\right)\right)\right)=\left(f \circ \varphi^{-1}(y), \gamma\left(f \circ \varphi^{-1}(y)\right)+\gamma^{\prime}\left(f \circ \varphi^{-1} \int y\right)\right)\right)$. Similarly one
checks that $H \circ G\left(W^{\prime} \cap S(n+1)\right) \subset L\left(\gamma+\gamma^{\prime}\right)\left(F\left(0^{\prime}\right)\right)$ so that $H \circ G$ makes $\gamma+\gamma^{\prime}$ admissible over (V, φ) where $V=f^{-1}\left(F\left(0^{\prime}\right)\right)$, and the first half of Lemma 3 is proved. The proof of the second half of Lemma 3 is straightforward.

Now Lemmas 2 and 3 fit together with a suitable C^{∞} partition of unity of N to complete the proof of Theorem 2.

Corollary 1. (Proposition 2). Let P be a compact $M(n)$ oriented manifold and N a smooth manifold. Then there is a smoothing from P to N if and only if P and N are strongly cobordant.

Proof. Let $f: P \rightarrow N$ be a smoothing. Relax the $M(n)$ structure on P to a smooth $M(n)$ structure. Then f smoothly subdivides N, and Theorem 2 applies to imply that P and N are strongly cobordant. The other direction is an application of the Cavins-Hirsch Theorem: Let X be the strong cobordism from P (relaxed to a smooth $M(n)$ manifold) to N. There exists a smooth vector field transverse to P, and pointing into X along P. By the Cairns-Hirsch Theorem there is a smooth compact manifold $N^{\prime} \subset$ int X transverse to the field, and the solution curves of the field define a map $P \xrightarrow{g} N$ that smoothly subdivides N^{\prime}. Relaxing further to $P L$ structure, we see that $X=X_{1} \cup X_{2}$ where $X_{1} \cap X_{2}=N^{\prime}$ and both X_{1} and X_{2} are cobordisms, from P to N^{\prime} and N^{\prime} to N respectively. But we see that X_{1} is $P L$ isomorphic to $P \times[0,1]$ by means of the integral curves, and X also is $P L$ isomorphic to $P \times[0,1]$. It follows that both X and X_{1} are regular neighborhoods of P, so that X_{2} is $P L$ isomorphic to $N^{\prime} \times[0,1]$. Then there is a unique smoothing on $N^{\prime} \times[0,1]$ extending that on N^{\prime} so X_{2} is diffeomorphic to $N^{\prime} \times[0,1]$. Finally, if $\varphi: N^{\prime} \rightarrow N$ is a diffeomorphism, $\varphi \circ f$ is a smoothing from P to N and the corollary is proved.

Corollary 2 (Proposition 3). Suppose that P_{1} and P_{2} are compact sided $M(n)$-manifolds such that each admits a smoothing. If they are $M(n)$-equivalent, then they are strongly cobordant.

Proof. We may assume that there exists a map $f: P_{1} \rightarrow P_{2}$ which $M(n)$ subdivides P_{2}. Let $g: P_{2} \rightarrow N$ be a map which smooths P_{2} to N. Then $g \circ f$ smooths P_{1} to N. By Theorem 2, both P_{1} and P_{2} are strongly cobordant to N. Since strong cobordism is an equivalence relation, P_{1} and P_{2} are strongly cobordant, and the corollary is proved.

To prove Proposition 4, we need to introduce some constructions and terminology. We will say that a set of the form $\left[a_{0}, b_{0}\right] \times \ldots \times\left[a_{n}, b_{n}\right] \subset R \times$ $\ldots \times R=R^{n+1}$ is a hyper-rectangle. Suppose \mathscr{O} is an (open) $(n+1)$-manifold and $F: \mathscr{O} \rightarrow R^{n+1}$ an immersion. We will say that a subset $C \subset \mathscr{O}$ that F maps homeomorphically onto a hyper-rectangle is an F-hyper-rectangle. Then a finite union P of F-hyper-rectangles has an obvious generalized polyhedral structure making $F \mid P$ an affine map.

Suppose that \mathscr{O} and F are smooth, and that M is a compact smooth submanifold of \mathscr{O}. An F-simple neighborhood of M will be a finite union N of F-hyper-rectangles such that (1) N is a manifold, (2) $M \subset$ int N, and (3) the inclusion $M \subset N$ is a simple homotopy equivalence. For a relative version of this definition let $\zeta: R^{n+1} \rightarrow R$ be projection on the last factor. Suppose that both $\zeta \circ F \mid M$ and $\zeta \circ F \mid \partial M$ are Morse functions with neither $\alpha, \beta \in R$ a critical value. Let $g=\zeta \circ F \mid M$. Then an F-simple neighborhood of $g^{-1}[\alpha, \beta]$ is a finite union of hyper-rectangles in $(\zeta \circ F)^{-1}[\alpha, \beta]$ such that $[1) N$ is a manifold, (2) $g^{-1}[\alpha, \beta] \subset$ int N, where the interior is with respect to the topology of $(\zeta \circ F)^{-1}[\alpha, \beta]$, and (3) the inclusion $\left(g^{-1}[\alpha, \beta], g^{-1}\{\alpha, \beta\}\right) \subset(N, N \cap$ $\left.(\zeta \circ F)^{-1}\{\alpha, \beta\}\right)$ is a simple homotopy equivalence.

It seems intuitively clear that at least codimension 1 closed compact smooth submanifolds of \mathscr{O} have F-simple neighborhoods - in fact arbitrarily small simple neighborhoods. But we will settle for less.

From now on M is always a compact smooth submanifold of \mathscr{O}. Let \mathscr{U} be an open subset of \mathscr{O} containing M. Let the pair of rotation groups $(S O(n+1)$, $S O(n))$ act on R^{n+1}, R^{n} in the usual way, where $R^{n}=R^{n} \times 0 \subset R^{n+1}$. Notice that for $B \in S O(n+1)$ the composition $B F=B \circ F$ is also a smooth immersion of \mathscr{O}. Then define the open subset $U(M, F, \mathscr{U})$ of $S O(n+1)$ to be

$$
\begin{aligned}
& \{B \in S O(n+1) \mid \text { There is a } B F \text {-simple neighborhood } N \text { of } M \text { with } \\
& N \subset \mathscr{U}\} .
\end{aligned}
$$

Instead of proving that arbitrarily small F-simple neighborhoods of M exist, we will prove the following theorem. Then Proposition 4 will follow as a corollary.

Theorem 3. If M is a smooth closed compact n-submanifold of the smooth open $(n+1)$-manifold \mathscr{O}, and $F: \mathscr{O} \rightarrow R^{n+1}$ is a smooth immersion, then for \mathscr{U} an open neighborhood of M in \mathscr{O} the set $U(M, F, \mathscr{U})$ is open and dense in $S O(n+1)$.

Proof. Clearly $U(M, F, \mathscr{U})$ is open, and clearly the theorem is true in the zero dimensional case ($n=0$). From now on we make the inductive hypothesis that the theorem has been proved in the $(n-1)$ dimensional case.

It is straightforward to see that $\{C \in S O(n+1)|\zeta \circ C \circ F| M$ is Morse $\}$ is an open dense subset of $S O(n+1)$. We fix C in that set and write $g_{C}=$ $\zeta \circ C \circ F \mid M$. For $\alpha, \beta \in R$ such that neither is a critical value of g_{C}, write

$$
\begin{array}{r}
V([\alpha, \beta], F, C, \mathscr{U})=\left\{B \in S O(n-1) \mid \text { There is a }\left[\begin{array}{c}
B 0 \\
01
\end{array}\right] \circ C \circ F\right. \text {-simple } \\
\text { neighborhood of } \left.g_{c^{-1}}[\alpha, \beta] \text { in } \mathscr{U}\right\} .
\end{array}
$$

Lemma 1. If $\mathscr{P} \xrightarrow{G} R^{n}$ is a smooth immersion of a smooth n-manifold \mathscr{P}, and P is a smooth compact n-submanifold of \mathscr{P}, and \mathscr{O} is an open neighborhood of P in \mathscr{P}, then $U(P, G, \mathscr{O})$ is an open dense subset of $S O(n)$.

Proof. By the induction hypothesis, $U(\partial P, G, \mathscr{O})$ is open dense in $S O(n)$. Suppose $B \in U(\partial P, G, \mathscr{O})$. Then there is a $B G$-simple neighborhood N of ∂P in \mathscr{O}. But then $P \subset N \cup P$, and $N \cup P$ is a $B G$-simple neighborhood of P in \mathscr{O}, and the lemma is proved.

Lemma 2. The intersection of $V([\alpha, \beta], F, C, \mathscr{U}), V([\beta, \gamma], F, C, \mathscr{U})$ and $V([\alpha, \gamma], F, C, \mathscr{U})$ is dense in $V([\alpha, \beta], F, C, \mathscr{U}) \cap V([\beta, \gamma], F, C, \mathscr{U})$.

Proof. Suppose that $B \in V([\alpha, \beta], F, C, \mathscr{U}) \cap V([\beta, \gamma], F, C, \mathscr{U})$ and let O be any open neighborhood of B in that intersection. Then there exist $\left[\begin{array}{c}B 0 \\ 01\end{array}\right] \circ C \circ F$-simple neighborhoods N_{1} of $g_{C^{-1}}[\alpha, \beta]$ and N_{2} of $g_{C^{-1}}[\beta, \gamma]$ in \mathscr{U}. Let $G=\left[\begin{array}{l}B 0 \\ 01\end{array}\right] \circ C \circ F$ and let $\sigma=\zeta \circ\left[\begin{array}{l}B 0 \\ 01\end{array}\right] \circ C \circ F=\zeta \circ C \circ F$. Notice that $g_{C^{-1}}(\beta)$ is an open smooth n-manifold \mathscr{P}, and that $\left.\left[\begin{array}{l}B 0 \\ 10\end{array}\right] \circ C \circ F \right\rvert\, \mathscr{P}=$ $G \mid \mathscr{P}: \mathscr{P} \rightarrow \zeta^{-1}(\beta)$ is a smooth immersion; and the $S O(n)$ space $\zeta^{-1}(\beta)$ identifies canonically with the $S O(n)$ space R^{n}. Recall the basis (e_{0}, \ldots, e_{n}), and for $x \in \sigma^{-1}(\beta)$ define $(x, t) \in \mathscr{O}$ by $G(x, t)=G(x)+t e_{n}$. This point is well defined for t sufficiently near β; if X is compact and ϵ, δ are sufficiently near β, then $X \times[\epsilon, \delta]$ is well defined by $X \times[\epsilon, \delta]=\{(x, t) \mid x \in X, r \in[\epsilon, \delta]\}$. A similar construction is this: for $D \in S O(n+1)$ and $x \in \mathscr{O}$, then $D x$ is well defined by $G(D x)=D G(x)$ provided D is sufficiently near the identity. And for X compact $\subset \mathscr{O}$, there is a neighborhood of the identity such that $D \cdot X$ is well defined in that neighborhood. In the same way, for $A \in S O(n)$ near the identity and X compact $\subset \mathscr{P}, A \cdot X=\{A x \mid x \in X\}$ is well defined by $A(G \mid \mathscr{P})(x)=G \mid \mathscr{P}(A x)$. Now, there exist ϵ and δ with $\alpha<\epsilon<\beta$ and $\beta<$ $\delta<\gamma$, sufficiently near β that

$$
\begin{align*}
& N_{1} \cap \sigma^{-1}[\alpha, \delta] \text { and } N_{2} \cap \sigma^{-1}[\epsilon, \gamma] \text { are }\left[\begin{array}{c}
B 0 \\
01
\end{array}\right] \circ C \circ F \text {-simple } \tag{1}\\
& \text { neighborhoods of } g_{C}^{-1}[\alpha, \delta] \text { and } g_{C}{ }^{-1}[\epsilon, \delta] \text { respectively. }
\end{align*}
$$

(2) There is a compact n-submanifold P of \mathscr{P} such that
(i) $g^{-1}[\delta, \epsilon] \subset \operatorname{int} Q \times[\delta, \epsilon] \subset\left(\right.$ int $\left._{\mathscr{P}} N_{1}{ }^{\prime} \cap \operatorname{int}_{\mathscr{P}} N_{2}{ }^{\prime}\right) \times[\delta, \epsilon]$

$$
\text { where } N_{i}{ }^{\prime}=N_{i} \cap \sigma^{-1}(\beta) \text {, and }
$$

(ii) the inclusion $g_{C^{-1}}(\beta) \subset Q$ is a simple homotopy equivalence.

Then by shrinking O about B suitably, we may extend (1) and (2) to the following:
(1') For $E \in O,\left[\begin{array}{cc}B E^{-1} & 0 \\ 0 & 1\end{array}\right] N_{1} \cap \sigma^{-1}[\alpha, \delta]$ and $\left[\begin{array}{cc}B E^{-1} & 0 \\ 0 & 1\end{array}\right] N_{2} \cap \sigma^{-1}[\epsilon, \gamma]$

$$
\text { are }\left[\begin{array}{ll}
E & 0 \\
0 & 1
\end{array}\right] \circ C \circ F \text {-simple neighborhoods of } g_{C}{ }^{-1}[\alpha, \delta] \text { and }
$$

$$
g_{C}{ }^{-1}[\epsilon, \gamma] \text { respectively. }
$$

(2') For $E \in O$,
(i) $g_{C^{-1}}[\delta, \epsilon] \subset\left[\begin{array}{cc}B E^{-1} & 0 \\ 0 & 1\end{array}\right]$ (int $\left.Q \times[\delta, \epsilon]\right) \subset\left[\begin{array}{cc}B E^{-1} & 0 \\ 0 & 1\end{array}\right]$
$\left[\left(\operatorname{int}_{\mathscr{P}} N_{1}{ }^{\prime}\right) \cap\left(\operatorname{int}_{\mathscr{P}} N_{2}{ }^{\prime}\right) \times[\delta, \epsilon]\right]$
(ii) the inclusion $g_{C^{-1}}(\beta) \subset\left[\begin{array}{cc}B E^{-1} & 0 \\ 0 & 1\end{array}\right] Q$ is a simple homotopy
equivalence.
Let \mathscr{V} be open in \mathscr{P}, such that $\overline{\mathscr{V}}$ is compact, and $Q \times[\delta, \epsilon] \subset \mathscr{V} \times$ $[\delta, \epsilon] \subset \widetilde{\mathscr{V}} \times[\delta, \epsilon] \subset\left(\right.$ int $\left._{\mathscr{P}} N_{1}{ }^{\prime}\right) \cap\left(\right.$ int $\left._{\mathscr{P}} N_{2}{ }^{\prime}\right) \times[\delta, \epsilon]$. By shrinking O about B again, we may assume $E \in O$ implies

$$
\overline{\mathscr{V}} \times[\delta, \epsilon] \subset\left[\begin{array}{cc}
B E^{-1} & 0 \\
0 & 1
\end{array}\right]\left[\left(\operatorname{int}_{\mathscr{P}} N_{1}{ }^{\prime}\right) \cap\left(\operatorname{int}_{\mathscr{P}} N_{2}{ }^{\prime}\right) \times[\delta, \epsilon]\right] .
$$

By Lemma 1 carried over to $\zeta^{-1}(\beta)$ in place of R^{n}, and $B^{-1} \circ(G \mid \mathscr{P}): \mathscr{P} \rightarrow$ $\zeta^{-1}(\beta)$, we have that $U\left(Q, B^{-1} \circ(G \mid \mathscr{P}), \mathscr{V}\right)$ is open dense in $S O(n)$. Thus, there is some $E \in 0 \cap U\left(Q, B^{-1} \circ(G \mid \mathscr{P}), \mathscr{V}\right)$. It follows that there is an $E B^{-1} \circ(G \mid \mathscr{P})$-simple neighborhood $N^{\prime \prime}$ of Q in \mathscr{V}.

From (1) it follows that $\left(\left[\begin{array}{cc}B E^{-1} & 0 \\ 0 & 1\end{array}\right] N_{1}\right) \cap \sigma^{-1}[\alpha, \delta]$ and $\left(\left[\begin{array}{cc}B E^{-1} & 0 \\ 0 & 1\end{array}\right] N_{2}\right)$ $\cap \sigma^{-1}[\epsilon, \delta]$ are $\left[\begin{array}{cc}E B^{-1} & 0 \\ 0 & 1\end{array}\right] \circ G$-simple neighborhoods of $g_{C^{-1}}[\alpha, \delta]$ and $g_{C^{-1}}[\alpha, \gamma]$ respectively. But $N^{\prime \prime} \times[\delta, \epsilon]$ is a union of $\left[\begin{array}{cc}E B^{-1} & 0 \\ 0 & 1\end{array}\right] \circ G$-hyper-rectangles, so

$$
\begin{aligned}
N=\left[\left(\left[\begin{array}{cc}
B E^{-1} & 0 \\
0 & 1
\end{array}\right] N_{1}\right) \cap\right. & \left.\sigma^{-1}[\alpha, \delta]\right] \\
& \times\left[N^{\prime \prime}\right. \\
& \times[\delta, \epsilon] \cup\left[\left(\left[\begin{array}{cc}
B E^{-1} & 0 \\
0 & 1
\end{array}\right] N_{2}\right) \cap \sigma^{-1}[\epsilon, \gamma]\right]
\end{aligned}
$$

is a union of $\left[\begin{array}{cc}E B^{-1} & 0 \\ 0 & 1\end{array}\right] \circ G$-hyper-rectangles. And since

$$
N^{\prime \prime} \times[\delta, \epsilon] \cap\left[\begin{array}{cc}
B E^{-1} & 0 \\
0 & 1
\end{array}\right] N_{1} \cap \sigma^{-1}[\alpha, \delta]=N^{\prime \prime} \times \delta \subset\left(\text { int }_{\mathscr{P}} N_{1}{ }^{\prime}\right) \times \delta
$$

and

$$
N^{\prime \prime}[\delta, \epsilon] \cap\left[\begin{array}{cc}
B E^{-1} & 0 \\
0 & 1
\end{array}\right] N_{2} \cap \sigma^{-1}[\epsilon, \gamma]=N^{\prime \prime} \times \epsilon \subset\left(\operatorname{int}_{\mathscr{P}} N_{2}{ }^{\prime}\right) \times \epsilon
$$

it follows that the $\left[\begin{array}{cc}E B^{-1} & 0 \\ 0 & 1\end{array}\right] \circ G$-polyhedral structure on N makes it an $M(n)$-manifold. Finally, the inclusion

$$
\left(g_{\left.c^{-1}[\alpha, \gamma], g_{c^{-1}\{\alpha, \gamma\}}\right) \subset\left(N, N \cap \sigma^{-1}\{\alpha, \gamma\}\right), ~(N)}\right.
$$

is a homotopy equivalence, so N is a (relative) $\left[\begin{array}{ll}E & 0 \\ 0 & 1\end{array}\right] \circ C \circ F$-simple neighborhood of $g_{C^{-1}}[\alpha, \gamma]$. Thus $E \in V([\alpha, \gamma], F, C, \mathscr{U})$ and Lemma 2 is proved.

Lemma 3. If $[\alpha, \beta] \subset g_{C}(M)$ contains no critical values of g_{C}, then $V([\alpha, \beta]$, $F, C, \mathscr{U})$ is open and dense in $S O(n)$.

Proof. Clearly $V([\alpha, \beta], F, C, \mathscr{U})$ is open. We set

$$
\Gamma=\{x \in[\alpha, \beta] \mid V([\alpha, x], F, C, \mathscr{U}) \text { is open dense in } S O(n)\} .
$$

By the induction hypothesis, $\alpha \in \Gamma$. Now we show that Γ is open in $[\alpha, \beta]$. Suppose $x \in \Gamma$; we may assume that $x<\beta$. Let $G=C \circ F: \mathscr{O} \rightarrow R^{n+1}$ and $\sigma=\zeta \circ G$, and $g=\zeta \circ G \mid M$. Let \mathscr{V} be an open subset of $\mathscr{P}=\sigma^{-1}(x)$ with $g^{-1}(x) \subset \mathscr{V} \subset \mathscr{V}$ compact $\subset \mathscr{U}$. We may define $\overline{\mathscr{V}} \times[x, b] \subset \mathscr{O}$ as in the proof of Lemma 2, for b sufficiently near x. Then for some b with $x<b \leqq \beta$ and $\overline{\mathscr{V}} \times[x, b] \subset \mathscr{U}$ there exists a compact smooth n submanifold Q of \mathscr{P} such that
(i) $g^{-1}[x, b] \subset$ int $Q \times[x, b] Q \times[x, b] \subset \mathscr{V} \times[x, b]$, and
(ii) the inclusion $g^{-1}(x) \subset Q$ is a simple homotopy equivalence.

By Lemma 1, the set $U(Q, G \mid \mathscr{P}, \mathscr{V})$ is open dense in $S O(n)$. Suppose $B \in$ $U(Q, G \mid \mathscr{P}, \mathscr{V})$. Then there is a $\left[\begin{array}{ll}B & 0 \\ 0 & 1\end{array}\right] \circ(G \mid \mathscr{P})$-simple neighborhood N^{\prime} of Q in \mathscr{V}. But then $N^{\prime} \times[x, b]$ is a $\left[\begin{array}{ll}B & 0 \\ 0 & 1\end{array}\right] \circ G$-simple (relative) neighborhood of $g^{-1}[x, b]$ in $\mathscr{V} \times[x, b]$. Thus $U(Q, G \mid \mathscr{P}, \mathscr{V}) \subset V([x, b], F, C, \mathscr{U})$ and the right hand set is open dense in $S O(n)$. But already $V([\alpha, x], V, C, \mathscr{U})$ is open dense, so $V([\alpha, x], F, C, \mathscr{U}) \subset V([x, b], F, C, \mathscr{U})$ is open dense. Finally, an application of Lemma 2 shows that $V([\alpha, b], F, C, \mathscr{U})$ is open in $S O(n)$. Thus $b \in \Gamma$, and Γ must be open in $[\alpha, \beta]$.

To see that Γ is closed, suppose $a_{1}<a_{2}<a_{3}<\ldots$ is an increasing sequence in Γ with limit y. We must show that $y \in \Gamma$; we have $\alpha<y<\beta$. As above, there will be some a with $\alpha<a<y$ such that $V([a, y], F, C, \mathscr{U})$ is open dense in $S O(n)$. Since $a \in \Gamma$, we have that $V([\alpha, a], F, C, \mathscr{U})$ is already open dense in $S O(n)$, and an application of Lemma 2 shows that $V([\alpha, y], F, C, \mathscr{U})$ is open dense. Consequently $y \in \Gamma$, and Γ is closed in $[\alpha, \beta]$.

Since Γ was already non-empty and open, it follows that $\Gamma=[\alpha, \beta]$, and the lemma is proved.

Lemma 4. Suppose x is a critical point of $g=\zeta \circ C \circ F \mid M$. Then there exists $\epsilon>0$ such that $V([x-\epsilon, x+\epsilon], F, C, \mathscr{U})$ is open and dense in $S O(n)$.

Proof. Let $G=C \circ F$ and $\sigma=\zeta \circ G$ and $g=\zeta \circ G \mid M$. The canonical form of a Morse function at a critical point allows us to find a compact smooth n-submanifold P of $\mathscr{P}=\sigma^{-1}(x)$ and $\gamma>0$ such that x is the only critical
value in $[x-\gamma, x+\gamma]$, and

$$
g^{-1}[x-\gamma, x+\gamma] \subset \operatorname{int} P \times[x-\gamma, x+\gamma] \subset P \times[x-\gamma, x+\gamma] \subset \mathscr{U}
$$ and such that $g^{-1}(x) \subset P$ is a simple homotopy equivalence. Let \mathscr{V} be an open subset of \mathscr{P} such that $P \times[x-\gamma, x+\gamma] \subset \mathscr{V} \times[x-\gamma, x+\gamma] \subset \mathscr{U}$. Then by Lemma 2 , we have that $U_{0}=U(P, G \mid \mathscr{P}, \mathscr{V})$ is open dense in $S O(n)$. Now choose $\epsilon>\gamma$ such that $[x-\epsilon, x-\gamma] \cup[x+\gamma, x+\epsilon]$ contains no critical values of g. Then $U_{-}=V([x-\gamma, x-\epsilon], C, F, \mathscr{U})$ and $U_{+}=$ $V([x+\gamma, x+\epsilon], C, F, \mathscr{U})$ are open dense in $S O(n)$ by Lemma 3 . Now we argue as in the proof of Lemma 2: Suppose $B \in U_{-} \cap U_{0} \cap U_{+}$. Then there exist $\left[\begin{array}{cc}B & 0 \\ 0 & 1\end{array}\right] \circ G$-simple neighborhoods $N_{-}, N \times[x-\gamma, x+\gamma]$, and N_{+}of $g^{-1}[x-\epsilon, x-\gamma], P \times[x-\gamma, x+\gamma]$, and $g^{-1}[x+\gamma, x+\epsilon]$ respectively. Let $N_{-}{ }^{\prime}=N_{-} \cap \sigma^{-1}(x-\gamma)$ and $N_{+}{ }^{\prime}=N_{+} \cap \sigma^{-1}(x+\gamma)$. Now we need to complicate notation somewhat more: There exist a, b such that $0<a<\gamma$ $<b<\epsilon$ and compact smooth n-submanifolds Q_{-}and Q_{+}of $\sigma^{-1}(x-\gamma)$ and $\sigma^{-1}(x+\gamma)$ respectively, such that

(i) $g^{-1}[x-b, x-a] \subset\left(\right.$ int $\left.Q_{-}\right) \times[x-b, x-a] \subset Q_{-} \times[x-b, x-a]$ $\subset\left(\right.$ int $N_{-}^{\prime} \cap \operatorname{int} N \times(x-\gamma) \times[x-b, x-a]$, the same for + in place of - , and
(ii) the inclusions $g^{-1}(x-\gamma) \subset Q_{-}$and $g^{-1}(x+\gamma) \subset Q_{+}$are
simple homotopy equivalences. Let \mathscr{V}_{-}and \mathscr{V}_{+}be open in $\sigma^{-1}(x-\gamma)=\mathscr{P}_{-}$and $\sigma^{-1}(x+\gamma)=\mathscr{P}_{+}$respectively, such that $\overline{\mathscr{V}}_{ \pm}$are compact and $Q_{ \pm} \subset \overline{\mathscr{V}}_{ \pm} \subset \mathscr{V}_{ \pm} \subset$ int $N_{ \pm}^{\prime} \cap$ int $N \times$ $(x \pm \gamma)$. Let 0 be an open neighborhood of B in $U_{-} \cap U_{0} \cap U_{+}$. By shrinking 0 about B suitably, we may assume that for $E \in 0$ we have

$$
\begin{align*}
& {\left[\begin{array}{cc}
B E^{-1} & 0 \\
0 & 1
\end{array}\right] N_{-} \cap \sigma^{-1}[x-\epsilon, x-b] \text { and }} \tag{1}\\
& \quad\left[\begin{array}{cc}
B E^{-1} & 0 \\
0 & 1
\end{array}\right] N_{+} \cap \sigma^{-1}[x+b, x+\epsilon] \text { are }\left[\begin{array}{cc}
E & 0 \\
0 & 1
\end{array}\right] \circ G \text {-simple }
\end{align*}
$$

(relative) neighborhoods of $g^{-1}[x-\epsilon, x-b]$ and $g^{-1}[x+b, x+\epsilon]$ respectively in \mathscr{U}.

$$
\begin{align*}
& N_{ \pm} \cap \sigma^{-1}[x \pm b, x \pm \gamma]=N_{ \pm}^{\prime} \times[x \pm b, x \pm \gamma] \text {. In particular, } \tag{2}\\
& N_{ \pm}^{\prime} \times[x \pm \gamma, x \pm b] \text { is a }\left[\begin{array}{cc}
B & 0 \\
0 & 1
\end{array}\right] \circ G \text {-simple neighborhoods of } \\
& g^{-1}[x \pm \gamma, x \pm b] \text { in } \mathscr{U} .
\end{align*}
$$

$$
\mathscr{V}_{ \pm} \subset\left[\begin{array}{cc}
B E^{-1} & 0 \tag{3}\\
0 & 1
\end{array}\right] \text { int } N_{ \pm}^{\prime} \cap \operatorname{int} N \times(x \pm \gamma)
$$

Now

$$
\begin{aligned}
& U_{-} \cap U_{0} \cap U_{+} \cap U\left(Q_{-}, \left.\left[\begin{array}{ll}
B & 0 \\
0 & 1
\end{array}\right] \circ G \right\rvert\, \mathscr{P}_{-}, \mathscr{V}_{-}\right) \\
& \cap U\left(Q_{+}, \left.\left[\begin{array}{ll}
B & 0 \\
0 & 1
\end{array}\right] \circ G \right\rvert\, \mathscr{P}_{+}, \mathscr{V}_{+}\right)
\end{aligned}
$$

is open dense in $S O(n)$, so the intersection of this set with 0 is non-empty; let E be in that intersection. We apply Lemma 1 to $G_{ \pm}=G \mid \mathscr{P}_{ \pm}: \mathscr{P}_{ \pm} \rightarrow$ $\zeta^{-1}(x \pm \gamma)$ and we see that we may assume in addition that there exist $E \circ G_{ \pm}$-simple neighborhoods $N_{ \pm}^{\prime \prime}$ of $Q_{ \pm}$in $\mathscr{V}_{ \pm}$. Finally then, the inclusion

$$
\begin{aligned}
& \left(g^{-1}[x-\epsilon, x+\epsilon], g^{-1}\{x-\epsilon, x+\epsilon\}\right) \subset\left(\left[\begin{array}{cc}
B E^{-1} & 0 \\
0 & 1
\end{array}\right] N_{-}\right. \\
& \left.\cap \sigma^{-1}[x-\epsilon, x-b]\right] \cup N_{-}^{\prime \prime} \times[x-b, x-a] \cup\left[\begin{array}{cc}
B E^{-1} & 0 \\
0 & 1
\end{array}\right] N \\
& \quad \times[x-a, x+a]] \cup N_{+}^{\prime \prime} \times[x+a, x+b] \cup\left[\begin{array}{cc}
B E^{-1} & 0 \\
0 & 1
\end{array}\right] N_{+} \\
& \cap \sigma[x+b, x+\epsilon],\left[\begin{array}{cc}
B E^{-1} & 0 \\
0 & 1
\end{array}\right]\left(N_{-} \cap \sigma^{-1}(x-\epsilon)\right) \cup\left(N_{+}\right. \\
& \left.\left.\cap \sigma^{-1}(x+\epsilon)\right)\right)
\end{aligned}
$$

is a simple homotopy equivalence. But then $E \in V([x-\epsilon, x+\epsilon], F, C, \mathscr{U})$. Thus $V([x-\epsilon, x+\epsilon], F, C, \mathscr{U})$ is dense; since it is already open, the lemma is proved.

Proof of theorem. By Lemmas 3 and 4, we may write $g(M)$ as a finite union of consecutive intervals $[\alpha, \beta]$ such that for each $[\alpha, \beta]$ the set $V([\alpha, \beta], F, C, \mathscr{U})$ is open and dense in $S O(n)$. It follows that their intersection is open and dense, so we may choose B in their intersection so that $\left[\begin{array}{cc}B & 0 \\ 0 & 1\end{array}\right] \cdot C$ is arbitrarily close to C and there exists a $\left[\begin{array}{cc}B & 0 \\ 0 & 1\end{array}\right] \circ C \circ F$-simple neighborhood of M in \mathscr{U}. Thus $U(M, F, \mathscr{U})$ is dense. Since it is already open, the theorem is proved.

Corollary (Proposition 4). If $n \geqq 5$ and M is an orientable closed compact smooth n-manifold that immerses smoothly in R^{n+1}, then there exists an $M(n)$ oriented manifold strongly cobordant to M.

Proof. By taking the normal bundle of a smooth immersion $f: M \rightarrow R^{n+1}$, we obtain a smooth open $(n+1)$ manifold $\mathscr{O} \supset M$ and a smooth immersion $F: \mathscr{O} \rightarrow R^{n+1}$. By the theorem, there is $C \in S O(n+1)$ such that there exists $C \circ G$-simple neighborhood N of M in \mathscr{O}. Then N is an $S(n+1)$ manifold and ∂N is an $M(n)$ manifold. Moreover $\partial N=\partial_{0} N \cup \partial_{1} N$ and $N=N_{0} \cup N_{1}$ with N_{0} an s-cobordism from M to $\partial_{0} N$. Since $n \geqq 5, N_{0}$ is a strong cobordism and the corollary is proved.

Finally, we sketch the proof of Proposition 5 since the tilting details are fairly similar in technique to those of Theorem 3.

Proposition. Let Σ be a smooth homotopy n-sphere that bounds a parallelizable manifold. Then there is a polyhedron $P \subset R^{n+2}$ that is an $M(n)$ manifold strongly cobordant to $\mathbf{\Sigma}$.

Proof. If $n \leqq 6$ there is nothing to prove so we may assume $n \geqq 7$. We have $n=2 r-1$ and $\Sigma=\partial X$ where X consists of an $(n+1)$ disk with r-handles attached so that X is parallelizable. We may immerse X in R^{n+1} so that the disk lies in $R^{n} \times(-\infty, 0]$ and contains $D^{n} \times(-1,0]$, so that each handle H is embedded and near $D^{n} \times 0$ coincides with $\Gamma_{H} \times[0, \infty)$ for some copy $\Gamma_{H} \subset$ int D^{n} of $S^{r-1} \times D^{r}$. We may assume that two handles intersect crosswise in a disjoint union of copies of $D^{r} \times D^{r}$ so that the double point manifold of the immersion $F: X \rightarrow R^{n+1}$ consists of a disjoint union of copies of $D^{r} \times$ D^{r}, which are pairwise interchanged by the double point involution. We may assume further, by cutting the embedded handles with affine n-spaces parallel to $R^{n} \times 0$ that there exist $\Gamma_{1}, \Gamma_{2}, \ldots, \Gamma_{k} \subset X$ such that each $F\left(\Gamma_{i}\right)$ is the translate of some Γ_{H}, and such that each component of $X-\Gamma_{1}-\Gamma_{2}-\ldots$ $-\Gamma_{k}$ contains exactly one component of the double point manifold. For each pair of components of the double point manifold paired by the double point involution, assign +1 to one member and -1 to the other. Thus we may assign +1 or -1 to the corresponding component of $X-\Gamma_{1}-\ldots-\Gamma_{k}$; to obtain a smooth embedding $X \subset R^{n+2}$ we may find a C^{∞} function $h: X \rightarrow R$, positive on each +1 component of $X-\Gamma_{1}, \ldots-\Gamma_{k}$ and negative on each -1 component. Then $x \rightarrow(F(x), h(x))$ is an embedding. Instead we let $\mathscr{O}=\operatorname{int} X$ and we identify Σ with the boundary of an open collar of X. We may assume that Σ meets each Γ_{i} transversally in a copy of $S^{r-1} \times S^{r-1}$. After suitable tilting, we find $F \mid \mathscr{O} \cap \Gamma_{i}$-simple neighborhoods N_{1}, \ldots, N_{k} of $\Sigma \cap \Gamma_{1}, \ldots$, $\Sigma \cap \Gamma_{k}$. These give rise to relative F-simple neighborhoods $N_{1} \times\left[a_{1}, b_{1}\right], \ldots$, $N_{k} \times\left[a_{k}, b_{k}\right]$ of $\left(\Gamma_{1} \times\left[a_{1}, b_{1}\right]\right) \cap \Sigma, \ldots,\left(\Gamma_{k} \times\left[a_{k}, b_{k}\right]\right) \cap \Sigma$ respectively, where $\left[a_{i}, b_{i}\right]$ is a suitable closed neighborhood of x_{i}, and $\Gamma_{i} \subset R^{n} \times x_{i}$. After another tilt, we may suppose that we have as well a relative F-simple neighborhood M of $\Sigma \cap\left[\mathscr{O}-\Gamma_{1} \times\left(a_{1}{ }^{\prime}, b_{1}{ }^{\prime}\right)-\ldots-\Gamma_{k} \times\left(a_{k}{ }^{\prime}, b_{k}{ }^{\prime}\right)\right]$ where $\left(a_{i}{ }^{\prime}, b_{i}{ }^{\prime}\right)$ is a suitable open interval containing $\left[a_{i}, b_{i}\right]$. Finally, we have relative F-simple neighborhoods $R_{1} \times\left[a_{1}{ }^{\prime}, a_{1}\right], \ldots, R_{k} \times\left[a_{k}{ }^{\prime}, a_{k}\right]$ of $\Sigma \cap\left(\Gamma_{1} \times\left[a_{1}{ }^{\prime}, a_{1}\right]\right), \ldots$, $\Sigma \cap\left(\Gamma_{k} \times\left[a_{k}{ }^{\prime}, a_{k}\right]\right)$ respectively, and $L_{1} \times\left[b_{1}, b_{1}{ }^{\prime}\right], \ldots, L_{k} \times\left[b_{k}, b_{k}{ }^{\prime}\right]$ of $\Sigma \cap\left(\Gamma_{1} \times\left[b_{1}, b_{1}^{\prime}\right]\right), \ldots, \Sigma \cap\left(\Gamma_{k} \times\left[b_{k}, b_{k}{ }^{\prime}\right]\right)$ respectively. We may assume that each $R_{i} \times a_{i}{ }^{\prime}$ and $L_{j} \times b_{j}{ }^{\prime}$ is contained in the interior of a corresponding n-facet of M, and that $R_{i} \times a_{i} \cup$ int $N_{i} \times a_{i}$ and $L_{j} \times b_{j} \subset$ int $N_{j} \times b_{j}$. Then

$$
\left(\cup\left\{R_{i} \times\left[a_{i}{ }^{\prime}, a_{i}\right] \cup N_{i} \times\left[a_{i}, b_{i}\right] \cup L_{i} \times\left[b_{i}, b_{i}{ }^{\prime}\right] \mid i=1, \ldots, k\right\}\right)
$$

$$
\cup M=Y
$$

is an F-simple neighborhood of Σ, and its boundary is strongly cobordant to Σ. Notice that each component of M is in some component of $X-\Gamma_{1}-\ldots$ $-\Gamma_{k}$ and so inherits +1 or -1 . Let M_{+}be the union of all those components inheriting +1 and M_{-}the union of all those inheriting -1 . Each R_{i} and L_{j} is in one of these components and so inherits $a+1$ or $a-1$, which we write as $\mathscr{O}\left(R_{i}\right)$ or $\mathscr{O}\left(L_{j}\right)$. Define a map $G: Y \rightarrow R^{n+1} \times R$ by $G(x)=(F(x),+1)$ if $x \in M_{+}$and $G(x)=(F(x),-1)$ if $x \in M_{-}$, and $G(x)=(F(x), 0)$ if $x \in$
$\bigcup\left\{N_{i} \times\left[a_{i}, b_{i}\right] i i=1, \ldots, k\right\}$. For $(x, t) \in R_{i} \times\left[a_{i}{ }^{\prime}, a_{i}\right]$, set

$$
G(x, t)=(F(x, t), 0)+\left(0, \frac{\sigma\left(R_{i}\right)}{a_{i}^{\prime}-a_{i}}\left(t-a_{i}\right)\right)
$$

and for $(x, t) \in L_{j} \times\left[b_{j}, b_{j}{ }^{\prime}\right]$, set

$$
G(x, t)=(F(x, t), 0)+\left(0, \frac{\sigma\left(L_{j}\right)}{b_{j}^{\prime}-b_{j}}\left(t-b_{j}\right)\right) .
$$

Then G determines an affine isomorphism from ∂Y to $P=G(\partial Y)$, and P is a subpolyhedron of R^{n+1}. The proof of Proposition 5 is complete.

References

1. J. Cerf, Topologie de certaines espaces de plongements, (Gauthier-Villars, Paris, 1961).
2. M. W. Hirsch, On combinatorial submanifolds of differentiable manifolds, Comment. Math. Helv. 36(1962), 103-111.
3. N. H. Kuiper, On the smoothings of triangulated and combinatorial manifolds, pp. 3-22, Differential and Combinatorial Topology (Princeton).
4. R. Thom, Les classes caracteristiques de Pontrjagin des varietes triangules, pp. 54-67, Symposium Internacional de Topologia Algebraica (Mexico, 1966).

The Pennsylvania State University, University Park, Pennsylvania

[^0]: Received June 12, 1974.

